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This paper presents an extension of the double Heston stochastic volatility model by combiningHull-White stochastic interest rates.
By the change of numeraire and quadratic exponential scheme, this paper develops a new simulation scheme for the extended
model. By combining control variates and antithetic variates, this paper provides an efficient Monte Carlo simulation algorithm for
pricing barrier options. Based on the differential evolution algorithm the extended model is calibrated to S&P 500 index options to
obtain themodel parameter values. Numerical results show that the proposed simulation scheme outperforms the Euler scheme, the
proposed simulation algorithm is efficient for pricing barrier options, and the extended model is flexible to fit the implied volatility
surface.

1. Introduction

A barrier option is a path-dependent option which is
exterminated (knocked out) or initiated (knocked in) if the
underlying spot price hits the specified barrier level during
the life of the option. Because of this supplementary risk,
barrier options are cheaper than plain vanilla options and
thus are widely traded in exchanges worldwide. One-factor
stochastic volatility models can generate “smile,” leverage
effects, and term structure effects which cannot be explained
by the Black-Scholes model [1, 2]. Consequently many papers
[3–9] evaluate barrier options under one-factor stochastic
volatility models.

However, one-factor stochastic volatility models includ-
ing the Heston model [10] present the poor performance
when fitting the stiff volatility skews [11]. One extension by
usingmultiple stochastic volatility factors has been presented
in some literatures [2, 12, 13]. Christoffersen et al. [2] confirm
that the double Heston model significantly improves the
flexibility of the one-factor stochastic volatility model in
capturing the volatility term structure. In addition, stochastic
interest rate is crucial for option pricing because it ensures
proper discounting of future payoffs. In recent literatures [14–
17], Hull-White stochastic interest rate which is analytically

tractable has been incorporated into one-factor stochastic
volatility model for pricing path-dependent options. There-
fore, the model which incorporates multifactor stochastic
volatility and stochastic interest rate may be more reasonable
for pricing barrier options.

Barrier options with less stochastic factors can be effi-
ciently evaluated by partial differential equation (PDE)
methods [3, 4, 18, 19]. However, the evaluation of barrier
options with multiple stochastic factors is to solve a high-
dimensional PDE which makes PDE methods quite complex
and potentially prone to accuracy and stability problems [1].
A more efficient method for pricing barrier options in this
case is the Monte Carlo method; see [20, 21]. The main
purpose of this paper is to provide a Monte Carlo method
for pricing barrier options under a two-factor stochastic
volatility and stochastic interest rate model.

Themain contributions of this paper are threefold. Firstly,
this paper extends the double Heston model to stochastic
interest rate. Secondly, this paper provides a new simulation
scheme for the extended model. Thirdly, the paper devel-
ops an efficient Monte Carlo algorithm for pricing barrier
options.The rest of the paper is organized as follows. Section 2
presents the extended model. Section 3 details the simulation
scheme for the proposed model. Section 4 develops the
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simulation algorithm for pricing barrier options. Section 5
provides numerical experiments. Section 6 concludes.

2. The Pricing Model

Let {Ω,F, {F𝑡}, 𝑃} be a complete probability space, where 𝑃
is a risk-neutral bank account measure. Assume that𝑊𝑆

𝑗 (𝑡),𝑊𝑉
𝑗 (𝑡) (𝑗 = 1, 2), and 𝑊𝑟(𝑡) are all standard Brownian

motions which are F𝑡-adapted. The double Heston model
proposed by Christoffersen et al. [2] is defined by the
following stochastic partial differential equations:

𝑑𝑆 (𝑡) = 𝑟𝑆 (𝑡) 𝑑𝑡 + 2∑
𝑗=1
√𝑉𝑗 (𝑡)𝑆 (𝑡) 𝑑𝑊𝑆

𝑗 (𝑡) ,
𝑑𝑉1 (𝑡) = 𝑏1 (𝜃1 − 𝑉1 (𝑡)) 𝑑𝑡 + 𝜎1√𝑉1 (𝑡)𝑑𝑊𝑉

1 (𝑡) ,
𝑑𝑉2 (𝑡) = 𝑏2 (𝜃2 − 𝑉2 (𝑡)) 𝑑𝑡 + 𝜎2√𝑉2 (𝑡)𝑑𝑊𝑉

2 (𝑡) ,
(1)

where 𝑟 is constant interest rate,𝑊𝑆
𝑗 (𝑡) and𝑊𝑉

𝑗 (𝑡) (𝑗 = 1, 2)
are correlated with parameter 𝜌𝑗. 𝑏𝑗, 𝜃𝑗, 𝜎𝑗 are the mean
reversion speed, long-term volatility level, and volatility of
process 𝑉𝑗(𝑡) (𝑗 = 1, 2), respectively. 2𝑏𝑗𝜃𝑗 ≥ 𝜎2𝑗 are
supposed tomake the processes𝑉𝑗(𝑡) remain strictly positive.
Conditional on 𝑉𝑗(𝑡), 𝑉𝑗(𝑡 + Δ) obey 𝜎2𝑗 (1 − 𝑒−𝑏𝑗Δ)/4𝑏𝑗 times
a noncentral 𝜒2 distribution with 𝑑𝑗 degree of freedom and
noncentrality parameter 𝜉𝑗; that is,

𝑃 (𝑉𝑗 (𝑡 + Δ) ≤ 𝑥𝑗 | 𝑉𝑗 (𝑡))
= 𝐹𝜒2

𝑑𝑗
(𝜉𝑗)( 4𝑏𝑗𝜎2𝑗 (1 − 𝑒−𝑏𝑗Δ)𝑥𝑗) ,

(2)

where 𝑑𝑗 = 4𝑏𝑗𝜃𝑗/𝜎2𝑗 , 𝜉𝑗 = 4𝑏𝑗𝑒−𝑏𝑗Δ𝑉𝑗(𝑡)/𝜎2𝑗 (1 −𝑒−𝑏𝑗Δ), and 𝐹𝜒2
𝑑𝑗
(𝜉𝑗)(𝑧𝑗) = ∑∞

𝑖=1(𝜉𝑖𝑗𝑒−𝜉𝑗/2/2𝑑𝑗/2+2𝑖𝑖!Γ(𝑖 + 𝑑𝑗/
2)) ∫𝑧𝑗0 𝑧𝑑𝑗/2+𝑖−1𝑗 𝑒−V/2𝑑V.

We consider the Hull-White stochastic interest rate [22]
which is driven by the following mean-reverting process:

𝑑𝑟 (𝑡) = (𝜃 (𝑡) − 𝑏𝑟𝑟 (𝑡)) 𝑑𝑡 + 𝜎𝑟𝑑𝑊𝑟 (𝑡) , (3)

where positive constants 𝑏𝑟, 𝜎𝑟 are the mean reversion speed
and volatility of process 𝑟(𝑡), respectively. 𝜃(𝑡) > 0 is used to
fit the initial term structure of process 𝑟(𝑡). Following Brigo
andMercurio [23], the price of a zero-coupon bondmaturing
at time 𝑇 can be formulated as follows:

𝑃 (𝑡, 𝑇) = 𝐴 (𝑡, 𝑇) exp [−𝐵 (𝑡, 𝑇) 𝑟 (𝑡)] , (4)

where

𝐴 (𝑡, 𝑇) = 𝑃 (0, 𝑇)𝑃 (0, 𝑡)
⋅ exp[𝐵 (𝑡, 𝑇) 𝑓 (0, 𝑡) − 𝜎2𝑟4𝑏𝑟 (1 − 𝑒−2𝑏𝑟𝑡) 𝐵 (𝑡, 𝑇)2] ,

𝐵 (𝑡, 𝑇) = 1 − 𝑒−𝑏𝑟(𝑇−𝑡)𝑏𝑟 ,
𝑓 (0, 𝑡) = −𝜕 ln𝑃 (0, 𝑡)𝜕𝑡 .

(5)

We replace constant 𝑟 in (1) with Hull-White stochastic
interest rate (3) and define the double Heston Hull-White
(DHHW) model by a four-dimensional system of stochastic
differential equations:

𝑑𝑆 (𝑡) = 𝑟 (𝑡) 𝑆 (𝑡) 𝑑𝑡 + 2∑
𝑗=1
√𝑉𝑗 (𝑡)𝑆 (𝑡) 𝑑𝑊𝑆

𝑗 (𝑡) , (6)

𝑑𝑉1 (𝑡) = 𝑏1 (𝜃1 − 𝑉1 (𝑡)) 𝑑𝑡 + 𝜎1√𝑉1 (𝑡)𝑑𝑊𝑉
1 (𝑡) , (7)

𝑑𝑉2 (𝑡) = 𝑏2 (𝜃2 − 𝑉2 (𝑡)) 𝑑𝑡 + 𝜎2√𝑉2 (𝑡)𝑑𝑊𝑉
2 (𝑡) , (8)

𝑑𝑟 (𝑡) = (𝜃 (𝑡) − 𝑏𝑟𝑟 (𝑡)) 𝑑𝑡 + 𝜎𝑟𝑑𝑊𝑟 (𝑡) . (9)

Suppose 𝑉1(0) = 𝑉1, 𝑉2(0) = 𝑉2, 𝑟(0) = 𝑟, and 𝑆(0) =𝑆. Assume that any two random processes are uncorrelated
with each other except cov(𝑑𝑊𝑆

1 (𝑡), 𝑑𝑊𝑉
1 (𝑡)) = 𝜌1𝑑𝑡,

cov(𝑑𝑊𝑆
2 (𝑡), 𝑑𝑊𝑉

2 (𝑡)) = 𝜌2𝑑𝑡.
3. Simulation Scheme for the DHHWModel

To reduce the dimension of the Monte Carlo simulation, we
change from the measure 𝑃 to the 𝑇-forward measure 𝑄 by
using 𝑃(0, 𝑇) as numeraire. Set

𝑧 (𝑡, 𝑇) = ln 𝑆 (𝑡)𝑃 (𝑡, 𝑇) . (10)

By the Itô formula, we rewrite (6) as follows:

𝑑𝑧 (𝑡, 𝑇) = −12 [𝑉1 (𝑡) + 𝑉2 (𝑡) + 𝜎2𝑟𝐵2 (𝑡, 𝑇)]
+ 2∑

𝑗=1
√𝑉𝑗 (𝑡)𝑊𝑆

𝑗 (𝑡) + 𝜎𝑟𝐵 (𝑡, 𝑇)𝑊𝑟 (𝑡) . (11)

3.1. Variance Simulation. Based on the fact that a noncentral𝜒2 distribution with high noncentrality parameter can be
well approximated by a normal distribution, we use quadratic
exponential scheme [24] for discrete variance process 𝑉𝑗(𝑡).

By (2) and simple calculation, we have

𝑚𝑗 = 𝐸 [𝑉𝑗 (𝑡 + Δ) | 𝑉𝑗 (𝑡)] = 𝜃𝑗 + (𝑉𝑗 (𝑡) − 𝜃𝑗) 𝑒−𝑏𝑗Δ,
𝑠2𝑗 = 𝑉 [𝑉𝑗 (𝑡 + Δ) | 𝑉𝑗 (𝑡)]
= 𝜎2𝑗 𝑒−𝑏𝑗Δ𝑉𝑗 (𝑡)𝑏𝑗 (1 − 𝑒−𝑏𝑗Δ) + 𝜃𝑗𝜎2𝑗2𝑏𝑗 (1 − 𝑒−𝑏𝑗Δ)

2 .
(12)

Set 𝜓𝑗 = 𝑠2𝑗/𝑚2
𝑗 . Provided that 𝜓𝑗 ≤ 2 and 𝜉𝑗 → ∞, we

approximate 𝑉𝑗(𝑡 + Δ) (the segment of high value) by

𝑉𝑗 (𝑡 + Δ) ≈ 𝛼𝑗 (𝛽𝑗 + 𝑍𝑉𝑗)2 , (13)
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where 𝛼𝑗 = 𝑚𝑗/(1 + 𝑏2𝑗 ), 𝛽2𝑗 = 2𝜓−1
𝑗 − 1 + 2√2𝜓−1

𝑗 √2𝜓−1
𝑗 − 1,

and 𝑍𝑉𝑗 are independent standard normal random variables.
Provided that 𝜓𝑗 ≥ 1 and 𝜉𝑗 → 0, we approximate 𝑉𝑗(𝑡 +Δ) (the segment of low value) by

𝑉𝑗 (𝑡 + Δ)

≈
{{{{{{{{{{{

𝑚𝑗 (𝜓𝑗 + 1)2 log 2(1 − 𝑈𝑗) (1 + 𝜓𝑗) ,
𝜓𝑗 − 1𝜓𝑗 + 1 < 𝑈𝑗 ≤ 1

0, 0 ≤ 𝑈𝑗 ≤ 𝜓𝑗 − 1𝜓𝑗 + 1 ,
(14)

where 𝑈𝑗 are independent uniform random numbers.

3.2. Asset Price Simulation. Under the 𝑇-forwardmeasure𝑄,
by integrating (11) and applying the Cholesky decomposition,
we rewrite asset price process (6) as follows:

𝑧 (𝑡 + Δ, 𝑇)
= 𝑧 (𝑡, 𝑇)
− 12 ∫

𝑡+Δ

𝑡
[𝑉1 (𝑢) + 𝑉2 (𝑢) + 𝜎2𝑟𝐵2 (𝑢, 𝑇)] 𝑑𝑢

+ 2∑
𝑗=1
𝜌𝑗 ∫𝑡+Δ

𝑡
√𝑉𝑗 (𝑢)𝑑𝑊𝑉

𝑗 (𝑢)

+ 2∑
𝑗=1
√1 − 𝜌2𝑗 ∫𝑡+Δ

𝑡
√𝑉𝑗 (𝑢)𝑑𝑊𝑗 (𝑢)

+ 𝜎𝑟 ∫𝑡+Δ

𝑡
𝐵 (𝑢, 𝑇) 𝑑𝑊𝑟 (𝑢) ,

(15)

where 𝑊𝑗(𝑢) are Brownian motions independent of 𝑊𝑉
𝑗 (𝑢)

and𝑊𝑟(𝑢).
By the drift interpolation method [25], we approximate

the integral of the variance process 𝑉𝑗(𝑡) (𝑗 = 1, 2) by
∫𝑡+Δ

𝑡
𝑉𝑗 (𝑢) 𝑑𝑢 ≈ 12 [𝑉𝑗 (𝑡) + 𝑉𝑗 (𝑡 + Δ)] Δ. (16)

By (7) and (8), we have

∫𝑡+Δ

𝑡
√𝑉𝑗 (𝑢)𝑑𝑊𝑉

𝑗 (𝑢) = 1𝜎𝑗 [𝑉𝑗 (𝑡 + Δ) − 𝑉𝑗 (𝑡)
− 𝑏𝑗𝜃𝑗Δ + 𝑏𝑗 ∫𝑡+Δ

𝑡
𝑉𝑗 (𝑢) 𝑑𝑢] .

(17)

The integral∫𝑡+Δ𝑡 √𝑉𝑗(𝑢)𝑑𝑊𝑗(𝑢) (𝑗 = 1, 2) obeyed normal

distribution with mean zero and variance ∫𝑡+Δ𝑡 𝑉𝑗(𝑢)𝑑𝑢. By
(16), we approximate ∫𝑡+Δ𝑡 √𝑉𝑗(𝑢)𝑑𝑊𝑗(𝑢) by
∫𝑡+Δ

𝑡
√𝑉𝑗 (𝑢)𝑑𝑊𝑗 (𝑢) ≈ √12 [𝑉𝑗 (𝑡) + 𝑉𝑗 (𝑡 + Δ)] Δ𝑍𝑗, (18)

where 𝑍𝑗 are independent standard normal random vari-
ables.

By direct calculation, we have

∫𝑡+Δ

𝑡
𝐵2 (𝑢, 𝑇) 𝑑𝑢 = 1𝑏2𝑟 (Δ +

𝑒−2𝑏𝑟(𝑇−𝑡−Δ) − 𝑒−2𝑏𝑟(𝑇−𝑡)2𝑏𝑟
+ 2𝑒−𝑏𝑟(𝑇−𝑡) − 2𝑒−𝑏𝑟(𝑇−𝑡−Δ)𝑏𝑟 ) = 𝐶 (𝑡, 𝑡 + Δ) .

(19)

Accordingly, we have the integral ∫𝑡+Δ𝑡 𝐵(𝑢, 𝑇)𝑑𝑊𝑟(𝑢) obey-
ing normal distribution with mean zero and variance∫𝑡+Δ𝑡 𝐵2(𝑢, 𝑇)𝑑𝑢; that is,

∫𝑡+Δ

𝑡
𝐵 (𝑢, 𝑇) 𝑑𝑊𝑟 (𝑢) = √𝐶 (𝑡, 𝑡 + Δ)𝑍𝑟, (20)

where 𝑍𝑟 is a standard normal random variable.
Substituting (16)–(20) into (15), we have the simulation

scheme for the asset price process as follows:

𝑧 (𝑡 + Δ, 𝑇) = 𝑧 (𝑡, 𝑇) + 𝐾0

+ 2∑
𝑗=1
[𝐾𝑗

1𝑉𝑗 (𝑡) + 𝐾𝑗
2𝑉𝑗 (𝑡 + Δ) + 𝐾𝑗

3𝑍𝑗]
+ 𝐾4𝑍𝑟,

(21)

where

𝐾0 = − 𝜎2𝑟2𝑏2𝑟 (Δ +
𝑒−2𝑏𝑟(𝑇−𝑡−Δ)2𝑏𝑟 − 2𝑒−𝑏𝑟(𝑇−𝑡−Δ)𝑏𝑟 − 𝑒−2𝑏𝑟(𝑇−𝑡)2𝑏𝑟 + 2𝑒−𝑏𝑟(𝑇−𝑡)𝑏𝑟 )

− 𝑏𝑗𝜃𝑗𝜌𝑗Δ𝜎𝑗 ,
𝐾𝑗
1 = −Δ4 +

𝑏𝑗𝜌𝑗Δ2𝜎𝑗 − 𝜌𝑗𝜎𝑗 ,
𝐾𝑗
2 = −Δ4 +

𝑏𝑗𝜌𝑗Δ2𝜎𝑗 + 𝜌𝑗𝜎𝑗 ,
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(1) Initial 𝐾, 𝑆, 𝐵, 𝑇, 𝑟0, 𝑏𝑟, 𝜎𝑟, 𝑏𝑗, 𝜃𝑗, 𝜎𝑗, 𝜌𝑗, 𝑉𝑗, 𝜓𝑐;(2) Compute 𝑃(0, 𝑇) using (4);(3) 𝑠𝑢𝑚 𝑝 = 0;(4) repeat for 𝑖 = 1 to𝑀(5) Compute𝑚𝑗, 𝑠2𝑗 , 𝜓𝑗, 𝛼𝑗, 𝛽𝑗 for 𝑗 = 1, 2;(6) Draw two uniform random numbers 𝑈𝑗;(7) Draw two standard normal random numbers 𝑍𝑉𝑗 by Φ−1(𝑈𝑗);(8) if 𝜓𝑗 ≤ 𝜓𝑐 then compute 𝑉𝑗(𝑡) by 𝛼𝑗(𝛽𝑗 + 𝑍𝑉𝑗)2;(9) else compute 𝑉𝑗(𝑡) by (14);(10) end if(11) Compute 𝐾0, 𝐾𝑗
1, 𝐾𝑗

2, 𝐾𝑗
3, 𝐾4;(12) Compute 𝑧(𝑡) by (21);(13) Set 𝑆(𝑡) = 𝑃(𝑡, 𝑇)𝑒𝑧(𝑡);(14) if 𝑆 ≤ 𝐵, then payoff = 0;(15) else payoff = max(𝑆 − 𝐾, 0);(16) end if(17) 𝑠𝑢𝑚 𝑝 = 𝑠𝑢𝑚 𝑝 + payoff;(18) until the last simulation(19) Compute 𝑉DOC(0) by 𝑉DOC(0) = 𝑃(0, 𝑇)𝑠𝑢𝑚 𝑝/𝑀.

Algorithm 1: The basic algorithm for pricing a DOC option.

𝐾𝑗
3 = √Δ2 (1 − 𝜌2𝑗 ) [𝑉𝑗 (𝑡) + 𝑉𝑗 (𝑡 + Δ)],
𝐾4 = √𝜎2𝑟𝑏2𝑟 (Δ +

𝑒−2𝑏𝑟(𝑇−𝑡−Δ)2𝑏𝑟 − 2𝑒−𝑏𝑟(𝑇−𝑡−Δ)𝑏𝑟 − 𝑒−2𝑏𝑟(𝑇−𝑡)2𝑏𝑟 + 2𝑒−𝑏𝑟(𝑇−𝑡)𝑏𝑟 ).
(22)

4. Simulation Algorithm for
Pricing Barrier Options

Under the 𝑇-forward measure𝑄, we evaluate barrier options
by the following formula:

𝑉𝑏 (𝑡, 𝑇) = 𝑃 (𝑡, 𝑇) 𝐸𝑄 [Λ (𝑆 (𝜏𝐵) , 𝜏𝐵)] , (23)

where Λ(𝑆(𝜏𝐵), 𝜏𝐵) is a payoff function, 𝐵 is barrier level, and𝜏𝐵 is the first time when barrier is hit. For a down and out call
(DOC) option 𝜏𝐵 is defined as follows:

𝜏𝐵 = inf {0 ≤ 𝑡 ≤ 𝑇 : 𝑆 (𝑡) > 𝐵} . (24)

Λ(𝑆(𝜏𝐵), 𝜏𝐵) is given by

Λ (𝑆 (𝜏𝐵) , 𝜏𝐵) = {{{
max (𝑆 (𝑇) − 𝐾, 0) , 𝜏𝐵 = 𝑇
0, 𝜏𝐵 < 𝑇, (25)

where𝐾 is exercise price at maturity time 𝑇.
4.1. The Basic Algorithm. Based on the simulation scheme
for the DHHW model, we evaluate a DOC option by
Algorithm 1.

4.2. The Hybrid Algorithm Based on Variance Reduction Tech-
niques. We combine antithetic variate and control variate
techniques to improve the efficiency of the Algorithm 1. We
use a European option price as control variate and modify
step (19) of Algorithm 1 as follows:

𝑉̂DOC (0)
= 𝑃 (0, 𝑇) 𝑠𝑢𝑚 𝑝𝑀
+ 1𝑀

𝑀∑
𝑗=1
[𝑉𝐸 (0) − 𝑃 (0, 𝑇)max (𝑆 (𝑇) − 𝐾, 0)] ,

(1̃9)

where 𝑉𝐸(0) is the exact price of the European call option
which can be efficiently calculated by the fast Fourier trans-
form method [26, 27]. Given the characteristic function,𝑉𝐸(0) can be approximated by the following formula:

𝑉𝐸 (0) ≈ exp (−𝛼𝑘)𝜋
𝑁∑
𝑗=1
𝑒−𝑖(2𝜋/𝑁)(𝑗−1)(𝑖−1)𝑒𝑖𝑏V𝑗𝜓 (V𝑗)

⋅ 𝜂3 [3 + (−1)𝑗 − 𝛿𝑗−1] ,
(26)
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Table 1: Estimated parameter values for the DHHWmodel calibrated to S&P 500 index call options on March 28, 2017.

Parameter values RMSE𝑏𝑟 = 0.201 𝜎𝑟 = 0.021 𝑟0 = 0.012𝑏1 = 0.101 𝜃1 = 0.019 𝜎1 = 0.189 𝑉1 = 0.011 𝜌1 = −0.251 0.0679𝑏2 = 2.114 𝜃2 = 0.012 𝜎2 = 0.253 𝑉2 = 0.021 𝜌2 = −0.823
where 𝑘 = log𝐾, 𝛼 is damping factor, 𝑖 is an imaginary unit,𝑏 = 𝑁ℎ/2, 𝜂 = 2𝜋/𝑁ℎ (ℎ is a regular spacing), 𝛿𝑛 is the
Kronecker delta function that is unity for 𝑛 = 0 and zero
otherwise, and𝜓(V) = 𝜑(V−(𝛼+1)𝑖)/(𝛼2+𝛼−V2+𝑖(2𝛼+1)V),
where 𝜑(𝑢) = 𝐸𝑃[𝑒−∫

𝑇

𝑡
𝑟(𝑢)𝑑𝑢+𝑖𝑢 ln 𝑆(𝑡)] is the discounted 𝑇-

forward characteristic function of log 𝑆(𝑡).
Based on the results of Grzelak et al. [14] and simple

calculation, we have the discounted 𝑇-forward characteristic
function of the DHHWmodel as follows:

𝜑 (𝑢) = 𝑒𝑖𝑢 ln 𝑆(𝑡)+𝐷(𝑢,𝜏)+∑2𝑗=1 𝐸𝑗(𝑢,𝜏)𝑉𝑗(𝑡)+𝐹(𝑢,𝜏)𝑟(𝑡), (27)

where

𝐷(𝑢, 𝜏) = (𝑖𝑢 − 1) [−𝐵 (𝑡, 𝑇) 𝛾𝑡 + ln 𝑃 (0, 𝑡)𝑃 (0, 𝑇)
+ 12 (𝐻 (0, 𝑇) − 𝐻 (0, 𝑡))] − 12 (𝑢2 − 1 + 2𝑖𝑢)
⋅ 𝐻 (𝑡, 𝑇) + 𝑏𝑗𝜃𝑗𝜎2𝑗 [(𝑏𝑗 − 𝜌𝑗𝜎𝑗𝑖𝑢 − 𝐷𝑗) 𝜏
− 2 ln(1 − 𝐺𝑗𝑒−𝐷𝑗𝜏1 − 𝐺𝑗

)] ,
𝐸𝑗 (𝑢, 𝜏) = 𝑏𝑗 − 𝜌𝑗𝜎𝑗𝑖𝑢 − 𝐷𝑗𝜎2𝑗 ( 1 − 𝑒−𝐷𝑗𝜏1 − 𝐺𝑗𝑒−𝐷𝑗𝜏) ,
𝐹 (𝑢, 𝜏) = 1𝑏𝑟 (𝑖𝑢 − 1) (1 − 𝑒−𝑏𝑟𝜏) ,
𝐻 (𝑡, 𝑇) = 𝜎2𝑟𝑏2𝑟 (𝑇 − 𝑡 +

2𝑏𝑟 𝑒−𝑏𝑟(𝑇−𝑡) −
12𝑏𝑟 𝑒−2𝑏𝑟(𝑇−𝑡)

− 32𝑏𝑟) ,
𝛾𝑡 = 𝑓 (0, 𝑡) + 𝜎

2
𝑟 (1 − 𝑒−𝑏𝑟𝑡)22𝑏2𝑟 ,

𝐺𝑗 = 𝑏𝑗 − 𝜌𝑗𝜎𝑗𝑖𝑢 − 𝐷𝑗𝑏𝑗 − 𝜌𝑗𝜎𝑗𝑖𝑢 + 𝐷𝑗
,

𝐷𝑗 = √(𝑏𝑗 − 𝜌𝑗𝜎𝑗𝑖𝑢)2 + 𝜎2𝑗 (𝑢2 + 𝑖𝑢),
𝜏 = 𝑇 − 𝑡.

(28)

For computing Φ−1(𝑈𝑗) in step (7) of Algorithm 1, we
use the approximation algorithm of Wichura [28] not by

the Matlab function norminv.m. This can greatly decrease
the simulation time. With the obtained 𝑍𝑉𝑗, we consider
antithetic variable −𝑍𝑉𝑗 and compute 𝑉𝑗(𝑡) by 𝛼𝑗(𝛽𝑗 − 𝑍𝑉𝑗)2
and thus obtain the second path of the DHHW model. By
combining control variate technique we modify the last step
of Algorithm 1 as

𝑉̂DOC (0)
= 𝑃 (0, 𝑇) 0.5 (𝑠𝑢𝑚 𝑝1 + 𝑠𝑢𝑚 𝑝2)𝑀
+ 1𝑀

𝑀∑
𝑗=1
[𝑉𝐸 (0) − 𝑃 (0, 𝑇)max (𝑆 (𝑇) − 𝐾, 0)] .

(29)

5. Numerical Experiments

5.1. Calibration of the Model. Before applying the DHHW
model to option pricing, we need to estimate the model
parameters. For this purpose we use financial market data to
calibrate the DHHWmodel. We define the following relative
mean squares error (RMSE):

RMSE = 1𝑁𝑇 × 𝑁𝐾
𝑁𝑇∑
𝑡=1

𝑁𝐾∑
𝑘=1

(𝑉Θ
𝑡𝑘 − 𝑉𝑡𝑘)2𝑉𝑡𝑘 , (30)

where 𝑉Θ
𝑡𝑘 and 𝑉𝑡𝑘 are the model and market prices, respec-

tively. We calibrate the DHHWmodel by solving the follow-
ing nonlinear least-squares optimization problem:

Θ∗ = argminRMSE. (31)

We choose the S&P 500 index call options on March 28,
2017, available online at http://www.cboe.com/. The options
have maturities between 366 days and 997 days and strike
prices ranging from 2225 to 2500. The closing price of
underlying is 2358.57. For the sake of simplicity, we set the
dividend yield to zero. We calculate the model prices by (26).
We use differential evolution algorithm (global optimum) to
seek the optimal parameter setΘ∗. Table 1 lists the calibrated
parameter values and associated RMSE.

5.2. Implementation of the Simulation Algorithm. With the
obtained parameter values we first test the performance of
the simulation scheme. We apply the simulation scheme
to European options and take the fast Fourier transform
solutions as benchmark. In (26) we use 𝑁 = 4096, ℎ =𝜋/300 = 0.01047, and 𝛼 = 1.25 and set 𝑆 = 100, 𝐾 = 100,
and 𝑇 = 2. For our simulation scheme, we specify 𝜓𝑐 =1.5 throughout the paper. We use 1000, 10000, and 100000
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Table 2: Comparison of the accuracy of our simulation scheme and Euler scheme for pricing European options. The exact price 𝑉 = 13.209.
Number of simulations Number of time steps Our simulation scheme Euler scheme

Standard error Relative error Standard error Relative error
1000 100 0.4780 0.0421 0.4681 0.1182
1000 500 0.4559 0.0424 0.4800 0.0472
10000 100 0.1515 0.0166 0.1533 0.0227
10000 500 0.1566 0.0032 0.1561 0.0166
100000 100 0.0480 0.0267 0.0479 0.0523
100000 500 0.0480 0.0257 0.0486 0.0334

Table 3: Comparison of the standard errors among the differentMonte Carlo techniques for pricing DOC options, where time steps𝑁 = 100
and barrier 𝐵 = 90.
𝐾 𝑀 Basic algorithm Control variates Antithetic variates Hybrid algorithm

80
1000 0.6548 0.3167 0.4248 0.1047
10000 0.2079 0.1012 0.1334 0.0342
100000 0.0657 0.0312 0.0428 0.0114

100
1000 0.4671 0.2317 0.3323 0.0112
10000 0.1502 0.0689 0.1098 0.0248
100000 0.0478 0.0219 0.0355 0.0077

120
1000 0.2843 0.1418 0.2454 0.0456
10000 0.0929 0.0437 0.0850 0.0152
100000 0.0298 0.0136 0.0276 0.0049

simulation trials, respectively. For each simulation trial we
use 100 and 500 time steps, respectively. Table 2 compares our
simulation scheme with the standard Euler scheme through
sample standard errors and relative errors.

Table 2 shows that although there is almost no difference
in the sample standard error between the two schemes,
significant relative error remains in Euler scheme compared
to our simulation scheme. Moreover, it is observed that
standard error of our simulation scheme decreases with
the increase of the number of simulations and is almost
unaffected by time steps. Table 2 implies that our simulation
scheme outperforms the Euler scheme.

With the same parameter setting we evaluate the DOC
options with barrier 𝐵 = 90 by the hybrid algorithm. We
still use 1000, 10000, and 100000 simulation trials. Since our
simulation scheme is almost unaffected by time steps we only
use 100 time steps. Table 3 compares the hybrid algorithm
with basic algorithm, control variates, and antithetic variates
techniques. The criterion used is sample standard errors pro-
duced by the above methods. Table 3 shows that both control
variates and antithetic variates can reduce standard errors.
The hybrid algorithm which combines the two techniques
significantly reduces the standard errors. Table 3 implies that
the hybrid algorithm is efficient for pricing barrier options.

Furthermore, based on the hybrid algorithm, we plot
the implied volatility surface of the DHHW model. Figure 1
examines the effects of interest rate parameters 𝑏𝑟, 𝜎𝑟 and
the second variance parameters 𝑏2, 𝜃2, 𝜎2, 𝜌2 on the implied

volatility surface. To examine the effects of the above param-
eters we change each parameter by setting three different
values while fixing all other parameter values.

Figure 1 summarizes our findings. Both 𝑏𝑟 and 𝜎𝑟 only
affect the long end regarding the maturity of the volatility
surface. However, decreasing 𝑏𝑟 leads to a significant rise of
the slope of the implied volatility smile, while the contrary
occurs by decreasing 𝜎𝑟. Increasing 𝑏2 results in a fall of
volatility, and this effect on the short-term volatility is more
significant, which leads to the slight decrease of the curvature
of the smile. Increasing 𝜃2 results in the rise of overall
volatility, but the slope of the smile hardly changed. The
curvature of the smile slightly increases by increasing 𝜎2. By
changing 𝜌2, the slope of the smile significantly changes and
a negative slope is displayed in the implied volatility. Figure 1
implies that interest rates and the second variance process
have important effects on the implied volatility surface of the
DHHWmodel.

6. Conclusion

We propose the DHHW model by combining the double
Heston stochastic volatility and Hull-White stochastic inter-
est rate. Under the 𝑇-forward measure, this paper develops
a simulation scheme for the DHHW model. Combining the
control variates and antithetic variates, this paper provides
a hybrid Monte Carlo algorithm for pricing barrier options
under the DHHW model. Numerical results show that the
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Figure 1: Implied volatility surface under the DHHWmodel with different values of parameters 𝑏𝑟, 𝜎𝑟, 𝑏2, 𝜃2, 𝜎2, and 𝜌2.
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proposed scheme outperforms Euler scheme and the hybrid
algorithm is efficient and easy to implement in pricing barrier
options. Extensive implied volatility experiments show that
implied volatility surfaces present different shapes by varying
the parameter values of interest rate and the second variance
process, which verify that the DHHWmodel is flexible to fit
the implied volatility smile.
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