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Wediscuss existence, uniqueness, andHyers-Ulam stability of solutions for coupled nonlinear fractional order differential equations
(FODEs) with boundary conditions. Using generalized metric space, we obtain some relaxed conditions for uniqueness of positive
solutions for the mentioned problem by using Perov’s fixed point theorem. Moreover, necessary and sufficient conditions are
obtained for existence of at least one solution by Leray-Schauder-type fixed point theorem. Further, we also develop some conditions
for Hyers-Ulam stability. To demonstrate our main result, we provide a proper example.

1. Introduction

In last few decades, FODEs become area of interest for the
researcher because of high quality accuracy and usability in
various fields of science and technology. A lot of physical
and natural phenomena can be modeled through FODEs
which provide better result than integer order differential
equations. Due to this, FODEs are regarded as a special
tool for molding. Numerous applications of FODEs can
be studied in various disciplines like chemical technology,
viscoelasticity, industrial robotics, mathematical economy,
turbulent filtration in porous media, fractals theory, ecol-
ogy, economics, plasma physics, metallurgy, electromagnetic
theory, biology, signal and image processing, control the-
ory, electric technology, chemical reaction design, potential
theory, radio physics, aerodynamics, pharmacokinetics, and
so on; further details are available in literature [1–7]. In
last few decades, the existence theory has been given great
attention by the researchers. In the concerned theory, they
studied existence, uniqueness, and multiplicity of solutions
by using different techniques of nonlinear analysis.Therefore,
theory on existence and uniqueness of solutions to nonlinear
FODEs has been explored very well; see [8–12]. Systems of

FODEs have been considered in large numbers of research
articles, because most of physical, biological, and chemical
phenomena can bemodeled in the formof systems of FODEs.
For example, Su [13] studied existence of solutions for coupled
system of fractional differential equations with two-point
boundary value problems given as

𝐷𝜃1𝜇1 (𝑧) = F1 (𝑧, 𝜇2 (𝑧) , 𝐷𝜍𝜇2 (𝑧)) ,
𝐷𝜃2𝜇1 (𝑧) = F2 (𝑧, 𝜇1 (𝑧) , 𝐷]𝜇1 (𝑧)) ,

0 < 𝑧 < 1,
𝜇1 (0) = 𝜇1 (1) = 𝜇2 (0) = 𝜇2 (1) = 0,

(1)

where𝐷𝜃1 , 𝐷𝜍, 𝐷𝜃2 , and𝐷] denoteRiemann-Liouville deriva-
tives, 1 < 𝜃1, 𝜃2 ≤ 2, F1,F2 : [0, 1] × R × R →
R are continuous functions, and 𝜇, ] satisfy 𝜃1 − 𝜍 and𝜃2 − ] ≥ 1. Wang et al. [14] investigate existence and
uniqueness of positive solutions to a coupled system of
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fractional differential equations with three-point boundary
conditions. The corresponding problem is given as follows:

𝐷𝜃1𝜇1 (𝑧) = F1 (𝑧, 𝜇2 (𝑧)) ,
𝐷𝜃2𝜇2 (𝑧) = F2 (𝑧, 𝜇1 (𝑧)) ,

0 < 𝑧 < 1,
𝜇1 (0) = 0,
𝜇2 (0) = 0,
𝜇1 (1) = 𝑎𝜇1 (𝜂) ,
𝜇2 (1) = 𝑏𝜇2 (𝜂) ,

(2)

where functions F1,F2 : [0, 1] × [0,∞) → [0,∞) are
continuous, 1 < 𝜃1, 𝜃2 ≤ 2, 0 ≤ 𝑎, 𝑏 ≤ 1, 0 < 𝜂 <1, and 𝐷𝜃1 , 𝐷𝜃2 represent Riemann-Liouville derivatives. Liu
et al. [15] studied existence of positive solutions to a coupled
system of nonlinear FODEs with integral boundary con-
ditions. The considered problem is given in the following
sequel:

𝐷𝜃1𝜇1 (𝑧) = F1 (𝑧, 𝜇1 (𝑧) , 𝜇2 (𝑧)) ,
𝐷𝜃2𝜇2 (𝑧) = F2 (𝑧, 𝜇1 (𝑧) , 𝜇2 (𝑧)) ,

0 < 𝑧 < 1,
𝜇1 (0) = 0,
𝜇1 (1) = ∫1

0

𝜙 (𝑧) 𝜇1 (𝑧) 𝑑𝑧, 0 < 𝑧 < 1
𝜇2 (0) = 0,
𝜇2 (1) = ∫1

0

𝜑 (𝑧) 𝜇2 (𝑧) 𝑑𝑧, 0 < 𝑧 < 1,

(3)

where𝐷𝜃1 , 𝐷𝜃2 are in sense of Riemann-Liouville derivatives,
F1,F2 : (0, 1) × (0, +∞) × (0, +∞) → (0, +∞), and 𝜙, 𝜑 ∈𝐿1(0, 1) are nonlocal functions.The existence and uniqueness
of solutions of FODEs are an active area of research for the last
few decades. For some remarkable work, we refer the reader
to [8, 9, 13, 16–20].

Another qualitative aspect which is very important from
the numerical and optimization point of view is devoted to
stability analysis of FODEs. The stability of fractional dif-
ferential equations has gained great attention from the
researchers very recently. Different kinds of stability include
exponential, Mittag-Leffler, and Lyapunov stabilities; see [21–
23]. One of the most relaxed methods for stability for
functional equations was introduced by Ulam [24] and Hyers
[25] which is known as Hyers-Ulam stability. The aforesaid
stability has been very well investigated for ordinary differ-
ential and integral equations as well as functional equations;
see [26–29]. But for FODEs, the concerned stability is not
properly investigated. Very few papers can be found in liter-
ature in which some initial and boundary value problems of
FODEs have been considered; see [7, 23, 30–32].

Motivated by the aforementioned contributions of
researchers, we discuss the existence and uniqueness of solu-
tions for coupled system of nonlinear FODEs with boundary
conditions involving fractional integral and derivative.
Further, we also investigate the Hyers-Ulam stability for the
proposed problem designed by

𝐷𝜃1𝜇1 (𝑧) = F1 (𝑧, 𝜇1 (𝑧) , 𝜇2 (𝑧)) 0 < 𝑧 < 1,
𝐷𝜃2𝜇2 (𝑧) = F2 (𝑧, 𝜇1 (𝑧) , 𝜇2 (𝑧)) , 0 < 𝑧 < 1,

𝜇1 (0) = 𝜇󸀠1 (0) = 𝜇󸀠󸀠1 (0) = ⋅ ⋅ ⋅ = 𝜇(𝑛−2)1 (0) = 𝜇1 (1)
= 0,

𝜇2 (0) = 𝜇󸀠2 (0) = 𝜇󸀠󸀠2 (0) = ⋅ ⋅ ⋅ = 𝜇(𝑛−2)2 (0) = 𝜇2 (1)
= 0,

(4)

where the derivative 𝐷 is in sense of Riemann-Liouville,𝑛 − 1 < 𝜃1, 𝜃2 ≤ 𝑛, 𝑛 ≥ 2, and the functions F1,F2 :𝐼 × R × R → R are continuous. We use Perov’s fixed
point theorem [33] and Leray-Schauder fixed point theorem
to develop some results for existence of at least one solution
for our proposed coupled nonlinear FODEs with boundary
conditions. Further, we establish some conditions for Hyers-
Ulam type stability to the considered problem. The whole
analysis is then demonstrated by providing a proper example.

2. Preliminaries

Here we provide some results and definitions for our pro-
posed coupled nonlinear FODEs with boundary conditions
from literature [1–3].

Definition 1. The fractional integral of order 𝜃1 ∈ R+ of a
functionF : (0,∞) → R is defined by

𝐼𝜃1F (𝑧) = 1
Γ (𝜃1) ∫

𝑧

0

(𝑧 − ℏ)𝜃1−1F (ℏ) 𝑑ℏ, (5)

provided that the integral on right is converging.

Definition 2. The Riemann-Liouville fractional order deriva-
tive of a functionF : (0,∞) → R is defined by

𝐷𝜃1F (𝑧) = 1
Γ (𝑛 − 𝜃1)

𝑑𝑛𝑑𝑡𝑛 ∫
𝑧

0

(𝑧 − ℏ)𝑛−𝜃1−1F (ℏ) 𝑑ℏ, (6)

where 𝑛 = [𝜃1] + 1 and [𝜃1] represents the integer part of 𝜃1,
provided that the right side is pointwise defined on (0,∞).
Lemma 3. The following result holds for fractional derivative
and integral:

𝐼𝜃1𝐷𝜃1F (𝑧) = F (𝑧) + 𝑐1𝑧𝜃1−1 + 𝑐2𝑧𝜃1−2 + 𝑐3𝑧𝜃1−3 + ⋅ ⋅ ⋅
+ 𝑐𝑛𝑧𝜃1−𝑛,

(7)

for arbitrary 𝑐𝑖 ∈ R, 𝑖 = 1, 2, . . . , 𝑛.
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Lemma 4 (see [20]). Let 𝜒 be a Banach space with P ⊆ 𝜒
closed and convex. Let ð be a relatively open subset of P with0 ∈ ð andT : ð → ð be a continuous and compact (completely
continuous) mapping. Then either

(1) the mappingT has a fixed point in ð or
(2) there exist 𝜇1 ∈ 𝜕ð and 𝜆 ∈ (0, 1) with 𝜆 = 𝜆T𝜇1.

Definition 5. For a nonempty set Z, a mapping 𝑑 : Z ×
Z → R𝑛 is called a generalized metric on Z if the following
conditions hold:

(𝑀1) 𝑑(𝜇1, 𝜇2) = 0𝑅𝑛 ⇔ 𝜇1 = 𝜇2, ∀𝜇1, 𝜇2 ∈ 𝑋.
(𝑀2) 𝑑(𝜇1, 𝜇2) = 𝑑(𝜇2, 𝜇1), ∀𝜇1, 𝜇2 ∈ 𝑋, (symmetric prop-

erty).

(𝑀3) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝜇2) + 𝑑(𝜇2, 𝜇1) + 𝑑(𝜇1, 𝑦), ∀𝑥, 𝑦, 𝜇1,𝜇2 ∈ 𝑋 (tetrahedral inequality).

Note. The properties such as convergent sequence, cauchy
sequence, and open/closed subset are the same for general-
ized metric spaces as held for the usual metric spaces.

Definition 6. For an 𝑛 × 𝑛 matrix 𝐴, the spectral radius is
defined by 𝜌(𝐴) = max{|𝜂𝑖|, 𝑖 = 1, 2, . . . , 𝑛}, where 𝜂𝑖, (𝑖 =1, 2, . . . , 𝑛) are the eigenvalues of matrix 𝐴.
Lemma 7 (see [33]). Let (𝑍, 𝑑) be a complete generalized
metric space and let T : 𝑍 → 𝑍 be an operator such
that there exists a matrix 𝐴 ∈ 𝑀 with 𝑑(T𝜇1,T𝜇2) ≤𝐴𝑑(𝜇1, 𝜇2), for all 𝜇1, 𝜇2 ∈ 𝑍. If 𝜌(𝐴) < 1, then T has a
fixed point 𝜇∗ ∈ 𝑍; further for any 𝜇0 the iterative sequence𝜇𝑛+1 = T𝜇𝑛 converges to 𝜇0.
Definition 8. Consider a Banach space W1 × W2 such that
T1,T2 : W1 ×W2 → W1 ×W2 be two operators. Then the
operatorial system provided by

𝜇1 (𝑧) = T1 (𝜇1, 𝜇2) (𝑧) ,
𝜇2 (𝑧) = T2 (𝜇1, 𝜇2) (𝑧) (8)

is called Hyers-Ulam stable if we can find Λ 𝑖 (𝑖 = 1, 2, 3, 4) >0, such that, for each 𝜀𝑖 (𝑖 = 1, 2) > 0 and for each solution(𝜇∗1 , 𝜇∗2 ) ∈ 𝐸 of the inequalities given by

󵄩󵄩󵄩󵄩𝜇∗1 −T1 (𝜇∗1 , 𝜇∗2 )󵄩󵄩󵄩󵄩∞ ≤ 𝜀1,
󵄩󵄩󵄩󵄩𝜇∗2 −T2 (𝜇∗1 , 𝜇∗2 )󵄩󵄩󵄩󵄩∞ ≤ 𝜀2, (9)

there exists a solution (𝜇1, 𝜇2) ∈ 𝐸 of system (8) which
satisfies

󵄩󵄩󵄩󵄩𝜇∗1 − 𝜇1󵄩󵄩󵄩󵄩∞ ≤ Λ 1𝜀1 + Λ 2𝜀2,
󵄩󵄩󵄩󵄩𝜇∗2 − 𝜇2󵄩󵄩󵄩󵄩∞ ≤ Λ 3𝜀1 + Λ 4𝜀2. (10)

Theorem 9 (see [26]). Considering a Banach spaceW1 ×W2
with T1,T2 : W1 × W2 → W1 × W2 being two operators
such that

󵄩󵄩󵄩󵄩T1 (𝜇1, 𝜇2) −T1 (𝜇∗1 , 𝜇∗2 )󵄩󵄩󵄩󵄩∞
≤ Λ 1 󵄩󵄩󵄩󵄩𝜇1 − 𝜇∗1 󵄩󵄩󵄩󵄩∞ + Λ 2 󵄩󵄩󵄩󵄩𝜇2 − 𝜇∗2 󵄩󵄩󵄩󵄩∞ ,

󵄩󵄩󵄩󵄩T2 (𝜇1, 𝜇2) −T2 (𝜇∗1 , 𝜇∗2 )󵄩󵄩󵄩󵄩∞
≤ Λ 3 󵄩󵄩󵄩󵄩𝜇1 − 𝜇∗1 󵄩󵄩󵄩󵄩∞ + Λ 4 󵄩󵄩󵄩󵄩𝜇2 − 𝜇∗2 󵄩󵄩󵄩󵄩∞ ,

∀ (𝜇1, 𝜇2) , (𝜇∗1 , 𝜇∗2 ) ∈ W1 ×W2,

(11)

and if the matrix ( Λ 1 Λ 2Λ 3 Λ 4
) converges to zero, then the operato-

rial system (8) is Hyers-Ulam stable.

Lemma 10. An equivalent Fredholm integral representation of
the system of boundary value problems (4) is given by

𝜇1 (𝑧) = ∫1
0

𝐺𝜃1 (𝑧, ℏ)F1 (ℏ, 𝜇1 (ℏ) , 𝜇2 (ℏ)) 𝑑ℏ,
𝜇2 (𝑧) = ∫1

0

𝐺𝜃2 (𝑧, ℏ)F2 (ℏ, 𝜇1 (ℏ) , 𝜇2 (ℏ)) 𝑑ℏ,
(12)

where 𝐺𝜃1 , 𝐺𝜃2 are Green’s functions given by

𝐺𝜃1 (𝑧, ℏ)

=
{{{{{{{{{

[𝑧 (1 − ℏ)]𝜃1−1
Γ (𝜃1) , 0 ≤ 𝑧 ≤ ℏ ≤ 1,

[𝑧 (1 − ℏ)]𝜃1−1
Γ (𝜃1) − (𝑧 − ℏ)𝜃1−1

Γ (𝜃1) , 0 ≤ ℏ ≤ 𝑧 ≤ 1,
𝐺𝜃2 (𝑧, ℏ)

=
{{{{{{{{{

[𝑧 (1 − ℏ)]𝜃2−1
Γ (𝜃2) , 0 ≤ 𝑧 ≤ ℏ ≤ 1,

[𝑧 (1 − ℏ)]𝜃2−1
Γ (𝜃2) − (𝑧 − ℏ)𝜃2−1

Γ (𝜃2) , 0 ≤ ℏ ≤ 𝑧 ≤ 1.

(13)

Proof. Applying the operator 𝐼𝜃1 on the first equation of (4)
and using Lemma 3, we have

𝜇1 (𝑧) = −𝐼𝜃1F1 (𝑧, 𝜇1 (𝑧) , 𝜇2 (𝑧)) + 𝑐1𝑧𝜃1−1 + 𝑐2𝑧𝜃1−2
+ 𝑐3𝑧𝜃1−3 + ⋅ ⋅ ⋅ + 𝑐𝑛𝑧𝜃1−𝑛,

𝑐𝑖 ∈ R, for 𝑖 = 1, 2, . . . , 𝑛.
(14)

The boundary conditions 𝜇1(0) = 𝜇󸀠1(0) = 𝜇󸀠󸀠1 (0) = ⋅ ⋅ ⋅ =𝜇(𝑛−2)1 (0) = 𝜇1(1) = 0 and they yield 𝑐𝑛 = ⋅ ⋅ ⋅ = 𝑐2 = 0 due to
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singularity and 𝑐1 = 𝐼𝜃1F1(1, 𝜇1(1), 𝜇2(1)). Hence, (14) takes
the form

𝜇1 (𝑧)
= 𝑧𝜃1−1
Γ (𝜃1) ∫

1

0

(1 − ℏ)𝜃1−1F1 (ℏ, 𝜇1 (ℏ) , 𝜇2 (ℏ)) 𝑑ℏ
− 1
Γ (𝜃1) ∫

𝑡

0

(𝑧 − ℏ)𝜃1−1F1 (ℏ, 𝜇1 (ℏ) , 𝜇2 (ℏ)) 𝑑ℏ

= ∫1
0

𝐺𝜃1 (𝑧, ℏ)F1 (ℏ, 𝜇1 (ℏ) , 𝜇2 (ℏ)) 𝑑ℏ.

(15)

Similarly, by the same process with the second equation of the
system, we obtain the second part of (12).

Lemma 11 (see [18]). Green’s function𝐺 = (𝐺𝜃1 , 𝐺𝜃2) of system
(12) has the following properties:

(𝐶1) 𝐺(𝑧, ℏ) is continuous function on the unit square for all(𝑧, ℏ) ∈ [0, 1] × [0, 1].
(𝐶2) 𝐺(𝑧, ℏ) ≥ 0 for all 𝑧, ℏ ∈ [0, 1] and 𝐺(𝑧, ℏ) > 0 for all𝑧, ℏ ∈ (0, 1).
(𝐶3) max0≤𝑧≤1𝐺(𝑧, ℏ) = 𝐺(1, ℏ), ∀ℏ ∈ [0, 1].
(𝐶4) There exists a constant 𝛾 ∈ (0, 1) such that

min
𝑧∈[𝜃,1−𝜃]

𝐺 (𝑧, ℏ) ≥ 𝛾 (ℏ) 𝐺 (1, ℏ) for 𝜃 ∈ (0, 1) , ℏ ∈ [0, 1] where 𝛾 = min{𝛾𝜃1 = (𝑧ℏ)
𝜃1−1 , 𝛾𝜃2 = (𝑧ℏ)

𝜃2−1} . (16)

3. Existence and Hyers-Ulam Stability

Define U = {𝜇1(𝑧) | 𝜇1(𝑧) ∈ 𝐶[0, 1]} endowed with
the Chebyshev norm ‖𝜇1‖∞ = max𝑡∈[0,1]|𝜇1(𝑧)|. Further,
define the norms ‖(𝜇1, 𝜇2)‖W1×W2 = ‖𝜇1‖∞ + ‖𝜇2‖∞ and|(𝜇1, 𝜇2)|W1×W2 = max{‖𝜇1‖∞, ‖𝜇2‖∞}. Then, the product
spaces (W1 × W2, ‖ ⋅ ‖W1×W2), (W1 × W2, | ⋅ |W1×W2) are
Banach spaces. Define the cones P,K ⊂ W1 × W2 by P ={(𝜇1, 𝜇2) ∈ W1×W2 : 𝜇1(𝑧), 𝜇2(𝑧) ≥ 0, ∀𝑧 ∈ [0, 1]} andK ={(𝜇1, 𝜇2) ∈ P : min𝑧∈𝐽[𝜇1(𝑧) + 𝜇2(𝑧)] ≥ 𝛾‖(𝜇1, 𝜇2)‖W1×W2},
where 𝐽 = [𝜃, 1 − 𝜃], 𝜃 ∈ (0, 1).
Lemma 12. Assume that F1,F2 : [0, 1] × R × R → R are
continuous. Then (𝜇1, 𝜇2) ∈ W1 × W2 is a solution of (12),
if and only if (𝜇1, 𝜇2) ∈ W1 × W2 is a solution of system of
Fredholm integral equations (4).

Proof. The proof of Lemma 12 is similar to proof of Lemma3.1 in [18].

DefineT : W1 ×W2 → W1 ×W2 by

T (𝜇1, 𝜇2) (𝑧)
= (∫1
0

𝐺𝜃1 (𝑧, ℏ)F1 (ℏ, 𝜇1 (ℏ) , 𝜇2 (ℏ)) 𝑑ℏ,
∫1
0

𝐺𝜃2 (𝑧, ℏ)F2 (ℏ, 𝜇1 (ℏ) , 𝜇2 (ℏ)) 𝑑ℏ)
= (T1 (𝜇1, 𝜇2) (𝑧) ,T2 (𝜇1, 𝜇2) (𝑧)) .

(17)

By Lemma 12 the problem of existence of solutions of
the integral equations (12) coincides with the problem of
existence of fixed points ofT.

Lemma 13. Assume that F1,F2 : [0, 1] × [0,∞) × [0,∞) →[0,∞) are continuous. Then T(P) ⊂ P and T(K) ⊂ K,
whereT is defined by (17).

Proof. The relation T(P) ⊂ P easily follows from the
properties (𝐶1) and (𝐶2) of Lemma 11 and all we need to
show is that T(K) ⊂ K holds. For (𝜇1, 𝜇2) ∈ K, we have
T(𝜇1, 𝜇2) ∈ P and in view of property (𝐶4) of Lemma 11, for
all 𝑧 ∈ 𝐽, we obtain

T1 (𝜇1 (𝑧) , 𝜇2 (𝑧))
= ∫1
0

G𝜃1 (𝑧, ℏ)F1 (ℏ, 𝜅1 (ℏ) , 𝜇2 (ℏ)) 𝑑ℏ
≥ 𝛾𝜃1 ∫

1

0

𝐺𝜃1 (1, ℏ)F1 (ℏ, 𝜇1 (ℏ) , 𝜇2 (ℏ)) 𝑑ℏ.
(18)

Hence, it follows that
min
𝑧∈𝐽

T1 (𝜇1 (𝑧) , 𝜇2 (𝑧)) ≥ 𝛾𝜃1 󵄩󵄩󵄩󵄩T1 (𝜇1, 𝜇2)󵄩󵄩󵄩󵄩∞ ,
∀𝑧 ∈ 𝐽. (19)

Similarly, we obtain

min
𝑧∈𝐽

T2 (𝜇1 (𝑧) , 𝜇2 (𝑧)) ≥ 𝛾𝜃2 󵄩󵄩󵄩󵄩T2 (𝜇1, 𝜇2)󵄩󵄩󵄩󵄩∞ ,
∀𝑧 ∈ 𝐽. (20)

It follows that
min
𝑧∈𝐽

[T1 (𝜇1 (𝑧) , 𝜇2 (𝑧)) +T2 (𝜇1 (𝑧) , 𝜇2 (𝑧))]
≥ 𝛾 󵄩󵄩󵄩󵄩T1 (𝜇1, 𝜇2) ,T2 (𝜇1, 𝜇2)󵄩󵄩󵄩󵄩W1×W2 , ∀𝑧 ∈ 𝐽, (21)

which implies thatT(𝜇1, 𝜇2) ∈ K.

Lemma 14. Assume that F1,F2 : [0, 1] × R × R → R are
continuous; thenT : P → P is completely continuous.

Proof. We omit the proof, because it is similar to the proof of
Lemma 3.2 in [18].

Lemma 15. Assume thatF1 andF2 are continuous on [0, 1]×
R×R → R and there exist 𝜙𝑖, 𝜓𝑖 (𝑖 = 1, 2) : (0, 1) → [0,∞)
such that the following hold:
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(𝐶∗1 ) |F1(𝑧, 𝜇1, 𝜇2) − F1(𝑧, 𝜇1, 𝜇2)| ≤ 𝜙1(𝑧)|𝜇1 − 𝜇1| +𝜓1(𝑧)|𝜇2 − 𝜇2|, 𝑧 ∈ (0, 1), for 𝜇1, 𝜇2, 𝜇1, 𝜇2 ≥ 0;
(𝐶∗2 ) |F2(𝑧, 𝜇1, 𝜇2) − F2(𝑧, 𝜇1, 𝜇2)| ≤ 𝜙2(𝑧)|𝜇1 − 𝜇1| +𝜓2(𝑧)|𝜇2 − 𝜇2|, for 𝑧 ∈ (0, 1), 𝜇1, 𝜇2, 𝜇1, 𝜇2 ≥ 0.
(𝐶∗3 ) 𝜌(𝐴) < 1, where the matrix 𝐴 ∈ 𝑀2,2(R+) is defined

by

𝐴

= [[[
[
∫1
0

𝐺𝜃1 (1, ℏ) 𝜙1 (ℏ) 𝑑ℏ ∫1
0

𝐺𝜃1 (1, ℏ) 𝜓1 (ℏ) 𝑑ℏ
∫1
0

𝐺𝜃2 (1, ℏ) 𝜙2 (ℏ) 𝑑ℏ ∫1
0

𝐺𝜃2 (1, ℏ) 𝜓2 (ℏ) 𝑑ℏ
]]]
]
. (22)

Then system (12) has a unique positive solution (𝜇1, 𝜇2) ∈ P.

Proof. In view of Definition 5, we define the generalized
metric 𝑑 by

𝑑 ((𝜇1, 𝜇2) , (𝜇1, 𝜇2)) = (󵄩󵄩󵄩󵄩𝜇1 − 𝜇1󵄩󵄩󵄩󵄩∞󵄩󵄩󵄩󵄩𝜇2 − 𝜇2󵄩󵄩󵄩󵄩∞) ,
∀ (𝜇1, 𝜇2) , (𝜇1, 𝜇2) ∈ W1 ×W2.

(23)

Obviously (W1 × W2, 𝑑) is a generalized complete metric
space. For any (𝜇1, 𝜇2), (𝜇1, 𝜇2) ∈ W1 ×W2 using properties(𝐶3) and (𝐶∗3 ), we obtain
󵄨󵄨󵄨󵄨T1 (𝜇1, 𝜇2) (𝑧) −T1 (𝜇1, 𝜇2) (𝑧)󵄨󵄨󵄨󵄨 ≤ max

𝑧∈[0,1]
∫1
0

󵄨󵄨󵄨󵄨󵄨𝐺𝜃1 (𝑧, ℏ)󵄨󵄨󵄨󵄨󵄨
⋅ [󵄨󵄨󵄨󵄨F1 (ℏ, 𝜇1 (ℏ) , 𝜇2 (ℏ)) −F1 (ℏ, 𝜇1 (ℏ) , 𝜇2 (ℏ))󵄨󵄨󵄨󵄨] 𝑑ℏ
≤ ∫1
0

𝐺𝜃1 (1, ℏ) [𝜙1 (ℏ) 󵄩󵄩󵄩󵄩𝜇1 − 𝜇1󵄩󵄩󵄩󵄩∞ + 𝜓1 (ℏ)
⋅ 󵄩󵄩󵄩󵄩𝜇2 − 𝜇2󵄩󵄩󵄩󵄩∞] 𝑑ℏ,

(24)

which implies that
󵄨󵄨󵄨󵄨T1 (𝜇1, 𝜇2) −T1 (𝜇1, 𝜇2)󵄨󵄨󵄨󵄨

≤ (∫1
0

𝐺1 (1, ℏ) 𝜙1 (ℏ) 𝑑ℏ) 󵄩󵄩󵄩󵄩𝜇1 − 𝜇1󵄩󵄩󵄩󵄩∞
+ (∫1
0

𝐺1 (1, ℏ) 𝜓1 (ℏ) 𝑑ℏ) 󵄩󵄩󵄩󵄩𝜇2 − 𝜇2󵄩󵄩󵄩󵄩∞ .
(25)

Similarly, we obtain
󵄨󵄨󵄨󵄨T2 (𝜇1, 𝜇2) −T2 (𝜇1, 𝜇2)󵄨󵄨󵄨󵄨

≤ (∫1
0

𝐺2 (1, ℏ) 𝜙2 (ℏ) 𝑑ℏ) 󵄩󵄩󵄩󵄩𝜇1 − 𝜇1󵄩󵄩󵄩󵄩∞
+ (∫1
0

𝐺2 (1, ℏ) 𝜓2 (ℏ) 𝑑ℏ) 󵄩󵄩󵄩󵄩𝜇2 − 𝜇2󵄩󵄩󵄩󵄩∞ .
(26)

Hence, it follows that󵄨󵄨󵄨󵄨T (𝜇1, 𝜇2) −T (𝜇1, 𝜇2)󵄨󵄨󵄨󵄨 ≤ 𝐴𝑑 ((𝜇1, 𝜇2) , (𝜇1, 𝜇2)) ,
∀ (𝜇1, 𝜇2) , (𝜇1, 𝜇2) ∈ W1 ×W2, (27)

where

𝐴

= [[[
[
∫1
0

𝐺𝜃1 (1, ℏ) 𝜙1 (ℏ) 𝑑ℏ ∫1
0

𝐺𝜃1 (1, ℏ) 𝜓1 (ℏ) 𝑑ℏ
∫1
0

𝐺𝜃2 (1, ℏ) 𝜙2 (ℏ) 𝑑ℏ ∫1
0

𝐺𝜃2 (1, ℏ) 𝜓2 (ℏ) 𝑑ℏ
]]]
]
. (28)

By (𝐶∗3 ), 𝜌(𝐴) < 1. Hence by Lemma 7, system (12) has a
unique positive solution.

Lemma 16. LetF1 andF2 be continuous on [0, 1]×R×R →
R and there exist 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 (𝑖 = 1, 2) : (0, 1) → [0,∞) satisfying
(𝐶∗4 ) |F1(𝑧, 𝜇1(𝑧), 𝜇2(𝑧))| ≤ 𝑎1(𝑧)+𝑏1(𝑧)|𝜇1(𝑧)|+𝑐1(𝑧)|𝜇2(𝑧)|,𝑧 ∈ (0, 1), 𝜇1, 𝜇2 ≥ 0;
(𝐶∗5 ) |F2(𝑧, 𝜇1(𝑧), 𝜇2(𝑧))| ≤ 𝑎2(𝑧)+𝑏2(𝑧)(|𝜇1(𝑧)|+𝑐2|𝜇2(𝑧)|,𝑧 ∈ (0, 1), 𝜇1, 𝜇2 ≥ 0;
(𝐶∗6 ) A1 = ∫1

0
𝐺𝜃1(1, ℏ)𝑎1(ℏ)𝑑ℏ < ∞, B1 = ∫1

0
𝐺𝜃1(1,ℏ)[𝑏1(ℏ) + 𝑐(ℏ)]𝑑ℏ < 1;

(𝐶∗7 ) A2 = ∫1
0
𝐺𝜃2(1, ℏ)𝑎2(ℏ)𝑑ℏ < ∞, B2 = ∫1

0
𝐺𝜃2(1,ℏ)[𝑏2(ℏ) + 𝑐2(ℏ)]𝑑ℏ < 1.

Then system (12) has at least one positive solution (𝜇1, 𝜇2) in
Q = {(𝜇1, 𝜇2) ∈ P : (𝜇1, 𝜇2)

< min( 2A11 − 2B1 ,
2A21 − 2B2)} .

(29)

Proof. Choose 𝑟 = min(2A1/(1 − 2B1), 2A2/(1 − 2B2)) and
define ð = {(𝜇1, 𝜇2) ∈ P: ‖(𝜇1, 𝜇2)‖ < 𝑟}. By Lemma 14, the
operator T : ð → P is completely continuous. Choose 𝜆 ∈(0, 1) and (𝜇1, 𝜇2) ∈ 𝜕ð such that (𝜇1, 𝜇2) = 𝜆T(𝜇1, 𝜇2). Then,
by properties (𝐶1), (𝐶3), and (𝐶∗4 ), we obtain for all 𝑧 ∈ [0, 1]
󵄩󵄩󵄩󵄩𝜇1 (𝑧)󵄩󵄩󵄩󵄩∞ ≤ 𝜆max

𝑧∈[0,1]
∫1
0

𝐺𝜃1 (𝑧, ℏ)
⋅ 󵄨󵄨󵄨󵄨F1 (ℏ) , 𝜇1 (ℏ) , 𝜇2 (ℏ) 𝑑ℏ󵄨󵄨󵄨󵄨
≤ 𝜆 [∫1

0

G𝜃1 (1, ℏ) 𝑎1 (ℏ)
+ ∫1
0

G𝜃1 (1, ℏ) (𝑏1 (ℏ) 󵄨󵄨󵄨󵄨𝜇1 (ℏ)󵄨󵄨󵄨󵄨 + 𝑐1 (ℏ) 󵄨󵄨󵄨󵄨𝜇2 (ℏ)󵄨󵄨󵄨󵄨)] 𝑑ℏ
≤ (A1 + 𝑟B1) ≤ 𝑟2 .

(30)

Similarly, we obtain ‖𝜇2‖∞ ≤ 𝑟/2; hence ‖(𝜇1, 𝜇2)‖ < 𝑟,
which shows that (𝜇1, 𝜇2) ∉ 𝜕ð.Thus, by Schauder fixed point
theorem,T has at least one fixed point in ð.
4. Hyers-Ulam Stability of (12)

In this section, we obtain some appropriate conditions under
which the toppled system under our consideration is Hyers-
Ulam stable.
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Let the following assumption hold:

(𝐶∗8 ) There exist constants L𝑖 > 0, K𝑖 > 0, 𝑖 = 1, 2, such
that 󵄨󵄨󵄨󵄨F1 (𝑧, 𝜇1, 𝜇2) −F1 (𝑧, 𝜇1, 𝜇2)󵄨󵄨󵄨󵄨

≤ L1
󵄨󵄨󵄨󵄨𝜇1 − 𝜇1󵄨󵄨󵄨󵄨 + L2

󵄨󵄨󵄨󵄨𝜇2 − 𝜇2󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨F2 (𝑧, 𝜇1, 𝜇2) −F2 (𝑧, 𝜇1, 𝜇2)󵄨󵄨󵄨󵄨
≤ K1

󵄨󵄨󵄨󵄨𝜇1 − 𝜇1󵄨󵄨󵄨󵄨 +K2
󵄨󵄨󵄨󵄨𝜇2 − 𝜇2󵄨󵄨󵄨󵄨 .

(31)

Theorem 17. Assume that hypothesis (𝐶∗8 ) holds andT1,T2 :
W1 ×W2 → W1 ×W2 such that󵄩󵄩󵄩󵄩T1 (𝜇1, 𝜇2) −T1 (𝜇∗1 , 𝜇∗2 )󵄩󵄩󵄩󵄩∞

≤ Λ 1 󵄩󵄩󵄩󵄩𝜇1 − 𝜇∗1 󵄩󵄩󵄩󵄩∞ + Λ 2 󵄩󵄩󵄩󵄩𝜇2 − 𝜇∗2 󵄩󵄩󵄩󵄩∞ ,
󵄩󵄩󵄩󵄩T2 (𝜇1, 𝜇2) −T2 (𝜇∗1 , 𝜇∗2 )󵄩󵄩󵄩󵄩∞

≤ Λ 3 󵄩󵄩󵄩󵄩𝜇1 − 𝜇∗1 󵄩󵄩󵄩󵄩∞ + Λ 4 󵄩󵄩󵄩󵄩𝜇2 − 𝜇∗2 󵄩󵄩󵄩󵄩∞ ,
(32)

for all solutions (𝜇1, 𝜇2), (𝜇∗1 , 𝜇∗2 ) ∈ W1 ×W2, with

Q = (Λ 1 Λ 2
Λ 3 Λ 4) , (33)

converges to zero. Then the solution of coupled system (4) is
Hyers-Ulam stable.

Proof. Consider

󵄨󵄨󵄨󵄨T1 (𝜇1, 𝜇2) (𝑧) −T1 (𝜇1, 𝜇2) (𝑧)󵄨󵄨󵄨󵄨 ≤ max
𝑧∈[0,1]

∫1
0

󵄨󵄨󵄨󵄨󵄨𝐺𝜃1 (𝑧, ℏ)󵄨󵄨󵄨󵄨󵄨
⋅ [󵄨󵄨󵄨󵄨F1 (ℏ, 𝜇1 (ℏ) , 𝜇2 (ℏ)) −F1 (ℏ, 𝜇1 (ℏ) , 𝜇2 (ℏ))󵄨󵄨󵄨󵄨] 𝑑ℏ
≤ ∫1
0

𝐺𝜃1 (1, ℏ) [L1 󵄩󵄩󵄩󵄩𝜇1 − 𝜇1󵄩󵄩󵄩󵄩∞ + L2
󵄩󵄩󵄩󵄩𝜇2 − 𝜇2󵄩󵄩󵄩󵄩∞] 𝑑ℏ,

(34)

which implies that |T1(𝜇1, 𝜇2)−T1(𝜇1, 𝜇2)| ≤ Λ 1‖𝜇1−𝜇1‖∞+Λ 2‖𝜇2 − 𝜇2‖∞.
According to the previous sentence, Λ 1 = L1/Γ(𝜃1 +1), Λ 2 = L2/Γ(𝜃1 + 1). Similarly, we can also get

󵄩󵄩󵄩󵄩T2 (𝜇1, 𝜇2) −T2 (𝜇∗1 , 𝜅∗2 )󵄩󵄩󵄩󵄩∞
≤ Λ 3 󵄩󵄩󵄩󵄩𝜇1 − 𝜇1󵄩󵄩󵄩󵄩∞ + Λ 4 󵄩󵄩󵄩󵄩𝜇2 − 𝜇2󵄩󵄩󵄩󵄩∞ , (35)

whereΛ 3 = K1/Γ(𝜃2+1), Λ 4 = K2/Γ(𝜃2+1).Therefore from
(34) and (35), we have the following system of inequalities:

󵄩󵄩󵄩󵄩T1 (𝜇1, 𝜇2) −T1 (𝜇∗1 , 𝜇∗2 )󵄩󵄩󵄩󵄩∞
≤ Λ 1 󵄩󵄩󵄩󵄩𝜇1 − 𝜇∗1 󵄩󵄩󵄩󵄩∞ + Λ 2 󵄩󵄩󵄩󵄩𝜇2 − 𝜇∗2 󵄩󵄩󵄩󵄩∞ ,

󵄩󵄩󵄩󵄩T2 (𝜇1, 𝜇2) −T2 (𝜇∗1 , 𝜇∗2 )󵄩󵄩󵄩󵄩∞
≤ Λ 3 󵄩󵄩󵄩󵄩𝜇1 − 𝜇∗1 󵄩󵄩󵄩󵄩∞ + Λ 4 󵄩󵄩󵄩󵄩𝜇2 − 𝜇∗2 󵄩󵄩󵄩󵄩∞ ,

(36)

whereM = ( Λ 1 Λ 2Λ 3 Λ 4
)which converges to zero.Thus, in view of

Theorem 9, the solution of coupled system (4) is Hyers-Ulam
stable.

5. Examples

Example 1. Consider the following coupled nonlinear FODEs
of boundary conditions:

𝐷5/2𝜇1 (𝑧) + Γ (52) [
𝑧𝜇1 (𝑧)16 + 𝑧2𝜇2 (𝑧)32 ] = 0,

𝑧 ∈ [0, 1] ,
𝐷5/2𝜇2 (𝑧)

+ Γ (52) [
9𝑧2 󵄨󵄨󵄨󵄨cos (𝜇1 (𝑧))󵄨󵄨󵄨󵄨16√𝜋 + 9𝑧 󵄨󵄨󵄨󵄨cos (𝜇2 (𝑧))󵄨󵄨󵄨󵄨32√𝜋 ]

= 0, 𝑧 ∈ [0, 1] ,
𝜇1 (0) = 𝜇󸀠1 (0) = 𝜇1 (1) = 0,
𝜇2 (0) = 𝜇󸀠2 (0) = 𝜇2 (1) = 0.

(37)

Here 𝑛 = 3 and 𝜙1(𝑧) = Γ(5/2)(𝑧/16), 𝜓1(𝑧) = Γ(5/2)(𝑧2/32), 𝜙2(𝑧) = Γ(5/2)(9𝑧2/16√𝜋), 𝜓2(𝑧) = Γ(5/2)(9𝑧/32√𝜋).
Moreover
𝐴

= [[[
[
∫1
0

𝐺𝜃1 (1, ℏ) 𝜙1 (ℏ) 𝑑ℏ ∫1
0

𝐺𝜃1 (1, ℏ) 𝜓1 (ℏ) 𝑑ℏ
∫1
0

𝐺𝜃2 (1, ℏ) 𝜙2 (ℏ) 𝑑ℏ ∫1
0

𝐺𝜃2 (1, ℏ) 𝜓2 (ℏ) 𝑑ℏ
]]]
]

= [0.0460 0.0007
0.0068 0.0058] .

(38)

Here, 𝜌(𝐴) = 4.61 × 10−2 < 1; hence by Lemma 15 the BVP
(37) has a unique solution. ForF1 andF2, we have 𝑎1(𝑧) = 0,𝑏1(𝑧) = Γ(5/2)(𝑧/16), 𝑐1(𝑧) = Γ(5/2)(𝑧2/32), 𝑎2(𝑧) = 0,𝑏2(𝑧) = Γ(5/2)(9𝑧2/16√𝜋), 𝑐2(𝑧) = Γ(5/2)(9𝑧/32√𝜋) and, by
simple calculation, we obtain

A1 = ∫1
0

𝐺𝜃1 (𝑧, ℏ) 𝑎1 (ℏ) 𝑑ℏ < ∞,
A2 = ∫1

0

𝐺𝜃2 (𝑧, ℏ) 𝑎2 (ℏ) 𝑑ℏ < ∞,
B1 = ∫1

0

𝐺𝜃1 (𝑧, ℏ) [𝑏1 (ℏ) + 𝑐1 (ℏ)] 𝑑ℏ < 1,
B2 = ∫1

0

𝐺𝜃2 (𝑧, ℏ) [𝑏2 (ℏ) + 𝑐2 (ℏ)] 𝑑ℏ < 1.

(39)

Hence, by using Lemma 16, BVP (37) has at least one positive
solution. Further, it is easy to compute the matrix Q which
converges to zero and so the solution is Hyers-Ulam stable by
usingTheorem 17.

6. Conclusion

In this paper, we investigate existence and uniqueness of
solutions for the nonlinear FODEs with boundary conditions
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and also investigate Hyers-Ulam stability for the mentioned
problem. We use Perov’s fixed point theorem [33] and Leray-
Schauder fixed point theorem to develop some results for
existence of at least one solution for our proposed coupled
nonlinear FODEs with boundary conditions. Further, we
establish some conditions forHyers-Ulam type stability to the
considered problem.The whole paper is very easy because of
relaxed methods and conditions.
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