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We propose a derivative-free mesh optimization algorithm, which focuses on improving the worst element quality on the mesh.
The mesh optimization problem is formulated as a min-max problem and solved by using a downhill simplex (amoeba) method,
which computes only a function value without needing a derivative of Hessian of the objective function. Numerical results show
that the proposed mesh optimization algorithm outperforms the existing mesh optimization algorithm in terms of improving the
worst element quality and eliminating inverted elements on the mesh.

1. Introduction

It is well known that mesh qualities affect both the accuracy
and efficiency of partial differential equation (PDE) solutions
(1, 2]. Elements with poor mesh qualities (also, inverted ele-
ments) often occur during mesh generation [3], mesh defor-
mation [4, 5], and mesh optimization [5]. Researchers have
proposed many mesh quality improvements and untangling
algorithms to solve these problems [5-9]. Mesh smooth-
ing algorithms improve mesh qualities simply by moving
vertex positions, while fixing element connectivities. One
of the most popular mesh smoothing algorithms is Lapla-
cian smoothing [10], where new vertex position becomes a
geometric center of adjacent vertices. However, Laplacian
smoothing does not guarantee generating good element
qualities and instead often generates inverted elements [11].
Several variants of Laplacian smoothing, such as smart
Laplacian smoothing, have been proposed to overcome the
limitations of Laplacian smoothing [12, 13].
Optimization-based mesh quality improvement algo-
rithms [2, 11, 13] are now becoming more popular, because
these methods are able to offer high-quality meshes though
with high computational costs. These methods formulate the
nonlinear objective function over the entire mesh domain
and improve mesh qualities by minimizing the objective

function, while keeping mesh topologies [5, 14]. On the other
hand, topological change methods improve mesh qualities
by iteratively performing edge splitting, edge swapping, and
edge collapsing [15, 16]. Researchers have pointed out that
mesh smoothing is preferred to topological changes for
many PDE-based applications, since it is able to improve
element qualities, while keeping mesh topologies [5]. For
many PDE problems, consistent mesh topology is desirable
for PDE solution accuracy [5, 17]. Several optimization-based
simultaneous untangling and smoothing algorithms have
been proposed [5-7]. These methods are known to be able to
simultaneously eliminate inverted elements, while improving
mesh qualities.

Most previous mesh quality improvement methods have
focused on improving the average element qualities on the
mesh. However, it is well known that a few poor quality
elements significantly diminish the efficiency and accuracy
of PDE solutions [1, 7]. The inverted elements in the mesh
can even result in invalid PDE solutions [4, 9]. In this
paper, we focus on improving the worst element quality in
the mesh and also focus on eliminating inverted elements
in the mesh. The optimization problem, which improves
the worst quality elements, is formulated as a nonlinear
optimization problem, which is nonsmooth, and thus, the
computation of derivative or Hessian is not available. For



this reason, traditional nonlinear optimization solvers such as
conjugate gradient, steepest descent, Newton, quasi-Newton,
and trust-region methods are not directly applicable for
solving these nonsmooth mesh optimization problems [7,
13]. Several derivative-free mesh optimization algorithms
have been proposed [7, 12, 18]. For example, Freitag and
Plassmann proposed an active set algorithm for solving mesh
optimization problems [12]. This method improves element
qualities by maximizing the minimum area of an element and
solves the problem using linear programming. However, this
method requires the mesh quality to be convex. Also, other
derivative free mesh optimization algorithms need many
initial parameters to be chosen or are quite complex to use
in practice [7, 18].

We propose an efficient derivative-free mesh optimiza-
tion algorithm for mesh quality improvement and untan-
gling. Our proposed method employs a downhill simplex
method for improving the worst element quality and elim-
inating inverted elements on the mesh. Our method does
not require the computation of a derivative or Hessian of
the objective function, but it iteratively performs reflection,
expansion, and contraction, to reach the local optimal point
(vertex location). Our algorithm is simple to apply and does
not need many initial parameters to be determined. We will
show numerically that our proposed mesh optimization algo-
rithm outperforms traditional mesh optimization algorithms
in terms of worst element quality and speed.

2. Problem Formulation

We mathematically formulate mesh quality metrics and
objective functions to optimize. We also describe the local
mesh optimization method we used.

2.1. Mesh Quality Metric. There are many mesh quality
metrics for triangles and tetrahedra in the literature. See [1]
for more details. Among them, we choose an inverse mean
ratio (IMR) quality metric to improve the element shape [19].
The IMR quality metric defines an ideal (reference) element
and measures how similar the actual (physical) element
to the reference element is. The reference triangle is often
considered to be an equilateral triangle for isotropic PDE
problems. Let the coordinates of three vertices in the triangle
elementbe [a, b, c]. The incidence matrix, A, of this (physical)
element is defined as

A=[b-a,c—a]. 1)

Let the incidence matrix for the reference element be W. For
the isotropic PDE problem, the ideal element is considered to
be an equilateral triangle or tetrahedron. For the equilateral
triangle, W is defined as

._.
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The IMR quality metric is defined as

Jaw “
2 |det (AW-1)|°

where |||z is a Frobenius norm. When the actual element and
the ideal element are identical, A is the same as W and thus,
AW ™! becomes an identity matrix. In this case, g;,,,, becomes
one.

We choose an untangling beta (q,,) quality metric to
eliminate inverted elements on the mesh [8]. Inverted ele-
ments on the mesh have negative signed areas (volume).
Untangling beta quality metric gives a high cost (penalty) to
the element, which has a negative signed area. Let the area
of the triangle be A. The untangling beta quality metric is
defined as

Timr =

aw =5 (A= Bl - (4- ). @

where f is a user-defined value, which is close to zero. For a
valid (noninverted) element, g, becomes zero. For the above
two quality metrics, a smaller value indicates better element
quality.

2.2. Objective Function. We focus on improving the worst
element quality on the mesh. Let the ith element quality on
the mesh be g;. The element with the worst quality is denoted
as

max (q;), (5)

1<i<n
where n is the number of elements. Then, our goal is to
minimize (5). The optimization problem is formulated as
min max (g;) . (6)

1<i<n

Note that the mesh optimization problem in (6) is a nons-
mooth objective function. Thus, traditional nonlinear opti-
mization solvers, which require the computation of derivative
and/or Hessian, cannot be used to solve it.

2.3. Local Mesh Optimization. In the literature, there are
essentially two kinds of mesh optimization strategies: local
(Gauss-Seidal type) optimization and global (Jacobi type)
mesh optimization. For local mesh optimization, an entire
mesh is decomposed into multiple patches. A patch is defined
as a set of adjacent elements around the free vertex to
optimize, as shown in Figure 1. When local mesh optimiza-
tion is performed, we visit one free vertex at a time and
iteratively move and optimize other vertices. For global mesh
optimization, all vertices on the mesh move simultaneously.
That is, the entire mesh becomes a single path.

We use local mesh optimization to improve the mesh
quality, because previous researches have shown the effi-
ciency of local mesh optimization compared to the global
mesh optimization [3, 20]. When global mesh optimization
is used, the update of all vertex positions often gets truncated
to satisfy mesh validity. Also, the objective function and
corresponding matrices in the problem become too large,
when the mesh size is too big (e.g., if the mesh includes
millions of vertices).



Mathematical Problems in Engineering

FIGURE 1: This figure shows an example of local mesh optimization.
The seven vertices and elements, which are adjacent to the free
vertex, v, are optimized at this time. This local mesh optimization
is repeated for other vertices on the mesh until the entire mesh is
fully optimized.

3. A Downhill Simplex Method for Mesh
Quality Improvement and Untangling

The optimization problem in (6) is not a smooth objective
function due to the maximum function. Thus, traditional
nonlinear optimization solvers cannot be used to solve the
optimization problem, because the computation of a gradient
and Hessian value is not available. Thus, we propose to use a
downbhill simplex (amoeba) method to solve (6), which does
not use either function derivatives or a Hessian but only uses
function evaluations.

The basic idea of a downhill simplex method is to
move a free vertex by repeatedly performing three actions:
reflections, expansions, and contractions. More details on
these three actions will be described in the following sections.

3.1. Initial Simplex. The downbhill simplex method requires
an initial simplex to begin. A simplex is a triangle and
tetrahedron in 2D and 3D, respectively. For the local mesh
optimization, an initial simplex is generated around the
free vertex to optimize by choosing two (virtual) points.
It is natural to assume that the initial simplex size should
consider the edge length of the mesh or mesh size. We use
the minimum edge length information of the patch around
the free vertex to determine the initial simplex size. We
expect that the initial simplex size should be smaller than
the minimum edge length of the patch. Otherwise, the initial
simplex location is placed beyond the patch where the free
vertex places and two chosen (virtual) points could be too far
away from the optimal vertex position. On the other hand,
if the initial simplex is too small, the convergence of mesh
optimization could be very slow.

Figure 2 shows the initial simplex around the free vertex,
v. Two (virtual) points, v, and v,, and v. form an initial
simplex. Here, « is computed as

o = (simplex diameter) * (minimum edge length), (7)

v = (Vv +a)

v= (V) vy = (vt avy)

FIGURE 2: This figure shows an initial simplex (triangle) to begin
when a free vertex v is given. A free vertex v and two (virtual)
points, v; and v,, compose an initial simplex. The « is a user-defined
parameter defined in (7).

X1

x(1/2) x(-1)
X3 ® [ ] ([ ]

X2

FIGURE 3: This figure shows one step of the downhill simplex method
in 2D. The current simplex has three points, x,, x,, and x,. The
reflected point x(—1) is located at the opposite side of the point, x;,
with the worst cost function. Here, X(—2) and x(1/2) are expansion
and contraction points, respectively.

where the simplex diameter is a user-defined parameter.
We will discuss the effect of the simplex diameter on the
convergence and the final mesh quality in more detail in
Section 4.

3.2. Downbhill Simplex Method. In a single iteration of the
downhill simplex method, it seeks to eliminate the (virtual)
point with the worst cost function and replaces it with a
new one by repeatedly performing three different actions:
reflection, expansion, and contraction. Let the three points
of the current simplex be {x;, x,, x5} such that

fx) < fxy) < fxs). (8)

We find the vertex with the worst cost function on the simplex
(i.e., x3) and compute the reflected point of this vertex
using the centroid of the current simplex (see Figure 3). The
centroid of three points is computed as

>l X 9)
3

x:
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Compute the reflected point, X(—1) and function value at this point,
f(x(=1)). There are 3 possibilities:
Case 1 (reflection):

if f(x,) < f(x(-1)) < f(x,) then

replace x; by x(-1).
end if
Case 2 (expansion):

if f(x(-1)) < f(x,) then

replace x, by x(-2).
else
replace x; by x(-1).
end if
end if
Case 3 (contraction):
if f(x(-1)) > f(x,) then

if x(1/2) < f(x;) then
replace x; by x(1/2).
else

end if
end if

compute the expansion point, X(—2) and evaluate f(x(-2)).

if f(x(-2)) < f(x(~1)) then

compute the contraction point, x(1/2) and evaluate f(x(1/2)).

replace x; by (1/2)(x, + x;) fori = 2,3

AvrGoriTHM 1: Downbhill simplex algorithm.

Now, these three points, including the reflected point, x(-1),
compose a new simplex. Here, x(p) is denoted by

X(p)=x+p(x;—X%). (10)

We consider three possibilities for this reflected point, x(—1).
(1) If the function value at the reflected point is neither worst
nor best in the new simplex, then replace the worst point
by the reflected point. (2) If function value at the reflected
point is better than the one at the current point, we perform
expansion, since this means that the direction of reflection is
good. (3) If function value at the reflected point is worse than
the one at the current point, we perform contraction, since
this means that the triangle is too large.

Figure 3 shows a current simplex with three points, x;, x,,
and x;, reflected point, X(-1), expansion point, x(-2), and
contraction point, x¥(1/2). We repeatedly perform the down-
hill simplex algorithm, which is illustrated in Algorithm 1,
until all vertices converge to the local optimum.

4. Numerical Results

In this section, we describe our numerical results to show the
effectiveness of our proposed algorithm, which improves the
worst element quality on the mesh using the downhill simplex
method.

4.1. Test Meshes. We consider four test meshes to evaluate our
algorithm. Cylinder and bar meshes (see Figures 4(a) and
4(b)) include many poor quality elements, which were pro-
duced during mesh deformation. We use these two meshes

TABLE 1: The test mesh configurations.

Mesh name Numl?er of Number of I\Iilrllgllz:(?f
vertices elements
elements

Cylinder 1,196 2,240 0

Bar 4,167 7,232 0
Hydrocephalus 4,311 8,166 13
Airfoil 5,252 10,200 42

TABLE 2: Mesh quality statistics.

Mesh name Min. Avg. Max. std.dev
Cylinder 1.00 3.09 678.92 15.48
Bar 1.00 2.15 71.12 2.97
Hydrocephalus —-2724 1.89 551.52 8.42
Airfoil —4.30e - 06 37.05 132,540 1316.26

to improve the worst element quality on the mesh, because
these meshes include very skinny (poor quality) elements.
Hydrocephalus and airfoil meshes (see Figures 4(c) and 4(d))
include some inverted elements. The hydrocephalus mesh is
provided by Park et al. [21]. These inverted elements were
produced during a mesh deformation process.

Properties of four test meshes and mesh quality statistics
are shown in Tables 1 and 2, respectively. The inverse mean
ratio quality metric is used to measure the overall mesh
quality. The value of the inverse mean ratio quality metric lies
between 1 and oo for valid (noninverted) elements. A smaller
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(a) Cylinder mesh

(b) Bar mesh

(c) Hydrocephalus mesh

(d) Airfoil mesh

FIGURE 4: (a) Cylinder mesh, (b) bar mesh, (c) hydrocephalus mesh, and (d) airfoil mesh.

value indicates a better mesh quality and the ideal element
has the value of one. Elements with negative values indicate
inverted elements on the mesh. The initial hydrocephalus and
airfoil meshes have 13 and 42 inverted elements, respectively.

4.2. Effect of Initial Simplex Diameter on Algorithm Perfor-
mance. When the downhill simplex method is used, the
initial simplex is composed of one free vertex to optimize and
two (virtual) points as discussed in Section 3.1. Other than
the free vertex to optimize, the location of the two points is
determined by the initial simplex diameter and the minimum
edge length in the patch. For example, if simplex diameter is
1, the initial simplex size becomes a minimum edge length in
the patch where a free vertex belongs. We investigate the effect
of the initial simplex diameter on mesh optimization per-
formance. Here, the mesh optimization performance means
both the mesh quality after performing mesh optimization
and the time to optimize (time to converge).

Figure 5 shows the worst element quality and timing to
optimize as a function of various initial simplex diameters
for test meshes. For these meshes, we observe that the best
initial simplex diameters lie between 0.01 and 0.1. For this
initial simplex size, the output meshes have the smallest worst
element quality with the fastest convergence rate. If the initial
simplex diameter is too small (e.g., simplex diameter = 0.001),
we observe that the convergence time is very slow. For this
case, the initial simplex size is too small compared with the
mesh size and thus, the movement of one step of the downbhill
simplex method is very small. If the initial simplex diameter is
too big (e.g., simplex diameter = 5), the optimization problem
fails to converge or fails to untangle inverted elements. For
these cases, we expect that the initial simplex size is chosen to
be too big compared with the element size or edge lengths on
the mesh. Thus, we chose & = 0.1 * (minimum edge length).
Table 3 shows the minimum and maximum edge lengths on
the mesh and the best initial simplex diameter. For all test
meshes, the best simplex diameters were placed between the
minimum and the maximum edge lengths on the mesh.

TaBLE 3: Connection between the edge length on the mesh and the
best initial simplex diameter.

Minimum edge Maximum edge  Best simplex

Mesh name length length diameter
Cylinder 2e-03 0.19 0.1
Bar 2e - 03 215 0.01
Hydrocephalus  4e — 02 36.51 0.1
Airfoil 3e - 06 0.29 0.1

TABLE 4: Summary of the proposed and traditional mesh optimiza-
tion methods.

Method

Proposed method  min max (a:)
<isn

Problem Optimization solver

Downbhill simplex method

n
Traditional method  min Z 4q; Nonlinear conjugate method
i=1

4.3. Comparison with Existing Mesh Quality Improvement
Methods. We compare our proposed method with a tradi-
tional (existing) mesh optimization method that focuses on
improving the average element quality on the mesh. The
traditional mesh optimization method, which has been used
in many previous research articles [2, 5-7], is to minimize

Ya (11)
i=1

or to minimize Y, g7, where 1 is number of elements. We
used the nonlinear conjugate gradient (NLCG) method to
minimize (11), because many previous papers have shown the
effectiveness of using the NLCG method to minimize (11).
Table 4 summarizes both our proposed and traditional mesh
optimization methods.

The NLCG method updates the vertex position using a
line search technique. Let x; be a vector of vertex positions at
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FIGURE 5: These figures show the worst element quality and timing results to converge for various initial simplex diameters. A smaller value
indicates a better element quality for the inverse mean ratio quality metric. In (a) and (b), the optimization problem does not converge when
the initial simplex diameter is five. In (c) and (d), the optimization problem does not converge when the initial simplex diameter is five. In
(e) and (f), all inverted elements are eliminated after optimization when the initial simplex diameters are 0.01 and 0.1. Other initial simplex
diameters fail to eliminate inverted elements. In (g) and (h), the optimized meshes fail to untangle inverted elements when the initial simplex
diameter is two and five.
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FIGURE 6: Note that a smaller value indicates a better element quality for these figures. The inverse mean ratio quality metric is employed
to measure the element quality for (a) and (b): (a) worst element quality as a function of number of iterations of mesh optimization on the
cylinder mesh. (b) Worst element quality as a function of number of iterations of mesh optimization on the bar mesh. (c) Number of inverted
elements on the hydrocephalus mesh as a function of number of iterations of mesh optimization. (d) Number of inverted elements on the
airfoil mesh as a function of number of iterations of mesh optimization.

the kth iteration and let p; be the search direction. Then, the
updated vertex position, x,;, is computed by

Xpp1 = X + O Pps (12)

where o is a step length. The search direction, py, is denoted

by

Pr = =VF () + By P> 13)
where ;" is a parameter given by
~ T ~ —~
pr_ VE (x¢) (VF (xx) - VF (xk—l)) (14)
=

VF (x1)" VE (%)

for Polak-Ribiére NLCG method. See [5, 14] for more details
about the nonlinear conjugate gradient method for solving
mesh optimization problems. Note that the NLCG method is
not applicable to solve our mesh optimization problem, (6),
which improves the worst element quality on the mesh, since
NLCG requires the gradient computation of the objective
function.

Figures 6(a) and 6(b) show the worst element quality with
respect to the number of iterations of mesh optimization.
We observe that our proposed method, which improves the
worst element quality using the downhill simplex method,
outperforms the traditional method, which improves the
average element quality on the mesh. Our method improves
the worst element quality up to 54.6% compared with
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FIGURE 7: (a) Initial cylinder mesh (zoomed-in). This mesh has a very skinny element (red) with the element quality of 678.9248 enclosed by
the red circle. (b) Optimized cylinder mesh (zoomed-in) using the proposed approach. The downhill simplex method is used to improve the
worst element quality. The worst quality element has the worst element quality with 3.73. (c) Optimized cylinder mesh (zoomed-in) using
the traditional approach. The traditional approach focuses on improving the average element quality using the nonlinear conjugate gradient
method. The worst quality element has the worst element quality with 8.23.

the traditional mesh optimization method. Figure 7 shows
zoomed-in mesh, where the element with the worst element
quality is located. The initial mesh has the element with
the worst element quality in the middle (see a skinny red
element enclosed by the circle). This element is very skinny
and the element quality is poor with 678.9248 when the
inverse mean ratio (IMR) quality metric is used to measure
the element quality. Note that a smaller value indicates a
better element quality for the IMR quality metric and the
ideal element has value of one. After performing the down-
hill simplex method to improve the worst element quality,
these skinny triangles are eliminated and the worst element
quality becomes 3.73 (see Figure 7(b)). The traditional mesh
optimization method using NLCG also improves the worst
element quality but shows inferior performance compared
with the proposed method. The output mesh quality using
the proposed algorithm is 54.6% better than the output mesh
using the traditional method for the cylinder mesh. The
output mesh using the traditional method shows the worst
element quality with 10.25 (see red elements in Figure 7(c)).
Figures 6(c) and 6(d) show the number of inverted
elements on the mesh as a function of number of itera-
tions of mesh optimization. We observe that the proposed
mesh optimization method takes fewer iterations to untan-
gle inverted elements compared with the traditional mesh
optimization method. For these numerical experiments, the
untangling beta quality metric was used to eliminate inverted

elements on the mesh. When the initial mesh includes
inverted elements, these elements become the worst quality
elements on the mesh. For the hydrocephalus mesh, there
are several inverted elements, which are very skinny (see
Figure 8(a)). These elements are eliminated after performing
mesh optimization (see Figures 8(b) and 8(c)). Both output
meshes have no inverted elements, but the proposed method
results in better worst element qualities than the traditional
method.

4.4. Comparison with a Log-Barrier Interior Point Method.
We compare our derivative-free mesh optimization method
with a log-barrier interior point method (simply, log-barrier
method) [7]. The log-barrier method is a popular derivative-
free mesh optimization method, which focuses on improving
the worst element quality on the mesh. The log-barrier
method is flexible in that it can be used to untangle inverted
elements on the mesh [7]. Different from other mesh quality
optimization methods, it uses the log-barrier objective func-
tion to optimize meshes, which is defined as

F(u,t) =t+y210g(é—t),
i=1

1

(15)

where y and ¢ are auxiliary parameters and 7 is the number
of elements. A quantity ¢ is smaller than 1/g; and y is greater
than 0. The log-barrier method maximizes F with respect to
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FIGURE 8: (a) Initial hydrocephalus mesh (zoomed-in). This mesh has a very skinny inverted element (red) with the element quality of 551.5212
enclosed by the red circle. (b) Optimized cylinder mesh (zoomed-in) using the proposed approach. The downhill simplex method is used to
improve the worst element quality. After performing mesh optimization, all inverted elements are eliminated. (c) Optimized cylinder mesh
(zoomed-in) using the traditional approach. The traditional approach focuses on improving the average element quality using the nonlinear
conjugate gradient method. The optimized mesh does not have any inverted elements.
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FIGURE 9: Comparison of the worst element quality on the optimized
mesh between the proposed method and the log-barrier method.
The inverse mean ratio quality metric is used to measure the mesh
quality. A smaller value indicates a better mesh quality.

t until convergence. Readers refer to [7] for more details on
the log-barrier method. Figure 9 shows comparison between
the proposed method and the log-barrier method with
respect to the worst element quality on the mesh. Note that

some parameters of the log-barrier method could not be
fully optimized. We observe that both methods significantly
improve the worst element quality. However, the proposed
method improves the worst element quality up to 75.0%
better than the log-barrier method.

We also compare our derivative-free mesh optimization
method with the log-barrier method for the initially tangled
meshes (see Figures 4(c) and 4(d)). For the tangled airfoil
mesh shown in Figure 4(c), our method takes 3.1 seconds
to untangle inverted elements while the log-barrier method
takes 323.2 seconds to untangle inverted elements. For the
tangled hydrocephalus mesh shown in Figure 4(d), both
methods take approximately 3 seconds to untangle inverted
elements.

5. Conclusions

We have proposed a derivative-free mesh optimization algo-
rithm, which improves the worst element quality on the
mesh. We have formulated the mesh optimization problem
as a nonlinear optimization problem and solved it using a
downhill simplex (amoeba) method. The downhill simplex
method was able to solve the nonlinear optimization problem
by computing just a function value without needing a deriva-
tive or Hessian of the objective function. We have compared
our proposed method with the existing mesh optimization
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algorithms, in terms of the worst element quality and the
convergence time.

Numerical results show that our proposed algorithm
is more effective in improving the worst element quality
on the mesh compared with the one using the existing
mesh optimization algorithms. Specifically, the worst element
quality using the proposed algorithm is up to 75.0% better
than the existing mesh optimization methods. Moreover, the
proposed algorithm is more efficient and faster in eliminating
inverted elements on the mesh compared with the existing
mesh optimization algorithms.

In this paper, we have focused on improving only one
aspect of the mesh: element shape. We plan to apply our
derivative-free mesh optimization algorithm on simultane-
ously improving more than two aspects of the mesh. We also
plan to parallelize the downhill simplex algorithm using an
OpenMP library.
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