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Let E be a smooth Banach space with the dual E∗, an operator T : E → E∗ is said to be α-strong
duality pseudocontractive if 〈x − y, Tx − Ty〉 ≤ 〈x − y, Jx − Jy〉 − α‖Jx − Jy − (Tx − Ty)‖2, for all
x, y ∈ E, where α is a nonnegative constant. An element x ∈ E is called a duality fixed point
of T if Tx = Jx. The purpose of this paper is to introduce the definition of α-strong duality
pseudocontractive mappings and to study its fixed point problem and applications for operator
equation and variational inequality problems.

1. Introduction and Preliminaries

Let E be a real Banach space with the dual E∗: let T be an operator from E into E∗. We consider
the first operator equation problem of finding an element x∗ ∈ E such that

〈Tx∗, x∗〉 = ‖Tx∗‖2 = ‖x∗‖2. (1.1)

We also consider the second variational inequality problem of finding an element x∗ ∈ E such
that

〈Tx∗, x∗ − x〉 ≥ 0, ∀‖x‖ ≤ ‖x∗‖. (1.2)

Let E be a real Banach space with the dual E∗. Let p be a given real number with p > 1.
The generalized duality mapping Jp from E into 2E

∗
is defined by

Jp(x) =
{
f ∈ E∗ :

〈
x, f

〉
=
∥∥f∥∥p

,
∥∥f∥∥ = ‖x‖p−1

}
, ∀x ∈ E, (1.3)
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where 〈·, ·〉 denotes the generalized duality pairing. In particular, J = J2 is called the
normalized duality mapping and Jp(x) = ‖x‖p−2J(x) for all x /= 0. If E is a Hilbert space, then
J = I, where I is the identity mapping. The duality mapping J has the following properties:

(i) if E is smooth, then J is single valued;

(ii) if E is strictly convex, then J is one to one;

(iii) if E is reflexive, then J is a mapping of E onto ∗E;

(iv) if E is uniformly smooth, then J is uniformly norm-to-norm continuous on each
bounded subset of E;

(v) if E∗ is uniformly convex, then J is uniformly continuous on each bounded subsets
of E and J is single valued and also one to one.

For more details, see [1, 2].
Let E be a smooth Banach space with the dual E∗. Let T : E → E∗ be an operator; an

element x∗ ∈ E is called a duality fixed point of T , if Tx∗ = Jx∗.
We also consider the third variational inequality problem of finding an element x∗ ∈ E

such that

〈Tx∗, x − x∗〉 ≥ 0, ∀x ∈ C, (1.4)

where C is a closed convex subset of E. The set of solutions of the variational inequality
problem (1.4) is denoted by V I(C, T).

We also consider the fourth variational inequality problem of finding an element x∗ ∈
E such that

〈Jx∗ − Tx∗, x − x∗〉 ≥ 0, ∀x ∈ C, (1.5)

where C is a closed convex subset of E. The set of solutions of the variational inequality
problem (1.5) is denoted by V I(C, J, T).

Conclusion 1. If x∗ is a duality fixed point of T , then x∗ must be a solution of problem (1.1).

Proof. If x∗ is a normalized fixed point of T , then Tx∗ = Jx∗, so that

〈Tx∗, x∗〉 = 〈Jx∗, x∗〉 = ‖Jx∗‖2 = ‖Tx∗‖2 = ‖x∗‖2. (1.6)

This completes the proof.

Conclusion 2. If x∗ is a duality fixed point of T , then x∗ must be a solution of variational in-
equality problem (1.2).

Proof. Suppose x∗ is a duality fixed point of T ; then

〈Tx∗, x∗〉 = ‖Tx∗‖2 = ‖x∗‖2. (1.7)
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Obverse that

〈Tx∗, x∗ − x〉 = 〈Tx∗, x∗〉 − 〈Tx∗, x〉

≥ ‖Tx∗‖2 − ‖Tx∗‖‖x‖
= ‖Tx∗‖(‖Tx∗‖ − ‖x‖)
= ‖Tx∗‖(‖x∗‖ − ‖x‖) ≥ 0,

(1.8)

for all ‖x‖ ≤ ‖x∗‖. This completes the proof.

Let U = {x ∈ E : ‖x‖ = 1}. A Banach space E is said to be strictly convex if for any
x, y ∈ U, x /=y implies ‖(x + y)/2‖ < 1. It is also said to be uniformly convex if for each
ε ∈ (0, 2], there exists δ > 0 such that for any x, y ∈ U, ‖x − y‖ ≥ ε implies ‖(x + y)/2‖ < 1− δ.
It is known that a uniformly convex Banach space is reflexive and strictly convex. And we
define a function δ : [0, 2] → [0, 1] called the modulus of convexity of E as follows:

δ(ε) =
{
1 −

∥∥∥∥
x + y

2

∥∥∥∥ : ‖x‖ =
∥∥y∥∥ = 1,

∥∥x − y
∥∥ ≥ ε

}
. (1.9)

It is known that E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. Let p be a fixed
real number with p ≥ 2. Then E is said to be p-uniformly convex if there exists a constant c > 0
such that δ(ε) ≥ cεp for all ε ∈ [0, 2]. For example, see [3, 4] for more details. The constant
1/c is said to be uniformly convexity constant of E.

A Banach space E is said to be smooth if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(1.10)

exists for all x, y ∈ U. It is also said to be uniformly smooth if the above limit is attained
uniformly for x, y ∈ U. One should note that no Banach space is p-uniformly convex for
1 < p < 2; see [5] for more details. It is well known that the Hilbert and the Lebesgue Lq(1 <
q ≤ 2) spaces are 2-uniformly convex and uniformly smooth. Let X be a Banach space, and
let Lq(X) = {Ω,Σ, μ;X}, 1 < q ≤ ∞ be the Lebesgue-Bochner space on an arbitrary measure
space (Ω,Σ, μ). Let 2 ≤ p < ∞, and let 1 < q ≤ p. Then Lq(X) is p-uniformly convex if and
only if X is p-uniformly convex; see [4].

In this paper, we first propose the definition of generalized α-strongly pseudocon-
tractive mappings from a smooth Banach E into its dual E∗ as follows. We also discuss
the problem of fixed point for generalized α-strongly pseudocontractive mappings and its
applications.

Let E be a smooth Banach space and E∗ denote the dual of E. An operator A : E → E∗

is said to be
(1) α-inverse-strongly monotone if there exists nonnegative real number α such that

〈
x − y,Ax −Ay

〉 ≥ α‖Ax −Ay‖2, ∀x, y ∈ E. (1.11)
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(2) α-strong duality pseudocontractive mapping, if there exists a nonnegative real
number α such that

〈
x − y,Ax −Ay

〉 ≤ 〈
x − y, Jx − Jy

〉 − α‖Jx − Jy − (
Ax −Ay

)‖2 (1.12)

for all x, y ∈ E.
It is easy to show that A is α-strong duality pseudocontractive if and only if (J −A) is

α-inverse-strongly monotone.
Let E be a smooth Banach space and E∗ denote the dual of E. Let A : E → E∗ be an

operator. The set of zero points of A is defined by A−10 = {x ∈ E : Ax = 0}. The set of duality
fixed points of A is defined by F(A) = {x ∈ E : Ax = Jx}. It is also easy to show that, an
element u ∈ E is a zero point of an α-inverse-strongly monotone operatorA if and only if u is
a duality fixed point of the α-strong duality pseudocontractive mapping (J −A).

2. Main Results and Applications

Recently, Zegeye and Shahzad [6] proved the following result.

Theorem 2.1 (see, [6]). Let E be a uniformly smooth and 2-uniformly convex real Banach space with
the dual E∗: let A : E → E∗ be a γ-inverse-strongly monotone mapping and T : E → E a relatively
weak nonexpansive mapping with A−10 ∩ F(T)/= ∅. Assume that 0 < α ≤ λn ≤ γc2/2, where 1/c is
the uniformly convexity constant. Define a sequence {xn} in E by the following algorithm:

x0 ∈ E chosen arbitrarily,

zn = J−1(Jxn − λnAxn),

yn = Tzn,

Cn =
{
z ∈ Cn−1

⋂
Qn−1 : φ

(
z, yn

) ≤ φ(z, zn) ≤ φ(z, xn)
}
,

C0 =
{
z ∈ E : φ

(
z, y0

) ≤ φ(z, z0) ≤ φ(z, x0)
}
,

Qn =
{
z ∈ Cn−1

⋂
Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0

}
,

Q0 = E,

xn+1 = ΠCn∩Qn(x0),

(2.1)

where J is the duality mapping on E. Then {xn} converges strongly toΠA−10∩F(T)x0, whereΠA−10∩F(T)
is the generalized projection from E onto A−10 ∩ F(T).

IF taking T = I, then Theorem 2.1 reduces to the following result.

Theorem 2.2. Let E be a uniformly smooth and 2-uniformly convex real Banach space with the
dual E∗, let A : E → E∗ be a γ-inverse strongly monotone mapping with A−10/= ∅. Assume that
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0 < α ≤ λn ≤ γc2/2, where 1/c is the uniformly convexity constant. Define a sequence {xn} in E by
the following algorithm:

x0 ∈ E chosen arbitrarily,

yn = J−1(Jxn − λnAxn),

Cn =
{
z ∈ Cn−1

⋂
Qn−1 : φ

(
z, yn

) ≤ φ(z, xn)
}
,

C0 =
{
z ∈ E : φ

(
z, y0

) ≤ φ(z, x0)
}
,

Qn =
{
z ∈ Cn−1

⋂
Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0

}
,

Q0 = E,

xn+1 = ΠCn∩Qn(x0),

(2.2)

where J is the duality mapping on E. Then {xn} converges strongly to ΠA−10x0, where ΠA−10 is the
generalized projection from E onto A−10.

Theorem 2.3. Let E be a uniformly smooth and 2-uniformly convex real Banach space; let A : E →
E∗ be an α-strong duality pseudocontractive mapping with nonempty set of duality fixed points F(A).
Let T : E → E be a relatively weak nonexpansive mapping and F(A) ∩ F(T) = ∅. Assume 0 < a ≤
λn ≤ αc2/2L. Define a sequence {xn} in E by the following algorithm:

x0 ∈ E chosen arbitrarily,

zn = J−1((1 − λn)Jxn + λnAxn),

yn = Tzn,

Cn =
{
z ∈ Cn−1

⋂
Qn−1 : φ

(
z, yn

) ≤ φ(z, zn) ≤ φ(z, xn)
}
,

C0 =
{
z ∈ E : φ

(
z, y0

) ≤ φ(z, z0) ≤ φ(z, x0)
}
,

Qn =
{
z ∈ Cn−1

⋂
Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0

}
,

Q0 = E,

xn+1 = ΠCn∩Qn(x0),

(2.3)

where J is the duality mapping on E. Then {xn} converges strongly to a common element x∗ ∈
F(A) ∩ F(T). This element is also a common solution of operator equation (1.1) and variational
inequality (1.2).

Proof. Let B = J − A, then B : E → E∗ is α/L-inverse-strongly monotone and α-strongly
monotone, so that B−10 = F(A) has only one element. On the other hand, we have

zn = J−1((1 − λn)Jxn + λnAxn) = J−1(Jxn − λnBxn). (2.4)

By using Theorem 2.1 and Conclusions 1 and 2, we obtain the conclusion of Theorem 2.3.
Taking T = I in Theorem 2.3, we get the following result.
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Theorem 2.4. Let E be a uniformly smooth and 2-uniformly convex real Banach space; let A : E →
E∗ be a L-Lipschitz and α-strongly duality pseudocontractive mapping with nonempty set of duality
fixed points F(A). Assume 0 < a ≤ λn ≤ αc2/2L. Define a sequence {xn} in E by the following
algorithm:

x0 ∈ E chosen arbitrarily,

yn = J−1((1 − λn)Jxn + λnAxn),

Cn =
{
z ∈ Cn−1

⋂
Qn−1 : φ

(
z, yn

) ≤ φ(z, xn)
}
,

C0 =
{
z ∈ E : φ

(
z, y0

) ≤ φ(z, x0)
}
,

Qn =
{
z ∈ Cn−1

⋂
Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0

}
,

Q0 = E,

xn+1 = ΠCn∩Qn(x0),

(2.5)

where J is the duality mapping on E. Then {xn} converges strongly to a duality fixed point x∗ ∈ F(A).
This element x∗ is also a common solution of operator equation (1.1) and variational inequality (1.2).

Iiduka and Takahashi [7] introduce an iterative scheme for finding a solution of the
variational inequality problem for an operator A that satisfies the following conditions (i)–
(iii) in a 2-uniformly convex and uniformly smooth Banach space E:

(i) A is α-inverse-strongly monotone;
(ii) V I(C,A)/= ∅;
(iii) ‖Ay‖ ≤ ‖Ay −Au‖ for all y ∈ E and u ∈ V I(C,A).
They proved the following convergence theorem.

Theorem 2.5 (see, [7]). Let E be a 2-uniformly convex and uniformly smooth Banach space, whose
duality mapping J is weakly sequentially continuous, and C a nonempty, closed convex subset of
E. Assume that A is an operator of C into E∗, that satisfies the conditions (i)–(iii). Suppose that
x1 = x ∈ C and {xn} is given by

xn+1 = ΠCJ
−1(Jxn − λnAxn), (2.6)

for every n = 1, 2,. . ., where {λn} is a sequence of positive numbers. If {λn} is chosen so that λn ∈ [a, b]
for some a, b with 0 < a < b < c2α/2, then the sequence {xn} converges weakly to some element z ∈
V I(C,A), where 1/c is the 2-uniformly convexity constant of E. Further z = limn→∞ΠV I(C,A)xn.

In this paper, we introduce an iterative scheme for finding a solution of the variational
inequality problem for an operator T that satisfies the following conditions (iv)–(vi) in a 2-
uniformly convex and uniformly smooth Banach space E:

(iv) T is α-strong duality pseudocontractive,
(v) V I(C, J, T)/= ∅,
(vi) ‖Jy − Ty‖ ≤ ‖(J − T)y − (J − T)u‖ for all y ∈ E and u ∈ V I(C, J, T).
By using Theorem 2.5, we prove the following convergence theorem.
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Theorem 2.6. Let E be a 2-uniformly convex and uniformly smooth Banach space, whose duality
mapping J is weakly sequentially continuous, and C a nonempty, closed convex subset of E. Assume
that T is an operator of C into E∗. that satisfies the conditions (iv)–(vi). Suppose that x1 = x ∈ C and
{xn} is given by

xn+1 = ΠCJ
−1((1 − λn)Jxn + λnTxn), (2.7)

for every n = 1, 2,. . ., where {λn} is a sequence of positive numbers. If {λn} is chosen so that λn ∈ [a, b]
for some a, b with 0 < a < b < c2α/2, then the sequence {xn} converges weakly to some element z ∈
V I(C, J, T), where 1/c is the 2-uniformly convexity constant of E. Further z = limn→∞ΠV I(C,J,T)xn.

Proof. Let A = J − T , then B : E → E∗ is α-inverse-strongly monotone, so that B−10 = F(A).
On the other hand, we have

xn+1 = ΠCJ
−1((1 − λn)Jxn + λnTxn) = J−1(Jxn − λnAxn). (2.8)

By using Theorem 2.5, we obtain the conclusion of Theorem 2.6.

In fact, from condition (vi), we have F(T) = V I(C, J, T), so that under the conditions
of Theorem 2.6, the {xn} converges strongly to a duality fixed point z ∈ F(T). This element z
is also a common solution of operator equation (1.1) and variational inequality (1.2). where
{xn} is defined by Algorithm (2.7).
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