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The thickness of the steel strip is an important indicator of the overall strip quality. Deviations in thickness are primarily controlled
using the automatic gauge control (AGC) system of each rolling stand. At the last stand, the monitoring AGC system is usually
used, where the deviations in thickness can be directly measured by the X-ray thickness gauge device and used as the input
to the AGC system. However, due to the physical distance between the thickness detection device and the rolling stand, time
delay is unavoidably present in the thickness control loop, which can affect control performance and lead to system oscillations.
Furthermore, the parameters of the system can change due to perturbations from external disturbances. Therefore, this paper
proposes an identification and control scheme for monitoring AGC system that can handle time delay and parameter uncertainty.
The cross-correlation function is used to estimate the time delay of the system, while the system parameters are identified using a
recursive least squares method. The time delay and parameter estimates are then further refined using the Levenberg-Marquardt
algorithm, so as to provide the most accurate parameter estimates for the complete system. Simulation results show that, compared
with the standard Proportion Integration Differentiation (PID) controller approach, the proposed approach is not affected by
changes in the time delay and parameter uncertainties.

1. Introduction

The ever-increasing demand for product quality is the key
issue for today’s complex industrial processes. As a complex,
large-scale process, the hot strip mill process is a typical
example, where it is necessary to maintain deviations in strip
thickness to within an acceptable range, using automatic
control loops and subsystems. The final strip thickness is the
most important variable to consider in the thickness control
subsystem. The monitoring automatic gauge control (AGC)
approach is an efficient way to implement control for such
loops. However, difficulties with this approach include the
inevitable time delay [1] due to the physical distance between
the thickness detection device and the process, as well as
system uncertainties caused by changes in operating con-
ditions or external disturbances.These issues will lead to con-
trol performance degradation, which can lead to oscillations
in the overall process [2]. In order to ensure product quality

and guarantee that the rolling process is sustainable, reliable,
and stable, it is important to monitor the complete rolling
process in real time, especially for conditions that may affect
product quality and equipment safety [3, 4]. Therefore, in
order to improve the performance, it is necessary to accu-
rately identify the time delay and parameter uncertainties in
the monitoring AGC system.

Time-delay estimation is an area of active research that
seeks to develop efficient and accuratemethods for estimating
time delay from industrial data. Time-delay estimation can be
divided into four broad categories [5]: time-delay approxima-
tion methods, explicit time-delay parameter methods, area
and moment methods, and higher-order statistics methods.
Of these methods, the area and moment methods are most
commonly used for industrial data. A common area and
moment method is the cross-correlation function, which
can be used to estimate the delay between two signals [6].
The accuracy and speed of this approach make it very
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suitable for automated industrial implementation. Other
approaches include fitting estimated models to the data set to
backcalculate the optimal time delay [5, 7], using MATLAB’s
delay function to compute the values, using support vector
machines [7, 8], performing nonlinear optimization using the
steepest descentmethod [9], and using step tests to determine
the values.

Similarly, online, parameter estimation is a common
area of research that focuses on determining the system
parameters as the conditions of the system change. A com-
mon approach is to use a recursive method to estimate the
parameters after every new sample of information arrives.
Such an approach has the advantage that it will track the
process changes quickly. A common implementation of the
recursive method is the recursive least squares approach,
which uses a linear regression framework to update the para-
meter estimates [10–12]. Othermethods include optimization
methods using stochastic gradient descent methods [8],
implementing a variable search regions [13, 14], and various
neural network identification methods [15, 16].

Finally, various methods have been proposed to handle
time delays and uncertain process information, including the
Smith predictor [17–19], soft-sensor-based control [20, 21],
and robust fault-tolerant control [22–24]. Of these methods,
model-based control methods, such as the Smith predictor
and internalmodel control, can effectively compensate for the
influences of time delay, but they are not suitable for complex
systems with parameter uncertainties.

For the rolling mill process, first-principle models are
hard to determine precisely due to the complex nature and
harsh operating conditions of the process. For this reason,
model-based monitoring and control methods are hard to
implement for such complex systems. However, for many
complex industrial processes, process data is easy to obtain
and PID-based control is still widely used. Therefore, it is
advantageous to use data-driven identification [25] and con-
trol methods [26, 27] that can use the process data efficiently
while maintaining, as much as possible, the existing control
structure.

Therefore, the objectives of this paper are: to develop a
framework for handling uncertainties in the process model;
to investigate the use of the cross-correlation function and
recursive least squares to obtain parameter estimates, which
are then refined using nonlinear optimization, such as the
Levenberg-Marquardt method; and to test the proposed
results using a simulated hot steel rolling mill process.

2. Monitoring AGC System Analysis

2.1. General Description of AGC System. In hot/cold tandem
rolling mills, in terms of product quality, the key unit is
the finishing mill group, which consists of 5 mill stands in
cold rolling and 7 mill stands in hot rolling. The strip passes
through a roll gap in each stand and comes in contact with a
pair of work rolls that are driven by an electricmotor from the
main drive system and are supported by a pair of backup rolls
with a larger diameter. As shown in Figure 1, there are two
hydraulic reduction devices on each side of the top backup
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Figure 1: The mechanical structure of finishing mill stand.

roll, which indirectly screw down onto the rolled strip via
force transmission between the backup and work rolls.

The hydraulic reduction device is a strip gauge control
system that includes the mechanical parts such as servo
amplifier, servo-valve, hydraulic cylinder and electrical parts,
such as a digital controller and sensors.Thus, it can be defined
as a typical electromechanical-hydraulic coupling system
[28], also known as the automatic gauge control (AGC) sys-
tem. There are several control methods for the AGC system,
which can be divided into direct/indirect thickness measure-
ment control structures, which mainly depend on whether
the thickness deviation can be obtained by X-ray thickness
sensors or model calculations.

The monitoring AGC system is usually used at the last
rolling stand, where the thickness deviation can be directly
measured by the X-ray thickness gauge device and then
can be used as system output in thickness control loop.
However, due to the physical distance between the thickness
detection device and the rolling stand, a measurable time
delay is unavoidable, which can result in control performance
degradation that in extreme cases can lead to control system
instability.

2.2. Mathematical Model of the Monitoring AGC System.
Figure 2 shows the structure of the monitoring AGC system,
which consists of two control loops: a Hydraulic Automatic
Position Control (HAPC) inner loop and an X-ray thickness
monitoring outer loop. Figure 3 shows a block diagram of the
monitoring AGC system.

As shown in Figure 3, let the expected strip exit thickness
be ℎ0 and the actual exist thickness measured by the X-ray
thickness gauge be ℎ. Thus, the thickness error Δℎ defined
as ℎ0 minus ℎ is fed back to the monitoring AGC system to
adjust the roll gap to eliminate the thickness error.The output
from the PID controller is fed into the Hydraulic Automatic
Position Control (HAPC) system.
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Figure 2: The structure of the monitoring AGC system.
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Figure 3: Block diagram of the monitoring AGC system.

Since the AGC and HAPC systems contain many mech-
anical and electrical components that interact in a complex
manner, the resulting model can be quite complex. However,
since the inertia of most of the components is very small,
the transfer function of the HAPC closed-loop system can
be described by a simple first-order plus dead time (FOPDT)
model:

𝛿𝑆
𝛿𝑆𝑅 = 1

𝜏1𝑠 + 1 , (1)

where 𝛿𝑆𝑅 is the adjustment of the roll gap set point value
and 𝜏1 is the time constant of the HAPC system. Based on the
actual system, the relationship between the thickness and the
roll gap can be approximated as a FOPDT model [29]

𝛿ℎ
𝛿𝑆 = 𝑀

𝑀 + 𝑄 × 𝑒−𝜃𝑠
𝜏2𝑠 + 1 , (2)

where 𝛿ℎ represents the exit thickness, 𝑀 is the mill stand
stiffness, 𝑄 is the plastic stiffness coefficient of the strip, 𝜏2 is
the time constant, and 𝜃 is the time delay in the monitoring
AGC system. This time delay is a result of the distance

between the X-ray thickness gauge device and the last stand
and can be defined as

𝜃 = 𝐿𝑥
V𝑚

, (3)

where 𝐿𝑥 is the distance between the X-ray thickness gauge
device and the last stand and V𝑚 is the exit speed of the steel
at the last stand.

Using block diagram algebra, the transfer function for
the overall process can be written as

𝑦 (𝑠)
𝑢 (𝑠) = 𝛿ℎ

𝛿𝑆𝑅 = 𝛿𝑆
𝛿𝑆𝑅

𝛿ℎ
𝛿𝑆 = 𝐾 𝑒−𝜃𝑠

(𝜏1𝑠 + 1) (𝜏2𝑠 + 1) , (4)

where 𝐾 is the overall gain of the process, 𝑦 is the exit thick-
ness of the steel, and 𝑢 is the roll gap adjustment set point.

The process described by transfer function (4) is the
ideal process without any perturbations due to external
disturbances or internal uncertainties. Also, the time delay
can vary due to changes in steel characteristics. Therefore,
during the course of operation, it is important to monitor the
process and determine if the parameters have changed their
value. If so, it is necessary to update the values of the model
parameters in order to minimize plant-model mismatch.

3. Parameter Identification and
Control Algorithm

In order to perform both identification and control of the
process within the same structure, a novel 4-step approach is
used. Figure 4 shows a block diagram of the key components
of this approach. The 4 main steps are as follows:

(1) Time Delay Estimation. Using the available offline
input and output data, compute the time delay using
the cross-correlation method.

(2) Parameter Identification I (Recursive Least Square
(RLS) Method). Using the recursive least squares
method, identify the process parameters given the
time delay from Step (1).

(3) Parameter Identification II (Levenberg-Marquardt
Algorithm). Using the Levenberg-Marquardt (LM)
algorithm, obtain the refined model parameters
and time delay. The residual, that is, the difference
between the predicted output, 𝑦𝑚(𝑘), and the actual
online output, 𝑦(𝑘), is used as the objective function
in order to obtain a better estimate of the model para-
meters, including the time delay.

(4) Control Action Determination. Calculate the final
predictedmodel value, 𝑦(𝑘), using the best parameter
estimates from (3). Feed back this value to the
controller to implement the next control step.

Thus, without changing the existing PID controller, the
impact of time delay and parameter uncertainties on the
monitoring AGC system is resolved and better closed-loop
control is achieved.
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Figure 4: An identification and control scheme for the monitoring AGC system.

3.1. Process Model. In order to obtain a model that can easily
be used for recursive least squares analysis, the model given
by (4) will be discretized assuming a 1-second sampling rate.
Also, it will be assumed that an autoregressive error term
driven by Gaussian, white noise will be added to the process
to model the disturbances. The autoregressive component of
the model will have the same form as the denominator of
the process model; that is, the final model will be an auto-
regressive model with exogenous input (ARX) [25], which
can be written as

𝐴 (𝑧−1) 𝑦 (𝑘) = 𝑧−𝑑𝐵 (𝑧−1) 𝑢 (𝑘) + 𝜀 (𝑘) , (5)

where 𝑦(𝑘) is the process output, 𝑢(𝑘) is the process input,𝜀(𝑘) is a Gaussian white noise disturbance, and

𝐴 (𝑧−1) = 1 + 𝑎1𝑧−1 + 𝑎2𝑧−2 (𝑎0 = 1)
𝐵 (𝑧−1) = 𝑏1𝑧−1 + 𝑏2𝑧−2 (𝑏0 = 0) . (6)

𝑎1, 𝑎2, 𝑏1, and 𝑏2 are the parameters to be identified and 𝑑 is
the discrete time delay. It should be noted that the discrete
and continuous time delays are related by

𝑑 = ⌊ 𝜃
𝜏𝑠 ⌋ , (7)

where 𝜏𝑠 is the sampling rate and ⌊⋅⌋ is the round-down func-
tion.

It should be noted that ARX models are one of the few
classes of discrete models that can be directly solved using
linear regression [30]. This implies that it will be possible
to use recursive least squares to estimate the parameter esti-
mates.

3.2. Time-Delay Estimation Using the Cross-Correlation
Method. The cross-correlation method can be used to obtain

the delay parameter accurately [7, 25]. In this method, the
cross-correlation between the input and output signals is
computed for different lags between the signals in order to
determine the time delay.

Given two signals 𝑢(𝑘) and 𝑦(𝑘), the cross-correlation
between 𝑢 and 𝑦 at a lag of 𝜏, denoted by 𝑅𝑢𝑦(𝜏), is defined as
[25]

𝑅𝑢𝑦 (𝜏) = 1
𝑁
𝑁∑
𝑘=1

𝑢 (𝑘) 𝑦 (𝑘 + 𝜏) . (8)

In order to determine the best value, 𝜏 will be computed
for a series of values ranging from 1 to 𝑛, where 𝑛 ⋘𝑁. The first nonzero lag will correspond to the time delay.
In order to improve the accuracy of the computation, the
cross-correlation between the signals will be computed in the
Fourier (or frequency) domain [31]. Furthermore, it can be
noted that using the frequency domain for determining the
time delay is common in signal processing. Algorithm 1 gives
the procedure used for estimating the time delay.

Algorithm 1 (algorithm for estimating the time delay using the
cross-correlation method).
Step 0. Get the offline input, 𝑢(𝑘), and output, 𝑦(𝑘), data.
Step 1. Compute the discrete Fourier transform of 𝑢(𝑘) and𝑦(𝑘).
Step 2. Calculate the cross-correlation function between the
transformed signals as a function of different lags.

Step 3. Compute the inverse discrete Fourier transform of the
cross-correlation function and find the discrete time point 𝑘
corresponding to its maximum. The estimated time delay, 𝜃,
would then be

𝜃 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑘 − 𝑁
2 + 1󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜏𝑠. (9)
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3.3. Parameter Estimation I: Recursive Least Square (RLS)
Method. Since in the monitoring AGC system, sensors and
the thickness gauge device can provide real-time process
information, it is possible to use the recursive least square
(RLS) method to update the system parameters.

In order to use the RLS method, it is first necessary to
cast themodel given by (5) into the standard linear regression
problem [25]:

𝑦 (𝑘) = 𝜑𝑇 (𝑘) 𝛽 (𝑘) + 𝜀 (𝑘) , (10)

where the vector, 𝜑𝑇(𝑘), is defined as

𝜑𝑇 (𝑘)
= [𝑦 (𝑘 − 1) , 𝑦 (𝑘 − 2) , . . .

𝑢 (𝑘 − 1 − 𝑑) , 𝑢 (𝑘 − 2 − 𝑑)] , (11)

the parameter vector, 𝛽(𝑘), is defined as

𝛽 (𝑘) = [𝑎1, 𝑎2, 𝑏1, 𝑏2]𝑇 , (12)

and 𝜀(𝑘) is a Gaussian signal.
The RLS method can be written as [10]

𝛽 (𝑘) = 𝛽 (𝑘 − 1) + 𝐾 (𝑘) [𝑦 (𝑘) − 𝜑𝑇 (𝑘) 𝛽 (𝑘 − 1)] , (13)

where 𝐾(𝑘) is the gain computed using

𝐾 (𝑘) = 𝑃 (𝑘 − 1) 𝜑 (𝑘)
𝜆 + 𝜑𝑇 (𝑘) 𝑃 (𝑘 − 1) 𝜑 (𝑘) . (14)

𝜆 is the forgetting factor and 𝑃(𝑘) is the inverse of the regress
or matrix, which can be recursively computed using

𝑃 (𝑘) = 𝜆−1 [𝐼 − 𝐾 (𝑘) 𝜑𝑇 (𝑘)] 𝑃 (𝑘 − 1) (15)

The forgetting factor, 𝜆, represents the weight assigned
to previous errors. The smaller the value, the greater the
influence of the current values on the final estimate. In the
proposed approach, 𝜆 = 1 since it is desired to implement a
standard, linear regression algorithm without any weighting
for past values; that is, all past errors are to be considered
equally.

Algorithm 2 summarizes the steps for implementing the
RLS method in the proposed framework.

Algorithm 2 (estimating the process parameters of the moni-
toring AGC system using the recursive least square method).

Step 0. Set the initial values for 𝛽(0) and 𝑃(0).
Step 1. Get the offline data for input, 𝑢(𝑘), and output, 𝑦(𝑘).
Step 2. Compute 𝛽(𝑘) using (13) and update 𝐾(𝑘) and 𝑃(𝑘)
using (14) and (15).

Step 3. Increase 𝑘 by 1, and go to Step 1 until 𝛽(𝑘) has
converged.

3.4. Parameter Estimation II: Levenberg-Marquardt (LM)
Algorithm. The Levenberg-Marquardt (LM) algorithm is the
most widely used nonlinear least squares algorithm, which
combines the advantages of both the gradient descent and the
Gauss-Newton methods.

Consider the general least squares minimization problem
that can be formulated as

min 𝑓 (𝑥⃗) = 0.5∑
𝑘

𝑟2𝑘 (𝑥⃗) , (16)

where 𝑟 is the residual and 𝑥 is a vector of size 𝑛. Let the
residual vector, 𝑟(𝑥), be defined as

⃗𝑟 (𝑥⃗) = (𝑟1 (𝑥⃗) , 𝑟2 (𝑥⃗) , . . . , 𝑟𝑚 (𝑥⃗)) (17)

then the objective function, 𝑓(𝑥), can be rewritten as

𝑓 (𝑥⃗) = 0.5 ‖ ⃗𝑟 (𝑥⃗)‖2 . (18)

Let the Jacobian matrix, 𝐽, of 𝑟 with respect to 𝑥 be defined as

𝐽𝑗𝑖 = 𝜕𝑟𝑗
𝜕𝑥𝑖 , (19)

where 𝑗 = 1, 2, . . . , 𝑚 and 𝑖 = 1, 2, . . . , 𝑛. It follows that the
gradient of 𝑓(𝑥), denoted by ∇𝑓, can be written as

∇𝑓 (𝑥⃗) = 𝑚∑
𝑗=1

𝑟𝑗 (𝑥⃗) ∇𝑟𝑗 (𝑥⃗) − 𝐽 (𝑥⃗)𝑇 ⃗𝑟 (𝑥⃗) (20)

and the Hessian, denoted by ∇2𝑓, is given as

∇2𝑓 (𝑥⃗) = 𝐽 (𝑥⃗)𝑇 𝐽 (𝑥⃗) + 𝑚∑
𝑗=1

𝑟𝑗 (𝑥⃗) ∇2𝑟𝑗 (𝑥⃗) . (21)

When the residuals are small or the gradient of 𝑟𝑗 is small,
then the second term in (21) reduces to zero and the Hessian
can be written as simply

∇2𝑓 (𝑥⃗) = 𝐽 (𝑥⃗)𝑇 𝐽 (𝑥⃗) . (22)

In order to obtain a solution for the optimization problem,
let us consider a second-order Taylor series expansion of ∇𝑓
around 𝑥0. That is,

∇𝑓 (𝑥⃗) = ∇𝑓 (𝑥⃗0) + (𝑥⃗ − 𝑥⃗0) ∇2𝑓 (𝑥⃗0) . (23)

Setting (21) to zero yields

𝑥⃗𝑖+1 − 𝑥⃗𝑖 = (∇2𝑓 (𝑥⃗𝑖))−1 ∇𝑓 (𝑥⃗𝑖) . (24)

After substitution of (22) into (24), then Hessian matrix
can be solved. However, such a näıve implementation can
encounter numerical stability problems. Therefore, the Lev-
enberg-Marquardt algorithm replaces the Hessian by

𝐽𝑇𝐽 + 𝜆 diag (𝐽𝑇𝐽) , (25)
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Table 1: Parameters of the monitoring AGC system.

Parameter Value Descriptions
𝑀 5,800 kN/mm Mill stand stiffness
𝑄 31,006 kN/mm Plastic stiffness coefficient of strip
𝜏1 0.01 s Time constant of the HAPC system
𝜏2 0.5 s Time constant of the first-order inertia
𝐿𝑚 6m Distance between the X-ray thickness gauge device and the last stand
V𝑚 12m/s Exit speed of the steel at the last stand
ℎ0 2.0mm Thickness set point
𝜏𝑠 0.1 s Sampling time

where diag is the function that takes the diagonal entries of
the matrix and 𝜆 is a tuning parameter. Thus, (24) becomes

𝑥⃗𝑖+1 − 𝑥⃗𝑖
= (𝐽𝑇 (𝑥⃗) 𝐽 (𝑥⃗) + 𝜆 diag (𝐽𝑇 (𝑥⃗) 𝐽 (𝑥⃗)))−1 ∇𝑓 (𝑥⃗𝑖) . (26)

In the Levenberg-Marquardt algorithm, the tuning parameter
is automatically updated based on the size of the current and
previous errors. If the error increases, increase the value of 𝜆
by 𝛾 and try again. If the error decreases, decrease the value
of 𝜆 by 𝛾 and keep the current values and perform a new
iteration. New iterations are computed until the error stops
decreasing or some relative tolerance, 𝜀, has been reached.

In the problem at hand, it is desired to obtain optimal
parameter and time-delay values by minimizing the residuals
of the process; that is,

𝐽 (𝛽, 𝑘) = ∑ 𝑒2 (𝛽, 𝑘)
𝑒 (𝛽, 𝑘) = 𝑦 (𝑘) − 𝑦𝑚 (𝛽, 𝑘) , (27)

where 𝑒(𝛽, 𝑘) is the residual between the predicted output,𝑦𝑚(𝛽, 𝑘), and the actual output 𝑦(𝑘). The implementation
of the LM algorithm for the proposed problem is shown as
Algorithm 3.

Algorithm 3 (refining the process parameters and time delay
of the monitoring AGC system using the Levenberg-Mar-
quardt algorithm).
Step 0. Set the initial values for the tolerance, 𝜀, and the values
of 𝛾 and 𝜆.
Step 1. Calculate the predicted output and the residual vector𝑟, using the online values of 𝑢(𝑘) and 𝑦(𝑘).
Step 2. Calculate the Jacobian matrix, 𝐽, using (19).
Step 3. Compute 𝑥𝑖+1 − 𝑥𝑖 using (26). Compute the current
value of the objective function using (27).

Step 4. Check if 𝐽(𝑥(𝑘)) < 𝜀. If yes, stop the algorithm. If no,
let 𝑥(𝑘+1) be the new weight and threshold and calculate the
target performance function as 𝐽(𝑥(𝑘+1)) = 𝑥(𝑘+1)𝐽(𝑥(𝑘)).
Step 5. Check if 𝐽(𝑥(𝑘+1)) < 𝐽(𝑥(𝑘)). If yes, let 𝑘 = 𝑘 + 1 and𝜆 = 𝜆/𝛾 and go to Step 1. If no, do not update the weights

𝑥(𝑘+1), let 𝑥(𝑘+1) = 𝑥(𝑘) and 𝜆 = 𝛾𝜆, and go to Step 3 until
𝐽(𝑥(𝑘)) < 𝜀.
3.5. Control Action Implementation. Once the LM algorithm
has optimized the residuals between the predicted output and
the actual exit thickness to obtain the time delay and the
systemparameters which are close to the real system, the real-
time estimated thickness without time delay can be obtained.
This real-time estimated thickness can then be fed back to the
controller.

This method greatly reduces the impact of time delay
on the system. Moreover, the LM algorithm can identify the
system parameters online, which results in better control
performance for monitoring AGC system.

4. Case Study

To verify the feasibility and effectiveness of the proposed
algorithm for handling parameter uncertainties and time
delay in the monitoring AGC system, in this section, a case
study is presented based on an actual finishing mill. All
parameters, shown in Table 1, are based on actual industrial
parameters for a finishing mill.

4.1. Time-Delay Estimation. Using the rolling process input/
output data, an initial estimate of the time delay can be
obtained using the cross-correlation function method. Fig-
ure 5 shows the process data, while Figure 6 shows the cross-
correlation function for the given data.

As shown in Figure 6, the cross-correlation function
reaches a maximum around 13,953 samples on a total length
of 27,920 samples. The sampling time is 0.1 s. Using (3), the
time delay can be estimated as 0.5 s. Note that using 𝐿𝑚, V𝑚,
and (3) gives a similar result, suggesting that the time delay
obtained using the cross-correlation method is accurate.

4.2. Initial Parameter Estimation Using RLS. Once the time
delay has been preliminarily estimated using the cross-corre-
lation method, an initial estimate of the parameters can be
obtained using RLS. The initial value for 𝑃, 𝑃(0), is set as106𝐼 and 𝜃(0) = [0, 0, 0, 0]. Figure 7 shows the estimated
parameters using RLS as a function of time and their con-
vergence speeds. As shown in Figure 7, the estimated param-
eters are 𝑎1 = −0.8188, 𝑎2 = 0.0000, 𝑏1 = 0.0259, and 𝑏2 =0.0026. These values and the estimated time delay are then



Journal of Control Science and Engineering 7

Control input u(k)

×104
21 30 2.50.5 1.5

Samples

0

5

10

15

u
(k
)

(a)

Output thickness y(k)

×104
0.5 1 1.5 2 2.5 30

Samples

−1

0

1

2

3

y
(k
) (

m
m

)

(b)
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Figure 8: Refined process parameters using the LM algorithm.

used as the initial guess for the final parameter estimation
stage using the LM algorithm.

4.3. Final Parameter Estimation. Since, in the actual process,
the parameters of the system change, it is necessary to
update the system using the LM algorithm to obtain accurate
parameter estimates of the current system. For the purposes
of this simulation, a disturbance signal is added at the 5,000th
sample.

The parameter values are set as follows: threshold, 𝜀 = 0.1,
proportion coefficient, 𝜆 = 1, and 𝛾 = 0.5. The initial values
of the time delay and parameter values are obtained using the
cross-correlation method and RLS.

Figure 8 shows the evolution of the parameters as a
function of sample time. Firstly, it can be noted that the
parameter estimates converge to a given value. Secondly, it
can be seen that the proposed method is able to update the
process parameters as soon as the change has occurred. At
the 10,000th sample, the new process values are 𝑎1 = −1.2242,𝑎2 = 0.3128, 𝑏1 = 0.0245, and 𝑏2 = −0.0105.

Figures 9 and 10 show the comparison between the
measured and estimated thickness for 10,000 samples. It is
quite clear that the estimated thickness, 𝑦𝑚(𝑘), tracks well the
actual output, 𝑦(𝑘), as shown in Figure 11. These figures all
show the effectiveness of the proposed overall method.

4.4. Control Implementation. The final step is to consider the
complete system and see its impact on the overall control
structure.

Figures 12 and 13 show a comparison of the proposed
system with the standard PID control. It can be seen that
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Figure 9: Measured and estimated output 𝑦(𝑘).

the PID control results experiencemore and larger deviations
than the proposed system.

Since the process model changes at the 5,000th sample, it
is convenient to consider the performance of the controllers
before and after this point. For the PID controller, the
variance of the output is 0.0274 before 5,000 and 0.0301 after.
As expected, the variance has increased, since the controller is
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Figure 11: Comparison between 𝑦(𝑘) and its estimate, 𝑦𝑚(𝑘).

no longer properly designed given the changes in the overall
system. This mismatch will lead to an increase in the output
variance.

For the proposed new approach, the output variance
before 5,000 is 0.0218 and 0.0165 after. Firstly, it can be
noted that the variance in the first part is lower compared
with the PID control loop, which implies that, even in the
best design conditions, there still exists some plant-model
mismatch that the new approach can identify to improve
the overall performance. Furthermore, in the second part,
the performance of the proposed new approach is not only
lower than in the first case but also much smaller than the
PID variance. This shows the key strength of the proposed
new approach that it can effectively handle new conditions
without requiring any external intervention.
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Figure 13: Detailed comparison between proposed algorithm (red)
and PID control (blue).

Thus, the simulation results show that the proposed
approach can effectively monitor the changes of the system
parameters and time delay, separate the time delay from the
actual data, and feed back the thickness without time delay to
the closed-loop, which can greatly reduce the impact of time-
delay and parameter uncertainty on themonitoringAGC sys-
tem.This implies that the proposed system implements better
control than the standard PID approach. This improvement
can be attributed to the fact that the PID approach cannot take
into consideration parameters uncertainty when the system
changes, so that the deviations with PID control are larger
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than when using the proposed algorithm, where such factors
are taken into account.

5. Conclusions

This paper proposes a new identification and control frame-
work for the monitoring AGC system in the rolling process.
The framework consists of three steps: time-delay estimation
using the cross-correlation function; initial parameter esti-
mation using recursive least squares; and refined parameter
estimation using the LM algorithm. The final time delay and
model parameters are then used for controlling the process.
Simulations based on actual values from a steel rolling mill
show that the proposed framework provides better control
than the traditional PID control-based approach. Future
work will consider examining additional estimationmethods
in order to determine the best parameters and develop a
method to combine fault monitoring with parameter iden-
tification and control.
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