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We address the problem of stochastic attractor and boundedness of a class of switched Cohen-Grossberg neural networks (CGNN)
with discrete and infinitely distributed delays. With the help of stochastic analysis technology, the Lyapunov-Krasovskii functional
method, linear matrix inequalities technique (LMI), and the average dwell time approach (ADT), some novel sufficient conditions
regarding the issues of mean-square uniformly ultimate boundedness, the existence of a stochastic attractor, and the mean-square
exponential stability for the switched Cohen-Grossberg neural networks are established. Finally, illustrative examples and their
simulations are provided to illustrate the effectiveness of the proposed results.

1. Introduction

In the last few decades, theoretical and applied researches of
artificial neural networks have been the newworldwide focus.
Someof the reasons for this are due to the successful hardware
implementations and their various applications, such as clas-
sification, associative memories, parallel computation, opti-
mization, and signal processing [1, 2]. It is recognized that
such applications of neural networks depend heavily on some
dynamic behaviors, such as stability properties, periodic
oscillatory behavior, and attractor and boundedness (see [3–
16] and references therein).

Since the seminal work by Cohen and Grossberg [17],
Cohen-Grossberg neural networks have been intensively
studied [2, 18–22]. During hardware implementation, time
delays do exist due to the finite switching speed of the ampli-
fiers and communication time; it is important to incorporate
delays into the neural networks. Generally speaking, there
are two kinds of delays, discrete delays and distributed delays
[2, 16, 23]. The utilization of discrete delays in models of
delayed feedback provides a good approximation in simple
circuits consisting of a small number of cells.When the neural

networks have a spatial extent due to the presence of a mul-
titude of parallel pathways with a variety of axon sizes and
lengths, it is necessary to incorporate continuously distrib-
uted delays. The distributed delay includes finite delay and
infinite delay [2, 5, 18, 24].

In real nervous systems, synaptic transmission is a noisy
process brought about by random fluctuations from the
release of neurotransmitters and other probabilistic causes
[19, 25–27]. It is well known that for stochastic neural net-
works, it is rather difficult to analyze their dynamic properties
due to the introduction of noise. Such studies are however
important for understanding the dynamic characteristics of
neuron behavior in stochastic environments. For instance,
during the implementation of Kalman filter training, stochas-
tic neural networks characterized as zero-mean white noise
have been successfully employed [2].

On the other hand, neural networks are complex and
large-scale nonlinear dynamics; during hardware implemen-
tation, the connection topology of networks may change
very quickly and link failures or new creations in net-
works often bring about switching connection topology [2].
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To obtain a deep and clear understanding of the dynamics of
this complex system, one of the usual ways is to investigate
the switched neural network. As a special class of hybrid
systems, switched neural network systems are composed of
a family of continuous-time or discrete time subsystems and
a rule that orchestrates the switching among the subsystems
[28]. In general, the switched rule is a piecewise constant
function dependent on the state or time. The logical rule
that orchestrates switching between these subsystems gener-
ates switching signals [29]. Recently, switched systems have
numerous applications in the control of mechanical systems,
the automotive industry, aircraft and air traffic control,
switching power converters, and many other fields [30]. In
[28], Huang et al. are the first to investigate the robust stability
of switched Hopfield neural networks with time-varying
delays by an arbitrary switched rule. The average dwell time
approach provided an effective tool to study the stability
of switched systems. Wu et al. used average dwell time
approach to analyze the exponential stability of continuous-
time switched delayed neural networks in [31]. In [27], the
average dwell time and LMI method have been utilized to
discuss the exponential synchronization of switched stochas-
tic competitive neural networks with mixed delays. In
addition, [32] has focused on the delay-dependent global
robust asymptotic stability problem of uncertain switched
Hopfield neural networks (USHNNs) with discrete interval
and distributed time-varying delays and time delay in the
leakage term. Moreover, parametric uncertainty which often
breaks the stability of systems can be commonly encountered
due to modeling inaccuracies or changes in the environ-
ment of the model. To deal with the difficulties brought
about by uncertainty, exponential stability analysis and 𝐻

∞

control of different uncertain systems have received great
research attention [33].Moreover, the parametric uncertainty
is assumed to be norm-bounded in [34]. Unfortunately, up
to now, few researchers have considered the mean-square
uniformly ultimate boundedness and stochastic attractor for
switched SCGNNwith discrete delays and infinite distributed
delays.

However, these available literatures mainly consider the
stability property of switching neural networks. In fact, except
for the stability property, boundedness and attractor are also
the foundational concepts of dynamical neural networks,
which play important roles in the investigation of the unique-
ness of the equilibrium point (periodic solutions), global
asymptotic stability, global exponentially stability, and the
synchronization [35]. To the best of the author’s knowledge,
few researchers have considered the uniformly ultimate
boundedness and attractors for switchedCGNNwith discrete
delays and distributed delays.

Inspired by the above discussions, the objects of this paper
are to study the mean-square uniformly ultimate bound-
edness and stochastic attractor for switched SCGNN with
discrete delays and infinitely distributed delays by employ-
ing stochastic analysis technology, the Lyapunov-Krasovskii
functional method, the linear matrix inequalities (LMI)
technique, and the average dwell time approach (ADT).
In addition, the parametric uncertainty is considered and
assumed to be norm-bounded.

As is well known, mean-square uniformly ultimate
boundedness (MSUUB) conditions are derived in terms
of linear matrix inequalities (LMIs), which can be easily
calculated by the MATLAB LMI control toolbox. All of
the above mentioned reasons motivate us to investigate the
problems of theMSUUB and stochastic attractor for switched
SCGNN in this paper. Numerical examples are provided to
demonstrate the feasibility and effectiveness of the proposed
criteria.

The rest of this paper is organized as follows. Some
preliminaries are given in Section 2. We present some basic
definitions and notations, as well as some lemmas needed
in later sections. In Section 3, we present some sufficient
conditions of MSUUB and stochastic attractor for switched
stochastic CGNN. In Section 4, an example is presented to
illustrate the effectiveness of the proposed approach. The
conclusions are summarized in Section 5.

Notations. The superscript “𝑇” stands for matrix transpo-
sition; 𝑅𝑛 denotes the 𝑛-dimensional Euclidean space; the
notation 𝑃 > 0 means that 𝑃 is real symmetric and positive-
definite; 𝐼 and 𝑂 represent the identity matrix and a zero
matrix, respectively; diag{⋅ ⋅ ⋅ } stands for a block-diagonal
matrix; and 𝜆min(𝑃) (𝜆max(𝑃)) denotes the minimum (maxi-
mum) eigenvalue of symmetric matrix𝑃. In symmetric block
matrices or longmatrix expressions, a (∗) is used to represent
a term that is induced by symmetry.

2. Preliminaries and Problem Formulation

The Itô’s formula plays a key role in the dynamic analysis of
stochastic systems. To facilitate understanding, some related
results are cited here (see [36] for details). For a general
stochastic system 𝑑𝑥(𝑡) = 𝑓(𝑥(𝑡), 𝑡)𝑑𝑡 + 𝑔(𝑥(𝑡), 𝑡)𝑑𝑤(𝑡) on
𝑡 ≥ 𝑡

0
with initial value 𝑥(𝑡

0
) = 𝑥

0
∈ 𝑅

𝑛, where 𝑤(𝑡)
is 𝑚-dimensional Brownian motion defined on (Ω,F,P),
𝑓 : 𝑅

𝑛

× 𝑅
+

→ 𝑅
𝑛, and 𝑔 : 𝑅𝑛

× 𝑅
+

→ 𝑅
𝑛×𝑚. Let C1,2

(𝑅
𝑛

×

𝑅
+

; 𝑅
+

) be the family of all nonnegative functions which are
continuous once differentiable in 𝑡 and twice differentiable in
𝑥. For 𝑉 ∈ C1,2

(𝑅
𝑛

× 𝑅
+

; 𝑅
+

), define an operator L𝑉 from
(𝑅

𝑛

× 𝑅
+

; 𝑅
+

) to 𝑅 by

𝑑𝑉 =L𝑉𝑑𝑡 +
𝜕𝑉

𝜕𝑥
𝑔 (𝑥 (𝑡) , 𝑡) 𝑑𝜔 (𝑡) ,

L𝑉 (𝑥 (𝑡) , 𝑡)

= 𝑉
𝑡
(𝑥 (𝑡) , 𝑡) + 𝑉

𝑥
(𝑥 (𝑡) , 𝑡) 𝑓 (𝑥 (𝑡) , 𝑡)

+
1

2
tra [𝑔𝑇 (𝑥 (𝑡) , 𝑡) 𝑉

𝑥𝑥
(𝑥 (𝑡) , 𝑡) 𝑔 (𝑥 (𝑡) , 𝑡)] ,

(1)

and 𝑉
𝑡
(𝑥(𝑡), 𝑡) = 𝜕𝑉(𝑥(𝑡), 𝑡)/𝜕𝑡, 𝑉

𝑥𝑥
(𝑥(𝑡), 𝑡) = (𝜕

2

𝑉(𝑥(𝑡), 𝑡)/

𝜕𝑥
𝑖
𝜕𝑥

𝑗
)
𝑛×𝑛

, and 𝑉
𝑥
(𝑥(𝑡), 𝑡) = (𝜕𝑉(𝑥(𝑡), 𝑡)/𝜕𝑥

1
, . . . , 𝜕𝑉(𝑥(𝑡),

𝑡)/𝜕𝑥
𝑛
).

In practical systems, the neural network models are
disturbed by environmental noises. Therefore, in this paper,
we will consider the stochastic Cohen-Grossberg neural
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networks with mixed time delay described by the following
stochastic nonlinear integrodifferential equations:

𝑑𝑥
𝑖
(𝑡) = −𝛼̂

𝑖
(𝑥

𝑖
(𝑡)) [

[

𝛽̂
𝑖
(𝑥

𝑖
(𝑡)) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡))

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑗
(𝑡)))

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
∫

𝑡

−∞

𝑘
𝑖𝑗
(𝑡 − 𝑠) 𝑓

𝑗
(𝑥

𝑗
(𝑠)) 𝑑𝑠 − 𝐽

𝑖

]

]

𝑑𝑡

+

𝑛

∑

𝑗=1

𝜎
𝑖𝑗
(𝑡, 𝑥

𝑖
(𝑡) , 𝑥

𝑖
(𝑡 − 𝜏

𝑗
(𝑡))) 𝑑𝑤

𝑗
(𝑡) ,

𝑖 = 1, . . . , 𝑛.

(2)

System (2) for convenience can be rewritten as the following
vector form:

𝑑𝑥 (𝑡) = −𝛼̂ (𝑥 (𝑡)) [𝛽̂ (𝑥 (𝑡)) − 𝐴𝐹 (𝑥 (𝑡))

− 𝐵𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

− 𝐶∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝐹 (𝑥 (𝑠)) 𝑑𝑠 − 𝐽] 𝑑𝑡

+ 𝜎 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑑𝑤 (𝑡) ,

(3)

where 𝐴, 𝐵, 𝐶 are known constant matrices with appropriate
dimensions, 𝑥(𝑡) = [𝑥

1
(𝑡), . . . , 𝑥

𝑛
(𝑡)]

𝑇

∈ 𝑅
𝑛 is the neural

state vector associated with the 𝑛 neurons at time 𝑡, 𝛼̂(𝑥(𝑡)) =
diag[𝛼̂

1
(𝑥

1
(𝑡)), . . . , 𝛼̂

𝑛
(𝑥

𝑛
(𝑡))] ∈ 𝑅

𝑛×𝑛 represents an amplifi-
cation function, 𝛽̂(𝑥(𝑡)) = [𝛽̂

1
(𝑥

1
(𝑡)), . . . , 𝛽̂

𝑛
(𝑥

𝑛
(𝑡))] ∈ 𝑅

𝑛×𝑛

denotes the behavior function, 𝐹(𝑥(𝑡)) = [𝐹
1
(𝑥

1
(𝑡)), . . . ,

𝐹
𝑛
(𝑥

𝑛
(𝑡))]

𝑇 is the neuron activation functions, 𝐾(𝑡 − 𝑠) =
diag[𝑘

1
(𝑡−𝑠), 𝑘

2
(𝑡−𝑠), . . . , 𝑘

𝑛
(𝑡−𝑠)], 𝜏(𝑡) = [𝜏

1
(𝑡), . . . , 𝜏

𝑛
(𝑡)]

𝑇,
𝐽 = [𝐽

1
, . . . , 𝐽

𝑛
]
𝑇 is the constant external input vector, 𝜎(𝑡) =

(𝜎
𝑖𝑗
(𝑡))

𝑛×𝑛
is the diffusion coefficient matrix, and 𝑤(𝑥(𝑡)) =

[𝑤
1
(𝑥

1
(𝑡)), . . . , 𝑤

𝑛
(𝑥

𝑛
(𝑡))]

𝑇 is an 𝑛-dimension Brownian
motion satisfying 𝐸{𝑑𝜔(𝑡)} = 0, 𝐸{𝑑𝜔2

(𝑡)} = 𝑑𝑡 and defined
on a complete probability space (Ω,F,P) with a natural
filtration {F

𝑡
}
𝑡≥0

generated by {𝑤(𝑠) : 0 ≤ 𝑠 ≤ 𝑡}, where
we associate Ω with the canonical space generated by 𝑤(𝑡)
and denote byF the associated 𝜎-algebra generated by {𝑤(𝑡)}
with the probability measureP.

The discrete time-varying delays 𝜏(𝑡) satisfy

0 ≤ 𝜏
𝑚
≤ 𝜏 (𝑡) ≤ 𝜏

𝑀
< +∞,

𝜏̇ (𝑡) < 𝜇,

(4)

and the delay kernel 𝑘
𝑗
is a real valued continuous function

defined on [0, +∞] and satisfies; for each 𝑗,

∫

∞

0

𝑘
𝑗
(𝑠) 𝑑𝑠 = 1. (5)

Moreover, there exist 𝜄 > 0 and matrix 𝐾 = diag{𝑘
1
(𝜄),

𝑘
2
(𝜄), . . . , 𝑘

𝑛
(𝜄)} > 0,

∫

∞

0

𝑘
𝑗
(𝑠) 𝑒

𝜄𝑠

𝑑𝑠 = 𝑘
𝑗
(𝜄) . (6)

As usual, the initial conditions associated with system (3)
are given in the form

𝑥 (𝑡) = 𝜑 (𝑡) , − ∞ < 𝑡 ≤ 0, (7)

where the initial value function 𝜑 ∈ 𝐿𝑏F0([−∞, 0], 𝑅
𝑛

) is the
family of all F

0
-measurable 𝐶([−∞, 0]; 𝑅𝑛

)-valued random
variables satisfying sup

−∞≤𝑠≤0
𝐸‖𝜑(𝑠)‖

2

< ∞, in which 𝐸
denotes expectations with respect to P and 𝐶([−∞, 0])

denotes the family of all continuous𝑅𝑛-valued functions 𝜑(𝑠)
on [−∞, 0].

We can describe the switched stochastic Cohen-Gross-
berg neural networks as follows:

𝑑𝑥 (𝑡) = −𝛼̂ (𝑥 (𝑡)) [𝛽̂ (𝑥 (𝑡)) − 𝐴
𝜎(𝑡)
𝐹 (𝑥 (𝑡))

− 𝐵
𝜎(𝑡)
𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

− 𝐶
𝜎(𝑡)
∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝐹 (𝑥 (𝑠)) 𝑑𝑠 − 𝐽] 𝑑𝑡

+ 𝜎 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔 (𝑡) ,

(8)

where the function 𝜎(𝑡) : [0, +∞) → 𝑁 = {1, 2, . . . , 𝑁} is the
switching signal, which is deterministic, piecewise constant,
and right continuous.

To continue our discussion, we give the following basic
assumptions.

(H1) We assume there exist constants 𝛿−
𝑗
and 𝛿+

𝑗
, 𝑖 = 1,

2, . . . , 𝑛, such that

𝛿
−

𝑗
≤

𝑓
𝑗
(𝑥) − 𝑓

𝑗
(𝑦)

𝑥 − 𝑦
≤ 𝛿

+

𝑗
, ∀𝑥, 𝑦 ∈ 𝑅, 𝑥 ̸= 𝑦. (9)

(H2) There exist positive constants 𝛼
𝑖
, 𝛼

𝑖
, for all 𝑖 = 1,

2, . . . , 𝑛, such that

𝛼
𝑖
≤ 𝑎

𝑖
(𝑥

𝑖
(𝑡)) ≤ 𝛼

𝑖
. (10)

(H3) There exist positive constants 𝑏
𝑗
, such that

𝑥
𝑗
(𝑡) 𝛽̂

𝑗
(𝑥

𝑗
(𝑡)) ≥ 𝑏

𝑗
𝑥
2

𝑗
(𝑡) . (11)

(H4) We assume that the stochastic term satisfies 𝜎(𝑡, ⋅, ⋅) :
𝑅
+

× 𝑅
𝑛

× 𝑅
𝑛

→ 𝑅
𝑛×𝑚

(𝜎(𝑡, 0, 0) = 0) which is
locally Lipschitz continuous and satisfies the linear
growth condition as well. Moreover, 𝜎(𝑡, ⋅, ⋅) satisfies
the following condition:

trace [𝜎𝑇 (𝑡, 𝑥, 𝑦) 𝜎 (𝑡, 𝑥, 𝑦)]

≤ 𝑥
𝑇

Π
𝑇

1
Π

1
𝑥 + 𝑦

𝑇

Π
𝑇

2
Π

2
𝑦,

(12)

whereΠ
𝑖
, (𝑖 = 1, 2) are known constant matrices with

appropriate dimensions.
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(H5) The Δ𝐴
𝑖
(𝑡), Δ𝐵

𝑖
(𝑡), and Δ𝐶

𝑖
(𝑡) are unknownmatrices

that represent the time-varying parameter uncertain-
ties and are assumed to be of the following form:

Δ𝐴
𝑖
(𝑡) = 𝐻

𝐴𝑖
𝐺
𝐴𝑖
(𝑡) 𝐸

𝐴𝑖
,

Δ𝐵
𝑖
(𝑡) = 𝐻

𝐵𝑖
𝐺
𝐵𝑖
(𝑡) 𝐸

𝐵𝑖
,

Δ𝐶
𝑖
(𝑡) = 𝐻

𝐶𝑖
𝐺
𝐶𝑖
(𝑡) 𝐸

𝐶𝑖
,

(13)

where 𝐻
𝐴𝑖
, 𝐻

𝐵𝑖
, 𝐻

𝐶𝑖
, 𝐸

𝐴𝑖
, 𝐸

𝐵𝑖
, and 𝐸

𝐶𝑖
are known

real constant matrices with appropriate dimensions.
𝐺
𝐴𝑖
, 𝐺

𝐵𝑖
, and 𝐺

𝐶𝑖
may be time-varying matrices with

Lebesgue measurable elements bounded by

𝐺
𝑇

𝐴𝑖

(𝑡) 𝐺
𝐴𝑖
≤ 𝐼,

𝐺
𝑇

𝐵𝑖

(𝑡) 𝐺
𝐵𝑖
≤ 𝐼,

𝐺
𝑇

𝐶𝑖

(𝑡) 𝐺
𝐶𝑖
≤ 𝐼.

(14)

Remark 1. Theconstants 𝑙
𝑗
and𝐿

𝑗
can be positive, negative, or

zero.Therefore, the activation functions𝑓(⋅) aremore general
than the forms |𝑓

𝑗
(𝑢)| ≤ 𝐾

𝑗
|𝑢|, 𝐾

𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑛.

Remark 2. It is worth mentioning that the structures of the
parametric uncertainties with the form (13) and (14) are
more general than those in previous literature in [28, 34, 37].
However, 𝐻

𝐴𝑖
= 𝐻

𝐵𝑖
= 𝐻

𝐶𝑖
has been discussed [28, 34, 37].

Recently, in [35], the attractor and boundedness of stochas-
tic Cohen-Grossberg neural networks without parametric
uncertainties were investigated.

Definition 3 (see [38]). The system (3) is mean-square uni-
formly ultimately bounded, if there exists a constant vector
𝐵̃ > 0, for any constant 󰜚 > 0; there is 𝑡󸀠 = 𝑡󸀠(󰜚) > 0, for all
𝑡 ≥ 𝑡

0
+ 𝑡

󸀠, 𝑡
0
> 0, ‖𝜑‖ < 󰜚; the solution 𝑥(𝑡, 𝑡

0
, 𝜑) of system

(3) satisfies such that

𝐸
󵄩󵄩󵄩󵄩𝑥 (𝑡, 𝑡0, 𝜑)

󵄩󵄩󵄩󵄩 < 𝐵̃,
(15)

where 𝐸‖𝑥(𝑡, 𝑡
0
, 𝜑)‖ = sup

−∞≤𝑠≤0
𝐸‖𝑥

𝑖
(𝑡 + 𝑠, 𝑡

0
, 𝜑)‖ and 𝜑 ∈

𝐿
𝑏

F0
([−∞, 0]; 𝑅

𝑛

).
In this case, the set A = {𝜑 ∈ 𝐿

𝑏

F0
| 𝐸‖𝜑(𝑠)‖

∞
≤ 𝐵̃} is

called the attractor for the solution 𝑥(𝑡; 𝜑) of system (3) in the
mean-square sense. Clearly, the proposition above is equal to

lim
𝑡→∞

supinf
𝑦∈A

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 = 0. (16)

Definition 4 (see [39]). For the switching signal 𝜎(𝑡), con-
struct a switching sequence {(𝑖

0
, 𝜎(𝑡

0
)), . . . , (𝑖

𝑘
, 𝜎(𝑡

𝑘
)), . . .},

𝜎(𝑖
𝑘
) ∈ 𝑁, 𝑘 = 0, 1, . . . , 𝑁, where 𝑡

0
= 0 is the initial time

and 𝑡
𝑘
denotes the 𝑖

𝑘
th switching instant. Moreover, 𝜎(𝑡) =

𝑖 means that the 𝑖th subsystem is activated. 𝑁 denotes the
number of the subsystems. For each 𝑇 > 𝑡 ≥ 0, let 𝑁

𝜎
(𝑡, 𝑇)

denote the number of discontinuities of 𝜎(𝑡) in the interval
(𝑡, 𝑇). If there exist 𝑁

0
> 0 and 𝑇

𝑎
> 0 such that 𝑁

𝜎
(𝑡, 𝑇) ≤

𝑁
0
+(𝑇−𝑡)/𝑇

𝑎
holds, then𝑇

𝑎
is called the average dwell time.

𝑁
0
is the chatter bound.

Remark 5. It should be pointed out that for the chatter bound
𝑁

0
, in our work, we take 𝑁

0
≥ 1, which is more preferable

than those previously reported in [31, 37]. If 𝑇
𝑎
= 0 is equiva-

lent to the existence of a common function for all subsystems,
this implies that switching signals can be arbitrary. Hence,
the results reported in this paper are more effective than the
arbitrary switching signals reported in the previous literatures
[28, 37].

So, to obtain the main results of this paper, we introduce
the following lemmas.

Lemma 6 (see [40]). For any positive-definite constant matrix
𝑍 ∈ 𝑅

𝑛×𝑛, scalar 𝜏 > 0, and vector function 𝑢(𝑡) : [𝑡 − 𝑟, 𝑡] →
𝑅
𝑛, 𝑡 ≥ 0, then

(1) Jensen’s inequality

− ∫

𝑡

𝑡−𝜏

󰜚
𝑇

(𝑠) 𝑍󰜚 (𝑠) 𝑑𝑠

≤ −
1

𝜏
(∫

𝑡

𝑡−𝜏

󰜚 (𝑠) 𝑑𝑠)

𝑇

𝑍(∫

𝑡

𝑡−𝜏

󰜚 (𝑠) 𝑑𝑠) ,

(17)

(2)

− ∫

𝛼

𝛽

∫

𝑡

𝑡+𝜃

󰜚
𝑇

(𝑠) 𝑍󰜚 (𝑠) 𝑑𝑠 𝑑𝜃

≤ −
2

𝛼2 − 𝛽2
(∫

𝛼

𝛽

∫

𝑡

𝑡+𝜃

󰜚 (𝑠) 𝑑𝑠 𝑑𝜃)

𝑇

⋅ 𝑍 (∫

𝛼

𝛽

∫

𝑡

𝑡+𝜃

󰜚 (𝑠) 𝑑𝑠 𝑑𝜃) .

(18)

Lemma 7 (see [41]). Let L, M
1
, and M

2
be real matrices of

appropriate dimension such thatL𝑇L ≤ 𝐼.Then for any scalar
𝜀 > 0 and vectors 𝑥 and 𝑦 with appropriate dimensions, the
following inequality is true:

2M
𝑇

1
LM

2
𝑦 ≤ 𝜀

−1

𝑥
𝑇

M
1
M

𝑇

1
𝑥 + 𝜀𝑦

𝑇

M
𝑇

2
M𝑦. (19)

Lemma 8 (see [41]). For any real matrix 𝑋, 𝑌 and one posi-
tive-definite matrix 𝐺, the following matrix inequality holds:

2𝑋
𝑇

𝐺𝑌 ≤ 𝜀𝑋
𝑇

𝐺𝑋 + 𝜀
−1

𝑌
𝑇

𝐺𝑌. (20)

Lemma 9 (see [42], Schur’s complement). The LMI

Ω = (

Ω
11
Ω

12

∗ Ω
22

) < 0 (21)

with Ω
11
= Ω

𝑇

11
, Ω

22
= Ω

𝑇

22
is equivalent to

Ω
22
< 0,

Ω
11
− Ω

12
Ω

−1

22
Ω

𝑇

12
< 0.

(22)
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3. Main Results

Theorem 10. For given constants 𝛽 > 0, 𝜀 > 0, 𝜇 < 1,
if there exist positive scalars 𝜆 and positive-definite matrices
𝑃 = diag(𝑝

1
, 𝑝

2
, . . . , 𝑝

𝑛
), 𝐿 = diag(𝑙

1
, 𝑙
2
, . . . , 𝑙

𝑛
), 𝐷

𝑖
=

diag(𝐷
𝑖1
, 𝐷

𝑖2
, . . . , 𝐷

𝑖𝑛
), (𝑖 = 1, 2), 𝑄

1
, 𝑄

2
, 𝑄

3
, 𝑄

4
, 𝑅, 𝑆, 𝑍̃, 𝑍,

𝑈, such that the following conditions hold:

Δ
1

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜙
11

0 0 0 𝜙
15

0 0 𝜙
18
𝜙
19

0 0 0

∗ 𝜙
22

0 0 0 𝜙
26

0 𝜙
28

0 0 0 0

∗ ∗ 𝜙
33

0 0 0 𝜙
37

0 𝜙
39

0 0 0

∗ ∗ ∗ 𝜙
44
𝜙
45

0 0 𝜙
48
𝜙
49

0 0 0

∗ ∗ ∗ ∗ 𝜙
55

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ 𝜙
66

0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ 𝜙
77

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜙
88

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜙
99

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜙
10

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜙
11

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜙
12

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

𝑃 < 𝜆𝐼,

(23)

where

𝜙
11
=
1

𝑎
2
[𝛽𝑃 − 2Ω

1
𝑃Ω

2
+ 𝜆Π

𝑇

1
Π

1
+ 𝜀Ω

4
𝐷

1
+ 𝑃

+
1

4𝛽2
𝐼 + 𝜏

𝑀
𝑒
𝛽𝜏𝑀𝑄

1
+ 𝜏

𝑚
𝑒
𝛽𝜏𝑚𝑄

2
+ 𝑒

𝛽𝜏𝑀𝑄
3
+ 𝜏

𝑀
𝑅

+ (𝜏
𝑀
− 𝜏

𝑚
) 𝑆 +

𝜏
2

𝑀

4
𝑍 +

𝜏
2

𝑀

4
𝑍̃ − Ω

3
𝐷

1
] ,

𝜙
15
= 𝑃𝐴,

𝜙
18
= 𝑃𝐵,

𝜙
19
= 𝑃𝐶,

𝜙
22
= −𝜏

𝑀
𝑄
1
,

𝜙
26
= 𝜙

28
= 0,

𝜙
33
= −𝜏

𝑚
𝑄
2
,

𝜙
37
= 𝜙

39
= 0,

𝜙
44
= 𝜆Π

𝑇

2
Π

2
− Ω

3
𝐷

2
+

1

4𝛽2
𝐼 − (1 − 𝜇)𝑄

3
,

𝜙
45
= 0,

𝜙
48
= Ω

4
𝐷

2
,

𝜙
49
= 0,

𝜙
55
= 𝑒

𝛽𝜏𝑀𝑄
4
+ 𝐿𝐾 (𝜄) + 𝜀

−1

Ω
4
𝐷

1
+ 𝜏

2

𝑀
𝑈 − 𝐷

1
+
1

𝛽2

⋅ 𝐼,

𝜙
66
= −

𝑒
−𝛽𝜏𝑀

𝜏
𝑀

𝑅,

𝜙
77
= −

𝑒
−𝛽𝜏𝑀

𝜏
𝑀
− 𝜏

𝑚

𝑆,

𝜙
88
= − (1 − 𝜇)𝑄

4
− 𝐷

2
+
1

𝛽2
𝐼,

𝜙
99
= −𝐿,

𝜙
10
= − (1 − 𝜇) 𝑒

−𝛽𝜏𝑀𝑈,

𝜙
11
= −𝑒

−𝛽𝜏𝑀𝑍,

𝜙
12
= −𝑒

−𝛽𝜏𝑀𝑍̃,

𝐷
𝑖
> 0, 𝑖 = 1, 2,

Ω
3
= diag {𝛿−

1
𝛿
+

1
, 𝛿

−

2
𝛿
+

2
, . . . , 𝛿

−

𝑛
𝛿
+

𝑛
} ,

Ω
4
= diag{

𝛿
−

1
+ 𝛿

+

1

2
,
𝛿
−

2
+ 𝛿

+

2

2
, . . . ,

𝛿
−

𝑛
+ 𝛿

+

𝑛

2
} ,

(24)

then system (3) is mean-square uniformly ultimately bounded.

Proof. Choose the following Lyapunov-Krasovskii func-
tional:

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) + 𝑉

4
(𝑡) + 𝑉

5
(𝑡) , (25)

where

𝑉
1
(𝑡) = 𝑒

𝛽𝑡

𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) ,

𝑉
2
(𝑡) = 𝜏

𝑀
∫

𝑡

𝑡−𝜏𝑀

𝑒
𝛽(𝑠+𝜏𝑀)𝑥

𝑇

(𝑠) 𝑄
1
𝑥 (𝑠) 𝑑𝑠

+ 𝜏
𝑚
∫

𝑡

𝑡−𝜏𝑚

𝑒
𝛽(𝑠+𝜏𝑚)𝑥

𝑇

(𝑠) 𝑄
2
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝛽(𝑠+𝜏𝑀)𝑥

𝑇

(𝑠) 𝑄
3
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝛽(𝑠+𝜏𝑀)𝐹

𝑇

(𝑥 (𝑠)) 𝑄
4
𝐹 (𝑥 (𝑠)) 𝑑𝑠,

𝑉
3
(𝑡) = ∫

0

−𝜏𝑀

∫

𝑡

𝑡+𝜃

𝑒
𝛽𝑠

𝑥
𝑇

(𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠𝑑𝜃

+ ∫

−𝜏𝑚

−𝜏𝑀

∫

𝑡

𝑡+𝜃

𝑒
𝛽𝑠

𝑥
𝑇

(𝑠) 𝑆𝑥 (𝑠) 𝑑𝑠𝑑𝜃

+ 𝜏
𝑀
∫

0

−𝜏(𝑡)

∫

𝑡

𝑡+𝜃

𝑒
𝛽𝑠

𝐹
𝑇

(𝑥 (𝑠)) 𝑈𝐹 (𝑥 (𝑠)) 𝑑𝑠𝑑𝜃,
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𝑉
4
(𝑡) =

𝜏
2

𝑀

2
∫

0

−𝜏𝑀

∫

0

𝜃

∫

𝑡

𝑡+𝜆

𝑒
𝛽𝑠

𝑥
𝑇

(𝑠) 𝑍𝑥 (𝑠) 𝑑𝑠𝑑𝜆𝑑𝜃

+

(𝜏
2

𝑀
− 𝜏

2

𝑚
)

2

⋅ ∫

−𝜏𝑚

−𝜏𝑀

∫

0

𝜃

∫

𝑡

𝑡+𝜆

𝑒
𝛽𝑠

𝑥
𝑇

(𝑠) 𝑍̃𝑋 (𝑠) 𝑑𝑠𝑑𝜆𝑑𝜃,

𝑉
5
(𝑡) =

𝑛

∑

𝑗=1

𝑙
𝑗
∫

∞

0

𝑘
𝑗
(𝛿) ∫

𝑡

𝑡−𝛿

𝑒
𝛽(𝛾+𝛿)

𝐹
2

𝑗
(𝑥

𝑗
(𝛾)) 𝑑𝛾𝑑𝛿.

(26)

By applying the Itô differential formula, the stochastic deriva-
tive of 𝑉(𝑡) along the trajectory of system (3) is

𝑑𝑉 (𝑡)

=L𝑉𝑑𝑡

+ 2𝑒
𝛽𝑡

𝑥
𝑇

(𝑡) 𝑃𝜎 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔 (𝑡) .

(27)

With the infinitesimal-operator, we can deduce that

L𝑉
1
= 𝛽𝑒

𝛽𝑡

𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) − 2𝑒
𝛽𝑡

𝑥
𝑇

(𝑡) 𝑃𝛼 (𝑥 (𝑡))

⋅ [𝛽 (𝑥 (𝑡)) − 𝐴𝐹 (𝑥 (𝑡))

− 𝐶∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝐹 (𝑥 (𝑠)) 𝑑𝑠 − 𝐵𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

− 𝐽] + 𝑒
𝛽𝑡
1

2
tra [𝜎 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)))𝑇𝑉

1𝑥𝑥
(𝑥, 𝑡)

⋅ 𝜎 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)))] .

(28)

Denote Ω
1
= diag{𝛼

1
, 𝛼

2
, . . . , 𝛼

𝑛
}, Ω

2
= diag{𝑏

1
, 𝑏

2
, . . . , 𝑏

𝑛
},

according to assumptions (H2) and (H3).Then, we obtain the
following inequalities:

− 2𝑒
𝛽𝑡

𝑥
𝑇

(𝑡) 𝑃𝛼 (𝑥 (𝑡)) 𝛽 (𝑥 (𝑡))

= −2𝑒
𝛽𝑡

𝑛

∑

𝑗=1

𝑥
𝑗
(𝑡) 𝑝

𝑗
𝛼
𝑗
(𝑥

𝑗
(𝑡)) 𝛽

𝑗
(𝑥

𝑗
(𝑡))

≤ −2𝑒
𝛽𝑡

𝑛

∑

𝑗=1

𝛼
𝑗
𝑝
𝑗
𝑏
𝑗
𝑥
2

𝑗
(𝑡) = −2𝑒

𝛽𝑡

𝑥
𝑇

(𝑡) Ω
1
𝑃Ω

2
𝑥 (𝑡) .

(29)

By assumption (H4), we have

1

2
𝑒
𝛽𝑡tra [𝜎 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)))𝑇𝑉

1𝑥𝑥
(𝑥, 𝑡)

⋅ 𝜎 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)))] = 𝑒
𝛽𝑡

𝜆max (𝑃)

⋅ tra [𝜎 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)))𝑇

⋅ 𝜎 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)))] ≤ 𝜆𝑒
𝛽𝑡

𝑥
𝑇

(𝑡) Π
𝑇

1
Π

1
𝑥 (𝑡)

+ 𝜆𝑒
𝛽𝑡

𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) Π
𝑇

2
Π

2
𝑥 (𝑡 − 𝜏 (𝑡)) .

(30)

Combining inequalities (29) and (30), we derive

L𝑉
1
= 𝛽𝑒

𝛽𝑡

𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) − 2𝑒
𝛽𝑡

𝑥
𝑇

(𝑡) Ω
1
𝑃Ω

2
𝑥 (𝑡)

+ 𝑒
𝛽𝑡

[2𝑥
𝑇

(𝑡) 𝑃𝛼 (𝑥 (𝑡)) 𝐴𝐹 (𝑥 (𝑡))

+ 2𝑥
𝑇

(𝑡) 𝑃𝛼 (𝑥 (𝑡)) 𝐵𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 2𝑥
𝑇

(𝑡) 𝑃𝛼 (𝑥 (𝑡)) 𝐶∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝐹 (𝑥 (𝑠))

+ 2𝑥
𝑇

(𝑡) 𝑃𝛼 (𝑥 (𝑡)) 𝐽] + 𝜌
1
[𝑥

𝑇

(𝑡) Π
𝑇

1
𝑃Π

1
𝑥 (𝑡)]

+ 𝜌
2
𝑒
𝛽𝑡

𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) Π
𝑇

2
𝑃Π

2
𝑥 (𝑡 − 𝜏 (𝑡))

≤ 𝑒
𝛽𝑡

[𝛽𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) − 2𝑥
𝑇

(𝑡) Ω
1
𝑃Ω

2
𝑥 (𝑡)]

+ [2𝑥
𝑇

(𝑡) 𝑃𝛼 (𝑥 (𝑡)) 𝐴𝐹 (𝑥 (𝑡))

+ 2𝑥
𝑇

(𝑡) 𝑃𝛼 (𝑥 (𝑡)) 𝐵𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 2𝑥
𝑇

(𝑡) 𝑃𝛼 (𝑥 (𝑡)) 𝐶∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝐹 (𝑥 (𝑠))

+ 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) + 𝛼
2

𝐽
𝑇

𝑃𝐽] 𝑒
𝛽𝑡

+ 𝑒
𝛽𝑡

[𝜆𝑥
𝑇

(𝑡) Π
𝑇

1
Π

1
𝑥 (𝑡)

+ 𝜆𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) Π
𝑇

2
Π

2
𝑥 (𝑡 − 𝜏 (𝑡))] ,

(31)

where 𝛼 = max{𝛼
1
, 𝛼

2
, . . . , 𝛼

𝑛
}.

Then, we easily derive

L𝑉
2
= 𝜏

𝑀
𝑒
𝛽(𝑡+𝜏𝑀)𝑥

𝑇

(𝑡) 𝑄
1
𝑥 (𝑡) − 𝜏

𝑀
𝑒
𝛽𝑡

𝑥
𝑇

(𝑡 − 𝜏
𝑀
)

⋅ 𝑄
1
𝑥 (𝑡 − 𝜏

𝑀
) + 𝜏

𝑚
𝑒
𝛽(𝑡+𝜏𝑚)𝑥

𝑇

(𝑡) 𝑄
2
𝑥 (𝑡)

− 𝜏
𝑚
𝑒
𝛽𝑡

𝑥
𝑇

(𝑡 − 𝜏
𝑚
) 𝑄

2
𝑥 (𝑡 − 𝜏

𝑚
)

+ 𝑒
𝛽(𝑡+𝜏𝑀) [𝑥

𝑇

(𝑡) 𝑄
3
𝑥 (𝑡) + 𝐹

𝑇

(𝑥 (𝑡)) 𝑄
4
𝐹 (𝑥 (𝑡))]

− (1 − 𝜏̇ (𝑡)) 𝑒
𝛽(𝑡−𝜏(𝑡)+𝜏𝑀) [𝑥

𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
3
𝑥 (𝑡𝜏 (𝑡))

+ 𝐹
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑄
4
𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))]

≤ 𝜏
𝑀
𝑒
𝛽(𝑡+𝜏𝑀)𝑥

𝑇

(𝑡) 𝑄
1
𝑥 (𝑡) − 𝜏

𝑀
𝑒
𝛽𝑡

𝑥
𝑇

(𝑡 − 𝜏
𝑀
)

⋅ 𝑄
1
𝑥 (𝑡 − 𝜏

𝑀
) + 𝜏

𝑚
𝑒
𝛽(𝑡+𝜏𝑚)𝑥

𝑇

(𝑡) 𝑄
2
𝑥 (𝑡)

− 𝜏
𝑚
𝑒
𝛽𝑡

𝑥
𝑇

(𝑡 − 𝜏
𝑚
) 𝑄

2
𝑥 (𝑡 − 𝜏

𝑚
)

+ 𝑒
𝛽(𝑡+𝜏𝑀) [𝑥

𝑇

(𝑡) 𝑄
3
𝑥 (𝑡) + 𝐹

𝑇

(𝑥 (𝑡)) 𝑄
4
𝐹 (𝑥 (𝑡))]

− (1 − 𝜇) 𝑒
𝛽𝑡

[𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
3
𝑥 (𝑡𝜏 (𝑡))

+ 𝐹
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑄
4
𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))] .

(32)
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Similarly, calculating the operation of L𝑉
3
along the

trajectory of system (3), one can get

L𝑉
3
= 𝜏

𝑀
𝑒
𝛽𝑡

𝑥
𝑇

(𝑡) 𝑅𝑥 (𝑡) − ∫

𝑡

𝑡−𝜏𝑀

𝑒
𝛽𝑠

𝑥
𝑇

(𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠

+ (𝜏
𝑀
− 𝜏

𝑚
) 𝑒

𝛽𝑡

𝑥
𝑇

(𝑡) 𝑅𝑥 (𝑡)

− ∫

𝑡−𝜏𝑚

𝑡−𝜏𝑀

𝑒
𝛽𝑠

𝑥
𝑇

(𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠 + 𝜏
𝑀
𝜏 (𝑡) 𝑒

𝛽𝑡

𝐹
𝑇

(𝑥 (𝑡))

⋅ 𝑈𝐹 (𝑥 (𝑡)) − 𝜏
𝑀
(1 − 𝜏̇ (𝑡))

⋅ ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝛽(𝑡−𝜏(𝑡))

𝐹
𝑇

(𝑥 (𝑠)) 𝑈𝐹 (𝑥 (𝑠)) 𝑑𝑠

≤ 𝜏
𝑀
𝑒
𝛽𝑡

𝑥
𝑇

(𝑡) 𝑅𝑥 (𝑡)

− 𝑒
𝛽(𝑡−𝜏𝑀) ∫

𝑡

𝑡−𝜏𝑀

𝑥
𝑇

(𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠 + (𝜏
𝑀
− 𝜏

𝑚
)

⋅ 𝑒
𝛽𝑡

𝑥
𝑇

(𝑡) 𝑅𝑥 (𝑡) − 𝑒
𝛽(𝑡−𝜏𝑀) ∫

𝑡−𝜏𝑚

𝑡−𝜏𝑀

𝑥
𝑇

(𝑠) 𝑅𝑠 (𝑡) 𝑑𝑠

+ 𝜏
2

𝑀
𝑒
𝛽𝑡

𝐹
𝑇

(𝑥 (𝑡)) 𝑈𝐹 (𝑥 (𝑡)) − 𝜏
𝑀
(1 − 𝜇)

⋅ 𝑒
𝛽(𝑡−𝜏𝑀) ∫

𝑡

𝑡−𝜏(𝑡)

𝐹
𝑇

(𝑥 (𝑠)) 𝑈𝐹 (𝑥 (𝑠)) 𝑑𝑠.

(33)

By Lemma 6 (1), it follows that

− 𝑒
−𝛽𝜏𝑀 ∫

𝑡

𝑡−𝜏𝑀

𝑥
𝑇

(𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠

≤ −
𝑒
−𝛽𝜏𝑀

𝜏
𝑀

(∫

𝑡

𝑡−𝜏𝑀

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑅(∫

𝑡

𝑡−𝜏𝑀

𝑥 (𝑠) 𝑑𝑠)

− 𝑒
−𝛽𝜏𝑀 ∫

𝑡−𝜏𝑚

𝑡−𝜏𝑀

𝑥
𝑇

(𝑠) 𝑆𝑥 (𝑠) 𝑑𝑠

≤ −
𝑒
−𝛽𝜏𝑀

𝜏
𝑀
− 𝜏

𝑚

(∫

𝑡−𝜏𝑚

𝑡−𝜏𝑀

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑆 (∫

𝑡−𝜏𝑚

𝑡−𝜏𝑀

𝑥 (𝑠) 𝑑𝑠)

− 𝜏
𝑀
𝑒
−𝛽𝜏𝑀 ∫

𝑡

𝑡−𝜏(𝑡)

𝐹
𝑇

(𝑥 (𝑠)) 𝑈𝐹 (𝑥 (𝑠)) 𝑑𝑠

≤ −𝑒
−𝛽𝜏𝑀 (∫

𝑡

𝑡−𝜏(𝑡)

𝐹 (𝑥 (𝑠)) 𝑑𝑠)

𝑇

⋅ 𝑈 (∫

𝑡

𝑡−𝜏(𝑡)

𝐹 (𝑥 (𝑠)) 𝑑𝑠) .

(34)

Similarly, one can derive

L𝑉
4
=
𝜏
2

𝑀

4
𝑒
𝛽𝑡

𝑥
𝑇

(𝑡) 𝑍𝑥 (𝑡) −
𝜏
2

𝑀

2

⋅ ∫

0

−𝜏𝑀

∫

𝑡

𝑡+𝜃

𝑒
𝛽𝑠

𝑥
𝑇

(𝑡) 𝑍𝑥 (𝑡) 𝑑𝑠 𝑑𝜃 +

(𝜏
2

𝑀
− 𝜏

2

𝑚
)

4

⋅ 𝑒
𝛽𝑡

𝑥
𝑇

(𝑡) 𝑍̃𝑥 (𝑡) −

(𝜏
2

𝑀
− 𝜏

2

𝑚
)

2

⋅ ∫

−𝜏𝑚

−𝜏𝑀

∫

𝑡

𝑡+𝜃

𝑒
𝛽𝑠

𝑥
𝑇

(𝑡) 𝑍̃𝑥 (𝑡) 𝑑𝑠 𝑑𝜃

≤ 𝑒
𝛽𝑡

[
𝜏
2

𝑀

4
𝑥
𝑇

(𝑡) 𝑍𝑥 (𝑡)

−
𝑒
−𝛽𝜏𝑀𝜏

2

𝑀

2
∫

0

−𝜏𝑀

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑡) 𝑍𝑥 (𝑡) 𝑑𝑠 𝑑𝜃

+

(𝜏
2

𝑀
− 𝜏

2

𝑚
)

4
𝑥
𝑇

(𝑡) 𝑍̃𝑥 (𝑡)

−

𝑒
−𝛽𝜏𝑀 (𝜏

2

𝑀
− 𝜏

2

𝑚
)

2
∫

−𝜏𝑚

−𝜏𝑀

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑡) 𝑍̃𝑥 (𝑡) 𝑑𝑠 𝑑𝜃] .

(35)

Using Lemma 6 (2), we have

−
𝑒
−𝛽𝜏𝑀𝜏

2

𝑀

2
∫

0

−𝜏𝑀

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑡) 𝑍𝑥 (𝑡) 𝑑𝑠 𝑑𝜃

≤ −𝑒
−𝛽𝜏𝑀 (∫

0

−𝜏𝑀

∫

𝑡

𝑡+𝜃

𝑥 (𝑠) 𝑑𝑠 𝑑𝜃)

𝑇

⋅ 𝑍 (∫

0

−𝜏𝑀

∫

𝑡

𝑡+𝜃

𝑥 (𝑠) 𝑑𝑠 𝑑𝜃) .

(36)

Similarly, one can obtain

−

𝑒
−𝛽𝜏𝑀 (𝜏

2

𝑀
− 𝜏

2

𝑚
)

2
∫

−𝜏𝑚

−𝜏𝑀

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑡) 𝑍̃𝑥 (𝑡) 𝑑𝑠 𝑑𝜃

≤ −𝑒
−𝛽𝜏𝑀 (∫

−𝜏𝑚

−𝜏𝑀

∫

𝑡

𝑡+𝜃

𝑥 (𝑡) 𝑑𝑠 𝑑𝜃)

𝑇

⋅ 𝑍̃ (∫

−𝜏𝑚

−𝜏𝑀

∫

𝑡

𝑡+𝜃

𝑥 (𝑡) 𝑑𝑠 𝑑𝜃) .

(37)

Then, noting the condition ∫∞
0

𝑘
𝑗
(𝑠)𝑑𝑠 = 1 and the Cauchy-

Schwarz inequality

(∫𝑝 (𝑠) 𝑞 (𝑠) 𝑑𝑠)

2

≤ (∫𝑝
2

(𝑠) 𝑑𝑠) (∫ 𝑞
2

(𝑠) 𝑑𝑠) , (38)

it can yield

L𝑉
5
=

𝑛

∑

𝑗=1

𝑙
𝑗
∫

∞

0

𝑘
𝑗
(𝛿) 𝑒

𝛽(𝑡+𝛿)

𝐹
2

𝑗
(𝑥

𝑗
(𝑡)) 𝑑𝛿 −

𝑛

∑

𝑗=1

𝑙
𝑗

⋅ ∫

∞

0

𝑘
𝑗
(𝛿) 𝑒

𝛽𝑡

𝐹
2

𝑗
(𝑥

𝑗
(𝑡 − 𝛿)) 𝑑𝛿
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= 𝑒
𝛽𝑡

𝑛

∑

𝑗=1

𝑙
𝑗
𝑘
𝑗
(𝜄) 𝐹

2

𝑗
(𝑥

𝑗
(𝑡)) 𝑑𝛿 − 𝑒

𝛽𝑡

𝑛

∑

𝑗=1

𝑙
𝑗

⋅ ∫

∞

0

𝑘
𝑗
(𝛿) 𝑑𝛿∫

∞

0

𝑘
𝑗
(𝛿) 𝐹

2

𝑗
(𝑥

𝑗
(𝑡 − 𝛿)) 𝑑𝛿

≤ 𝑒
𝛽𝑡

𝐹
𝑇

(𝑥 (𝑡)) 𝐿𝐾 (𝜄) 𝐹 (𝑥 (𝑡)) −

𝑛

∑

𝑗=1

𝑙
𝑗

⋅ (∫

∞

0

𝑘
𝑗
(𝛿) 𝐹

𝑗
(𝑥

𝑗
(𝑡 − 𝛿)) 𝑑𝛿)

2

= 𝑒
𝛽𝑡

𝐹
𝑇

(𝑥 (𝑡))

⋅ 𝐿𝐾 (𝜄) 𝐹 (𝑥 (𝑡)) − (∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝐹 (𝑥 (𝑠)) 𝑑𝑠)

𝑇

⋅ 𝐿 (∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝐹 (𝑥 (𝑠)) 𝑑𝑠) .

(39)

Then, based on assumption (H1), it easy to see that, for
𝑗 = 1, 2, . . . , 𝑛,

[𝐹
𝑗
(𝑥

𝑗
(𝑡)) − 𝐹

𝑗
(0) − 𝛿

−

𝑗
𝑥
𝑗
(𝑡)]

⋅ [𝐹
𝑗
(𝑥

𝑗
(𝑡)) − 𝐹

𝑗
(0) − 𝛿

+

𝑗
𝑥
𝑗
(𝑡)] ≤ 0,

[𝐹
𝑗
(𝑥

𝑗
(𝑡 − 𝜏 (𝑡))) − 𝐹

𝑗
(0) − 𝛿

−

𝑗
𝑥
𝑗
(𝑡 − 𝜏 (𝑡))]

⋅ [𝐹
𝑗
(𝑥

𝑗
(𝑡 − 𝜏 (𝑡))) − 𝐹

𝑗
(0) − 𝛿

+

𝑗
𝑥
𝑗
(𝑡 − 𝜏 (𝑡))]

≤ 0.

(40)

Then, let

Υ
1
= −

𝑛

∑

𝑗=1

𝐷
1𝑗
[𝐹

𝑗
(𝑥

𝑗
(𝑡)) − 𝐹

𝑗
(0) − 𝛿

−

𝑗
𝑥
𝑗
(𝑡)]

⋅ [𝐹
𝑗
(𝑥

𝑗
(𝑡)) − 𝐹

𝑗
(0) − 𝛿

+

𝑗
𝑥
𝑗
(𝑡)] ≥ 0,

Υ
2
= −

𝑛

∑

𝑗=1

𝐷
2𝑗
[𝐹

𝑗
(𝑥

𝑗
(𝑡 − 𝜏 (𝑡))) − 𝐹

𝑗
(0)

− 𝛿
−

𝑗
𝑥
𝑗
(𝑡 − 𝜏 (𝑡))] [𝐹

𝑗
(𝑥

𝑗
(𝑡 − 𝜏 (𝑡))) − 𝐹

𝑗
(0)

− 𝛿
+

𝑗
𝑥
𝑗
(𝑡 − 𝜏 (𝑡))] ≥ 0.

(41)

Therefore,

Υ
1
+ Υ

2
= −

𝑛

∑

𝑗=1

𝐷
1𝑗
[𝐹

𝑗
(𝑥

𝑗
(𝑡)) − 𝐹

𝑗
(0) − 𝛿

−

𝑗
𝑥
𝑗
(𝑡)]

⋅ [𝐹
𝑗
(𝑥

𝑗
(𝑡)) − 𝐹

𝑗
(0) − 𝛿

+

𝑗
𝑥
𝑗
(𝑡)]

−

𝑛

∑

𝑗=1

𝐷
2𝑗
[𝐹

𝑗
(𝑥

𝑗
(𝑡 − 𝜏 (𝑡))) − 𝐹

𝑗
(0)

− 𝛿
−

𝑗
𝑥
𝑗
(𝑡 − 𝜏 (𝑡))] [𝐹

𝑗
(𝑥

𝑗
(𝑡 − 𝜏 (𝑡))) − 𝐹

𝑗
(0)

− 𝛿
+

𝑗
𝑥
𝑗
(𝑡 − 𝜏 (𝑡))] = −

𝑛

∑

𝑗=1

𝐷
1𝑗
[𝐹

𝑗
(𝑥

𝑗
(𝑡))

− 𝛿
−

𝑗
𝑥
𝑗
(𝑡)] [𝐹

𝑗
(𝑥

𝑗
(𝑡)) − 𝛿

+

𝑗
𝑥
𝑗
(𝑡)] −

𝑛

∑

𝑗=1

𝐷
2𝑗

⋅ [𝐹
𝑗
(𝑥

𝑗
(𝑡 − 𝜏 (𝑡))) − 𝛿

−

𝑗
𝑥
𝑗
(𝑡 − 𝜏 (𝑡))]

⋅ [𝐹
𝑗
(𝑥

𝑗
(𝑡 − 𝜏)) − 𝛿

+

𝑗
𝑥
𝑗
(𝑡 − 𝜏 (𝑡))] −

𝑛

∑

𝑗=1

𝐷
1𝑗
𝐹
2

𝑗
(0)

+

𝑛

∑

𝑗=1

𝐷
1𝑗
𝐹
𝑗
(0) [2𝐹

𝑗
(𝑥

𝑗
(𝑡)) − (𝛿

+

𝑗
+ 𝛿

−

𝑗
) 𝑥

𝑗
(𝑡)]

−

𝑛

∑

𝑗=1

𝐷
2𝑗
𝐹
2

𝑗
(0) +

𝑛

∑

𝑗=1

𝐷
2𝑗
𝐹
𝑗
(0) [2𝐹

𝑗
(𝑥

𝑗
(𝑡 − 𝜏 (𝑡)))

− (𝛿
+

𝑗
+ 𝛿

−

𝑗
) 𝑥

𝑗
(𝑡 − 𝜏 (𝑡))] ≤ −

𝑛

∑

𝑗=1

𝐷
1𝑗
[𝐹

𝑗
(𝑥

𝑗
(𝑡))

− 𝛿
−

𝑗
𝑥
𝑗
(𝑡)] [𝐹

𝑗
(𝑥

𝑗
(𝑡)) − 𝛿

+

𝑗
𝑥
𝑗
(𝑡)] −

𝑛

∑

𝑗=1

𝐷
2𝑗

⋅ [𝐹
𝑗
(𝑥

𝑗
(𝑡 − 𝜏 (𝑡))) − 𝛿

−

𝑗
𝑥
𝑗
(𝑡 − 𝜏 (𝑡))]

⋅ [𝐹
𝑗
(𝑥

𝑗
(𝑡 − 𝜏 (𝑡))) − 𝛿

+

𝑗
𝑥
𝑗
(𝑡 − 𝜏 (𝑡))]

+

𝑛

∑

𝑗=1

[
1

𝛽2
𝐹
2

𝑗
(𝑥

𝑗
(𝑡)) + 𝛽

2

𝐷
2

1𝑗
𝐹
2

𝑗
(0) +

1

4𝛽2
𝑥
2

𝑗
(𝑡)

+ 𝛽
2

𝐷
2

1𝑗
𝐹
2

𝑗
(0) (𝛿

+

𝑗
+ 𝛿

−

𝑗
)
2

]

+

𝑛

∑

𝑗=1

[
1

𝛽2
𝐹
2

𝑗
(𝑥

𝑗
(𝑡 − 𝜏 (𝑡))) + 𝛽

2

𝐷
2

2𝑗
𝐹
2

𝑗
(0)

+
1

4𝛽2
𝑥
2

𝑗
(𝑡 − 𝜏 (𝑡)) + 𝛽

2

𝐷
2

2𝑗
𝐹
2

𝑗
(0) (𝛿

+

𝑗
+ 𝛿

−

𝑗
)
2

] .

(42)

From Lemma 8, the following inequality holds true:

2𝑥
𝑇

(𝑡) Ω
4
𝐷

1
𝐹 (𝑥 (𝑡))

≤ 𝜀𝑥
𝑇

(𝑡) Ω
4
𝐷

1
𝑥 (𝑡)

+ 𝜀
−1

𝐹
𝑇

(𝑥 (𝑡))Ω
4
𝐷

1
𝐹 (𝑥 (𝑡)) .

(43)

Denote

𝜁
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝜏
𝑀
) , 𝑥

𝑇

(𝑡 − 𝜏
𝑚
) ,

𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) , 𝐹
𝑇

(𝑥 (𝑡)) , (∫

𝑡

𝑡−𝜏𝑀

𝑥 (𝑠) 𝑑𝑠)

𝑇

,

(∫

𝑡−𝜏𝑚

𝑡−𝜏𝑀

𝑥 (𝑠) 𝑑𝑠)

𝑇

, 𝐹
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) ,
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(∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝐹 (𝑥 (𝑠)) 𝑑𝑠)

𝑇

,

(∫

𝑡

𝑡−𝜏(𝑡)

𝐹 (𝑥 (𝑠)) 𝑑𝑠)

𝑇

, 𝑦
𝑇

1
(𝑡) , 𝑦

𝑇

2
(𝑡)] ,

(44)

where

𝑦
1
(𝑡) = (∫

0

−𝜏𝑀

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) 𝑍𝑥 (𝑠) 𝑑𝑠 𝑑𝜃) ,

𝑦
2
(𝑡) = (∫

−𝜏𝑚

−𝜏𝑀

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) 𝑍̃𝑥 (𝑠) 𝑑𝑠 𝑑𝜃) .

(45)

Using (27)–(43), we can derive

𝑑𝑉 (𝑡) ≤L𝑉𝑑𝑡 + 2𝑒
𝛽𝑡

𝑥
𝑇

(𝑡) 𝑃𝜎 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡

− 𝜏 (𝑡))) 𝑑𝜔 (𝑡) + 𝑒
𝛽𝑡

(Υ
1
+ Υ

2
) ≤ 𝑒

𝛽𝑡

𝜁
𝑇

(𝑡)

⋅ Δ𝜁 (𝑡) + 𝑒
𝛽𝑡

𝛼
2

𝐽
𝑇

𝑃𝐽 + 2𝑒
𝛽𝑡

𝑥
𝑇

(𝑡) 𝑃𝜎 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡

− 𝜏 (𝑡))) 𝑑𝜔 (𝑡) + 𝑒
𝛽𝑡

𝑛

∑

𝑗=1

[𝛽
2

𝐷
2

1𝑗
𝐹
2

𝑗
(0)

+ 𝛽
2

𝐷
2

1𝑗
𝐹
2

𝑗
(0) (𝛿

+

𝑗
+ 𝛿

−

𝑗
)
2

+ 𝛽
2

𝐷
2

2𝑗
𝐹
2

𝑗
(0)

+ 𝛽
2

𝐷
2

2𝑗
𝐹
2

𝑗
(0) (𝛿

+

𝑗
+ 𝛿

−

𝑗
)
2

] ,

(46)

where

Δ =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Φ
11

0 0 0 Φ
15

0 0 Φ
18
Φ

19
0 0 0

∗ Φ
22

0 0 0 Φ
26

0 Φ
28

0 0 0 0

∗ ∗ Φ
33

0 0 0 Φ
37

0 Φ
39

0 0 0

∗ ∗ ∗ Φ
44
Φ

45
0 0 Φ

48
Φ

49
0 0 0

∗ ∗ ∗ ∗ Φ
55

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Φ
66

0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Φ
77

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ
88

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ
99

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ
10

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ
11

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ
12

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Φ
11
= 𝛽𝑃 − 2Ω

1
𝑃Ω

2
+ 𝜆Π

𝑇

1
Π

1
+ 𝜀Ω

4
𝐷

1
+ 𝑃 +

1

4𝛽2
𝐼 + 𝜏

𝑀
𝑒
𝛽𝜏𝑀𝑄

1
+ 𝜏

𝑚
𝑒
𝛽𝜏𝑚𝑄

2
+ 𝑒

𝛽𝜏𝑀𝑄
3
+ 𝜏

𝑀
𝑅 + (𝜏

𝑀
− 𝜏

𝑚
) 𝑆 +

𝜏
2

𝑀

4
𝑍

+
𝜏
2

𝑀

4
𝑍̃ − Ω

3
𝐷

1
,

Φ
15
= 𝑃𝛼 (𝑥 (𝑡)) 𝐴,

Φ
18
= 𝑃𝛼 (𝑥 (𝑡)) 𝐵,

Φ
19
= 𝑃𝛼 (𝑥 (𝑡)) 𝐶,

Φ
22
= −𝜏

𝑀
𝑄
1
,

Φ
26
= 𝜙

28
= 0,

Φ
33
= −𝜏

𝑚
𝑄
2
,

Φ
37
= Φ

39
= 0,

Φ
44
= 𝜆Π

𝑇

2
Π

2
− Ω

3
𝐷

2
+

1

4𝛽2
𝐼 − (1 − 𝜇)𝑄

3
,

Φ
45
= 0,
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Φ
48
= Ω

4
𝐷

2
,

Φ
49
= 0,

Φ
55
= 𝑒

𝛽𝜏𝑀𝑄
4
+ 𝐿𝐾 (𝜄) + 𝜀

−1

Ω
4
𝐷

1
+ 𝜏

2

𝑀
𝑈 − 𝐷

1
+
1

𝛽2
𝐼,

Φ
66
= −

𝑒
−𝛽𝜏𝑀

𝜏
𝑀

𝑅,

Φ
77
= −

𝑒
−𝛽𝜏𝑀

𝜏
𝑀
− 𝜏

𝑚

𝑆,

Φ
88
= − (1 − 𝜇)𝑄

4
− 𝐷

2
+
1

𝛽2
𝐼,

Φ
99
= −𝐿,

Φ
10
= − (1 − 𝜇) 𝑒

−𝛽𝜏𝑀𝑈,

Φ
11
= −𝑒

−𝛽𝜏𝑀𝑍,

Φ
12
= −𝑒

−𝛽𝜏𝑀𝑍̃.

(47)

By integrating both sides of (46) in time interval 𝑡 ∈ [𝑡
0
, 𝑡]

and taking expectation results in

𝐸 {𝑉 (𝑥 (𝑡))} ≤ 𝐸 {𝑉 (𝑥 (𝑡
0
))} + 𝐸 {𝛽

−1

𝑒
𝛽𝑡

𝛼
2

𝐽
𝑇

𝑃𝐽}

+ 𝐸

{

{

{

𝑒
𝛽𝑡

𝑛

∑

𝑗=1

[𝛽𝐷
2

1𝑗
𝐹
2

𝑗
(0) + 𝛽𝐷

2

1𝑗
𝐹
2

𝑗
(0) (𝛿

+

𝑗
+ 𝛿

−

𝑗
)
2

+ 𝛽𝐷
2

2𝑗
𝐹
2

𝑗
(0) + 𝛽𝐷

2

2𝑗
𝐹
2

𝑗
(0) (𝛿

+

𝑗
+ 𝛿

−

𝑗
)
2

]

}

}

}

.

(48)

Note from (25) that

𝐸 {𝑉 (𝑥 (𝑡))} ≥ Υ𝐸 ‖𝑥 (𝑡)‖
2

𝑒
𝛽𝑡

, (49)

which implies

𝐸 ‖𝑥 (𝑡)‖
2

≤
𝑒
−𝛽𝑡

𝐸 {𝑉 (𝑥 (𝑡
0
))} + 𝛽

−1

𝛼
2

𝐽
𝑇

𝑃𝐽 + 𝐻

Υ
, (50)

where Υ = 𝜆min(𝑃) and

𝐻 =

𝑛

∑

𝑗=1

[𝛽𝐷
2

1𝑗
𝐹
2

𝑗
(0) + 𝛽𝐷

2

1𝑗
𝐹
2

𝑗
(0) (𝛿

+

𝑗
+ 𝛿

−

𝑗
)
2

+ 𝛽𝐷
2

2𝑗
𝐹
2

𝑗
(0) + 𝛽𝐷

2

2𝑗
𝐹
2

𝑗
(0) (𝛿

+

𝑗
+ 𝛿

−

𝑗
)
2

] .

(51)

If one chooses 𝐵̃ = √(1 + 𝛽−1𝛼2𝐽𝑇𝑃𝐽 + 𝐻)/Υ > 0, then for
any constant 󰜚 > 0 and ‖𝜑‖ < 󰜚, there is 𝑡󸀠 = 𝑡󸀠(󰜚) > 0, such
that 𝑒−𝛽𝑡𝐸{𝑉(𝑥(𝑡

0
))} < 1 for all 𝑡 ≥ 𝑡󸀠. According to Defini-

tion 3, we have 𝐸‖𝑥(𝑡, 𝑡
0
, 𝜑)‖ < 𝐵̃ for all 𝑡 ≥ 𝑡󸀠. In other words,

system (3) is mean-square uniformly ultimately bounded.
This completes the proof.

Note from (25), we know that there exists a constant
vectorB, such that

𝐸 {𝑉 (𝑥 (𝑡
0
))} ≤ B𝐸

󵄩󵄩󵄩󵄩𝑥 (𝑡0)
󵄩󵄩󵄩󵄩

2

𝑒
−𝛽𝑡0 . (52)

Thus, combining (50) and (52) leads to

𝐸 ‖𝑥 (𝑡)‖
2

≤
𝑒
−𝛽(𝑡−𝑡0)B𝐸

󵄩󵄩󵄩󵄩𝑥 (𝑡0)
󵄩󵄩󵄩󵄩

2

+ 𝛽
−1

𝛼
2

𝐽
𝑇

𝑃𝐽 + 𝐻

Υ

=
𝑒
−𝛽(𝑡−𝑡0)B𝐸

󵄩󵄩󵄩󵄩𝑥 (𝑡0)
󵄩󵄩󵄩󵄩

2

Υ
+
𝛽
−1

𝛼
2

𝐽
𝑇

𝑃𝐽 + 𝐻

Υ

≤
𝑒
−𝛽(𝑡−𝑡0)B𝐸

󵄩󵄩󵄩󵄩𝑥 (𝑡0)
󵄩󵄩󵄩󵄩

2

Υ
+ 𝑁,

(53)

where𝑁 = (𝛽
−1

𝛼
2

𝐽
𝑇

𝑃𝐽 + 𝐻)/Υ.

Theorem 11. If all of the conditions of Theorem 10 hold, then
there exists an attractor A

𝐵̃
for the solutions of system (3),

where A
𝐵̃
= {𝜑 ∈ 𝐿

𝑏

F0
| 𝐸‖𝜑(𝑠)‖

∞
≤ 𝐵̃, 𝑡 ≥ 𝑡

0
}.

Proof. If one choose 𝐵̃ = √(1 + 𝛽−1𝛼
2

𝐽𝑇𝑃𝐽)/Υ > 0, The-
orem 10 shows that for any 𝜙, there is 𝑡󸀠 > 0, such that
𝐸‖𝑥(𝑡, 𝑡

0
, 𝜙)‖ < 𝐵̃ for all 𝑡 ≥ 𝑡

󸀠. Let A
𝐵̃
= {𝜑 ∈ 𝐿

𝑏

F0
|

𝐸‖𝜑(𝑠)‖
∞
≤ 𝐵̃, 𝑡 ≥ 𝑡

0
}. Clearly, A

𝐵̃
is closed, bounded, and

invariant. Furthermore, lim
𝑡→∞

sup inf
𝑦∈A
𝐵̃

‖𝑥(𝑡; 0, 𝜙) − 𝑦‖ =

0. Therefore, A
𝐵̃
is a stochastic attractor for the solutions of

system (3).

Corollary 12. In addition to all of the conditions ofTheorem 10
that hold, if 𝐽 = 0 and 𝐹

𝑗
(0) = 0, then system (3) has a trivial

solution 𝑥(𝑡) ≡ 0, and the trivial solution of system (3) is mean-
square exponentially stable.
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Proof. If 𝐽 = 0 and 𝐹
𝑗
(0) = 0, then it is obvious that system

(3) has a trivial solution 𝑥(𝑡) ≡ 0. FromTheorem 10, one has

𝐸
󵄩󵄩󵄩󵄩𝑥 (𝑡; 0, 𝜙)

󵄩󵄩󵄩󵄩

2

≤ 𝐾𝑒
−𝛽𝑡

, ∀𝜙, (54)

where 𝐾 = 𝐸‖𝑉(𝑥(0))‖
2

/Υ. Therefore, the trivial solution
of system (3) is mean-square exponentially stable. This com-
pletes the proof.

In practice, parameter uncertainties in neural networks
are always unavoidable, in order to explain such a phe-
nomenon. In this section, wewill investigate themean-square
uniform ultimate boundedness of the switching stochastic
systems with uncertainties by applying the average dwell
time.

Now, we consider the switched stochastic Cohen-Gross-
berg neural networks with unknown parameters as follows:

𝑑𝑥 (𝑡) = −𝛼̂ (𝑥 (𝑡)) [𝛽̂ (𝑥 (𝑡)) − (𝐴
𝜎
(𝑡) + Δ𝐴

𝜎
(𝑡))

⋅ 𝐹 (𝑥 (𝑡)) − (𝐵
𝜎
(𝑡) + Δ𝐵

𝜎
(𝑡)) 𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

− (𝐶
𝜎
(𝑡) + Δ𝐶

𝜎
(𝑡))

⋅ ∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝐹 (𝑥 (𝑠)) 𝑑𝑠 − 𝐽] 𝑑𝑡

+ 𝜎 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔 (𝑡) .

(55)

Theorem 13. For a given constant 𝛽 > 0, 𝜀 > 0, 𝜀
1
> 0,

𝜀
2
> 0, 𝜀

3
> 0, if there exist positive scalars 𝜆

𝑖
, positive-definite

matrix 𝑃
𝑖
= diag(𝑝

𝑖1
, 𝑝

𝑖2
, . . . , 𝑝

𝑖𝑛
), 𝐿 = diag(𝑙

𝑖1
, 𝑙
𝑖2
, . . . , 𝑙

𝑖𝑛
),

𝐷
𝑖
= diag(𝐷

𝑖1
, 𝐷

𝑖2
, . . . , 𝐷

𝑖𝑛
), (𝑖 = 1, 2), 𝑄

𝑖1
, 𝑄

𝑖2
, 𝑄

𝑖3
, 𝑄

𝑖4
, 𝑅

𝑖
,

𝑆
𝑖
, 𝑍̃

𝑖
,𝑍

𝑖
,𝑈

𝑖
, and anymatrices𝑀

𝑖1
,𝑀

𝑖2
,𝑀

𝑖3
with appropriate

dimensions such that the following condition holds:

[
[
[
[
[

[

Δ
1𝑖
𝑀

𝑖1
𝑀

𝑖2
𝑀

𝑖3

∗ −𝜀
1
𝐼 0 0

∗ ∗ −𝜀
2
𝐼 0

∗ ∗ ∗ −𝜀
3
𝐼

]
]
]
]
]

]

< 0, (56)

𝑃
𝑖
< 𝜆

𝑖
𝐼, (57)

where

Δ
1𝑖
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜙
𝑖11

0 0 0 𝜙
𝑖15

0 0 𝜙
𝑖18

𝜙
𝑖19

0 0 0

∗ 𝜙
𝑖22

0 0 0 𝜙
𝑖26

0 𝜙
𝑖28

0 0 0 0

∗ ∗ 𝜙
𝑖33

0 0 0 𝜙
𝑖37

0 𝜙
𝑖39

0 0 0

∗ ∗ ∗ 𝜙
𝑖44

𝜙
𝑖45

0 0 𝜙
𝑖48

𝜙
𝑖49

0 0 0

∗ ∗ ∗ ∗ 𝜙̃
𝑖55

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ 𝜙
𝑖66

0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ 𝜙
𝑖77

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜙̃
𝑖88

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜙̃
𝑖99

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜙
𝑖10

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜙
𝑖11

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜙
𝑖12

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

𝜙
𝑖11
=
1

𝑎
2
[𝛽𝑃

𝑖
− 2Ω

1
𝑃
𝑖
Ω

2
+ 𝜆Π

𝑇

1
Π

1
+ 𝜀Ω

4
𝐷

1
+ 𝑃

𝑖
+

1

4𝛽2
𝐼 + 𝜏

𝑀
𝑒
𝛽𝜏𝑀𝑄

𝑖1
+ 𝜏

𝑚
𝑒
𝛽𝜏𝑚𝑄

𝑖2
+ 𝑒

𝛽𝜏𝑀𝑄
𝑖3
+ 𝜏

𝑀
𝑅
𝑖
+ (𝜏

𝑀
− 𝜏

𝑚
) 𝑆

𝑖

+
𝜏
2

𝑀

4
𝑍
𝑖
+
𝜏
2

𝑀

4
𝑍̃
𝑖
− Ω

3
𝐷

1
] ,

𝜙
𝑖15
= 𝑃

𝑖
𝐴

𝑖
,

𝜙
𝑖18
= 𝑃

𝑖
𝐵
𝑖
,

𝜙
𝑖19
= 𝑃

𝑖
𝐶
𝑖
,

𝜙
𝑖22
= −𝜏

𝑀
𝑄
𝑖1
,

𝜙
𝑖26
= 𝜙

𝑖28
= 0,

𝜙
𝑖33
= −𝜏

𝑚
𝑄
𝑖2
,
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𝜙
𝑖37
= 𝜙

𝑖39
= 0,

𝜙
𝑖44
= 𝜆Π

𝑇

2
Π

2
− Ω

3
𝐷

2
+

1

4𝛽2
𝐼 − (1 − 𝜇)𝑄

𝑖3
,

𝜙
𝑖45
= 0,

𝜙
𝑖48
= Ω

4
𝐷

2
,

𝜙
𝑖49
= 0,

𝜙̃
𝑖55
= 𝑒

𝛽𝜏𝑀𝑄
𝑖4
+ 𝐿𝐾 (𝜄) + 𝜀

−1

Ω
4
𝐷

1
+ 𝜏

2

𝑀
𝑈
𝑖
− 𝐷

1
+
1

𝛽2
𝐼 + 𝜀

1
𝐸
𝑇

𝐴𝑖

𝐸
𝐴𝑖
,

𝜙
𝑖66
= −

𝑒
−𝛽𝜏𝑀

𝜏
𝑀

𝑅,

𝜙
𝑖77
= −

𝑒
−𝛽𝜏𝑀

𝜏
𝑀
− 𝜏

𝑚

𝑆
𝑖
,

𝜙̃
𝑖88
= − (1 − 𝜇)𝑄

𝑖4
− 𝐷

2
+
1

𝛽2
𝐼 + 𝜀

2
𝐸
𝑇

𝐵𝑖

𝐸
𝐵𝑖
,

𝜙̃
𝑖99
= −𝐿

𝑖
+ 𝜀

3
𝐸
𝑇

𝐶𝑖

𝐸
𝐶𝑖
,

𝜙
𝑖10
= − (1 − 𝜇) 𝑒

−𝛽𝜏𝑀𝑈
𝑖
,

𝜙
𝑖11
= −𝑒

−𝛽𝜏𝑀𝑍
𝑖
,

𝜙
𝑖12
= −𝑒

−𝛽𝜏𝑀𝑍̃
𝑖
,

𝑀
𝑖1
= [𝑃

𝑖
𝐻

𝐴𝑖
0 0 0 0 0 0 0 0 0 0 0]

𝑇

,

𝑀
𝑖2
= [𝑃

𝑖
𝐻

𝐵𝑖
0 0 0 0 0 0 0 0 0 0 0 0]

𝑇

,

𝑀
𝑖3
= [𝑃

𝑖
𝐻

𝐶𝑖
0 0 0 0 0 0 0 0 0 0 0 0 0]

𝑇

,

(58)

then system (55) is mean-square uniformly ultimately bounded
for any switching signal with average dwell time satisfying

𝜏
𝑎
> 𝜏

∗

𝑎
=
ln𝑀max
𝛽

, (59)

where𝑀max = Bmax/Υmin,Bmax = max
𝑘∈𝑁,1≤𝑖≤𝑛

{B
𝑖𝑘
}, Υmin =

min
𝑖𝑘
{Υ

𝑖𝑘
}.

Proof. Let us consider the same Lyapunov functional candi-
date

𝑉
𝜎
(𝑡) = 𝑒

𝛽𝑡

𝑥
𝑇

(𝑡) 𝑃
𝜎(𝑡)
𝑥 (𝑡)

+ 𝜏
𝑀
∫

𝑡

𝑡−𝜏𝑀

𝑒
𝛽(𝑠+𝜏𝑀)𝑥

𝑇

(𝑠) 𝑄
1𝜎(𝑡)
𝑥 (𝑠) 𝑑𝑠

+ 𝜏
𝑚
∫

𝑡

𝑡−𝜏𝑚

𝑒
𝛽(𝑠+𝜏𝑚)𝑥

𝑇

(𝑠) 𝑄
2𝜎(𝑡)
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝛽(𝑠+𝜏𝑀)𝑥

𝑇

(𝑠) 𝑄
3𝜎(𝑡)
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝛽(𝑠+𝜏𝑀)𝐹

𝑇

(𝑥 (𝑠)) 𝑄
4𝜎(𝑡)
𝐹 (𝑥 (𝑠)) 𝑑𝑠

+ ∫

0

−𝜏𝑀

∫

𝑡

𝑡+𝜃

𝑒
𝛽𝑠

𝑥
𝑇

(𝑠) 𝑅
𝜎(𝑡)
𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

−𝜏𝑚

−𝜏𝑀

∫

𝑡

𝑡+𝜃

𝑒
𝛽𝑠

𝑥
𝑇

(𝑠) 𝑆
𝜎(𝑡)
𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

+ 𝜏
𝑀
∫

0

−𝜏(𝑡)

∫

𝑡

𝑡+𝜃

𝑒
𝛽𝑠

𝐹
𝑇

(𝑥 (𝑠)) 𝑈
𝜎(𝑡)
𝐹 (𝑥 (𝑠)) 𝑑𝑠 𝑑𝜃

+
𝜏
2

𝑀

2
∫

0

−𝜏𝑀

∫

0

𝜃

∫

𝑡

𝑡+𝜆

𝑒
𝛽𝑠

𝑥
𝑇

(𝑠) 𝑍
𝜎(𝑡)
𝑥 (𝑠) 𝑑𝑠 𝑑𝜆 𝑑𝜃

+

(𝜏
2

𝑀
− 𝜏

2

𝑚
)

2

⋅ ∫

−𝜏𝑚

−𝜏𝑀

∫

0

𝜃

∫

𝑡

𝑡+𝜆

𝑒
𝛽𝑠

𝑥
𝑇

(𝑠) 𝑍̃
𝜎(𝑡)
𝑥 (𝑠) 𝑑𝑠 𝑑𝜆 𝑑𝜃

+

𝑛

∑

𝑗=1

𝑙
𝑗𝜎(𝑡)

∫

∞

0

𝑘
𝑗
(𝛿) ∫

𝑡

𝑡−𝛿

𝑒
𝛽(𝛾+𝛿)

𝐹
2

𝑗
(𝑥

𝑗
(𝛾)) 𝑑𝛾 𝑑𝛿.

(60)

Then, we will compute the stochastic derivative of 𝑉(𝑡)
along the trajectory of system (55). Therefore, from
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Theorem 10, we merely need to obtain the idea of the follow-
ing equalities:

2𝑒
𝛽𝑡

𝑥
𝑇

(𝑡) 𝑃
𝑖
𝛼 (𝑥 (𝑡)) Δ𝐴

𝑖
(𝑡) 𝐹 (𝑥 (𝑡))

= 2𝑒
𝛽𝑡

𝑃
𝑖
𝛼 (𝑥 (𝑡))𝐻

𝐴𝑖
𝐺
𝐴𝑖
(𝑡) 𝐸

𝐴𝑖
𝐹 (𝑥 (𝑡)) ,

2𝑒
𝛽𝑡

𝑥
𝑇

(𝑡) 𝑃
𝑖
𝛼 (𝑥 (𝑡)) Δ𝐵

𝑖
(𝑡) 𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

= 2𝑒
𝛽𝑡

𝑃
𝑖
𝛼 (𝑥 (𝑡))𝐻

𝐵𝑖
𝐺
𝐵𝑖
(𝑡) 𝐸

𝐵𝑖
𝐹 (𝑥 (𝑡 − 𝜏 (𝑡))) ,

2𝑒
𝛽𝑡

𝑥
𝑇

(𝑡) 𝑃
𝑖
𝛼 (𝑥 (𝑡)) Δ𝐶

𝑖
(𝑡) ∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝐹 (𝑥 (𝑠)) 𝑑𝑠

= 2𝑒
𝛽𝑡

𝑃
𝑖
𝛼 (𝑥 (𝑡))𝐻

𝐶𝑖
𝐺
𝐶𝑖
(𝑡)

⋅ 𝐸
𝐶𝑖
∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝐹 (𝑥 (𝑠)) 𝑑𝑠.

(61)

Moreover, by assumption (H5) and Lemma 7, we obtain

2𝑒
𝛽𝑡

𝑥
𝑇

(𝑡) 𝑃
𝑖
𝛼 (𝑥 (𝑡))𝐻

𝐴𝑖
𝐺
𝐴𝑖
(𝑡) 𝐸

𝐴𝑖
𝐹 (𝑥 (𝑡))

≤ 𝑒
𝛽𝑡

𝜀
−1

1
𝛼
2

𝑥
𝑇

(𝑡) 𝑃
𝑖
𝐻

𝐴𝑖
𝐻

𝑇

𝐴𝑖

𝑃
𝑖
𝑥 (𝑡) + 𝑒

𝛽𝑡

𝜀
1
𝐹
𝑇

(𝑥 (𝑡))

⋅ 𝐸
𝑇

𝐴𝑖

𝐸
𝐴𝑖
𝐹 (𝑥 (𝑡)) ,

2𝑒
𝛽𝑡

𝑥
𝑇

(𝑡) 𝑃
𝑖
𝛼 (𝑥 (𝑡))𝐻

𝐵𝑖
𝐺
𝐵𝑖
(𝑡) 𝐸

𝐵𝑖
𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

≤ 𝑒
𝛽𝑡

𝜀
−1

2
𝛼
2

𝑥
𝑇

(𝑡) 𝑃
𝑖
𝐻

𝐵𝑖
𝐻

𝑇

𝐵𝑖

𝑃
𝑖
𝑥 (𝑡)

+ 𝑒
𝛽𝑡

𝜀
1
𝐹
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡)) 𝐸
𝑇

𝐵𝑖

𝐸
𝐵𝑖
𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))) ,

2𝑒
𝛽𝑡

𝑃
𝑖
𝛼 (𝑥 (𝑡))𝐻

𝐶𝑖
𝐺
𝐶𝑖
(𝑡) 𝐸

𝐶𝑖
∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝐹 (𝑥 (𝑠)) 𝑑𝑠

≤ 𝑒
𝛽𝑡

𝜀
−1

3
𝛼
2

𝑥
𝑇

(𝑡) 𝑃
𝑖
𝐻

𝐶𝑖
𝐻

𝑇

𝐶𝑖

𝑃
𝑖
𝑥 (𝑡)

+ 𝑒
𝛽𝑡

𝜀
3
(∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝐹 (𝑥 (𝑠)) 𝑑𝑠)

𝑇

⋅ 𝐸
𝑇

𝐵𝑖

𝐸
𝐵𝑖
∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝐹 (𝑥 (𝑠)) 𝑑𝑠.

(62)

Then, along a similar way to Theorem 10, it can be deduced
that

Δ̃
1𝑖
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜙̃
𝑖11

0 0 0 𝜙̃
𝑖15

0 0 𝜙̃
𝑖18

𝜙̃
𝑖19

0 0 0

∗ 𝜙
𝑖22

0 0 0 𝜙
𝑖26

0 𝜙
𝑖28

0 0 0 0

∗ ∗ 𝜙
𝑖33

0 0 0 𝜙
𝑖37

0 𝜙
𝑖39

0 0 0

∗ ∗ ∗ 𝜙
𝑖44

𝜙
𝑖45

0 0 𝜙
𝑖48

𝜙
𝑖49

0 0 0

∗ ∗ ∗ ∗ 𝜙̃
𝑖55

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ 𝜙
𝑖66

0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ 𝜙
𝑖77

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜙̃
𝑖88

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜙̃
𝑖99

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜙
𝑖10

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜙
𝑖11

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜙
𝑖12

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑃
𝑖
< 𝜆

𝑖
𝐼,

𝜙̃
𝑖11
= 𝛽𝑃

𝑖
− 2Ω

1
𝑃
𝑖
Ω

2
+ 𝜆Π

𝑇

1
Π

1
+ 𝜀Ω

4
𝐷

1
+ 𝑃

𝑖
+

1

4𝛽2
𝐼 + 𝜏

𝑀
𝑒
𝛽𝜏𝑀𝑄

𝑖1
+ 𝜏

𝑚
𝑒
𝛽𝜏𝑚𝑄

𝑖2
+ 𝑒

𝛽𝜏𝑀𝑄
𝑖3
+ 𝜏

𝑀
𝑅
𝑖
+ (𝜏

𝑀
− 𝜏

𝑚
) 𝑆

𝑖

+
𝜏
2

𝑀

4
𝑍
𝑖
+
𝜏
2

𝑀

4
𝑍̃
𝑖
− Ω

3
𝐷

1
+ 𝜀

−1

1
𝛼
2

𝑃
𝑖
𝐻

𝐴𝑖
𝐻

𝑇

𝐴𝑖

𝑃
𝑖
+ 𝜀

−1

2
𝛼
2

𝑃
𝑖
𝐻

𝐵𝑖
𝐻

𝑇

𝐵𝑖

𝑃
𝑖
+ 𝜀

−1

3
𝛼
2

𝑃
𝑖
𝐻

𝐶𝑖
𝐻

𝑇

𝐶𝑖

𝑃
𝑖
,

𝜙̃
𝑖15
= 𝑃

𝑖
𝛼 (𝑥 (𝑡)) 𝐴

𝑖
,

𝜙̃
𝑖18
= 𝑃

𝑖
𝛼 (𝑥 (𝑡)) 𝐵

𝑖
,

𝜙̃
𝑖19
= 𝑃

𝑖
𝛼 (𝑥 (𝑡)) 𝐶

𝑖
.

(63)
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By using Schur’s complement lemma, the LMI (56) is
equivalent to

Δ
1𝑖
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜙
𝑖11

0 0 0 𝜙
𝑖15

0 0 𝜙
𝑖18

𝜙
𝑖19

0 0 0

∗ 𝜙
𝑖22

0 0 0 𝜙
𝑖26

0 𝜙
𝑖28

0 0 0 0

∗ ∗ 𝜙
𝑖33

0 0 0 𝜙
𝑖37

0 𝜙
𝑖39

0 0 0

∗ ∗ ∗ 𝜙
𝑖44

𝜙
𝑖45

0 0 𝜙
𝑖48

𝜙
𝑖49

0 0 0

∗ ∗ ∗ ∗ 𝜙̃
𝑖55

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ 𝜙
𝑖66

0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ 𝜙
𝑖77

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜙̃
𝑖88

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜙̃
𝑖99

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜙
𝑖10

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜙
𝑖11

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜙
𝑖12

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (64)

where

𝜙
𝑖11

=
1

𝛼
2
[𝛽𝑃

𝑖
− 2Ω

1
𝑃
𝑖
Ω

2
+ 𝜆Π

𝑇

1
Π

1
+ 𝜀Ω

4
𝐷

1
+ 𝑃

𝑖

+
1

4𝛽2
𝐼 + 𝜏

𝑀
𝑒
𝛽𝜏𝑀𝑄

𝑖1
+ 𝜏

𝑚
𝑒
𝛽𝜏𝑚𝑄

𝑖2
+ 𝑒

𝛽𝜏𝑀𝑄
𝑖3

+ 𝜏
𝑀
𝑅
𝑖
+ (𝜏

𝑀
− 𝜏

𝑚
) 𝑆

𝑖
+
𝜏
2

𝑀

4
𝑍
𝑖
+
𝜏
2

𝑀

4
𝑍̃
𝑖
− Ω

3
𝐷

1
]

+ 𝜀
−1

1
𝑃
𝑖
𝐻

𝐴𝑖
𝐻

𝑇

𝐴𝑖

𝑃
𝑖
+ 𝜀

−1

2
𝑃
𝑖
𝐻

𝐵𝑖
𝐻

𝑇

𝐵𝑖

𝑃
𝑖

+ 𝜀
−1

3
𝑃
𝑖
𝐻

𝐶𝑖
𝐻

𝑇

𝐶𝑖

𝑃
𝑖
,

𝜙
𝑖15
= 𝑃𝐴,

𝜙
𝑖18
= 𝑃𝐵,

𝜙
𝑖19
= 𝑃𝐶.

(65)

Supposing 𝛼(𝑥(𝑡))𝛼(𝑥(𝑡)) ≤ 𝛼2𝐼 and multiplying both sides
of LMI (64) by

diag {𝛼 (𝑥 (𝑡)) , 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼} , (66)

we derive the LMI Δ̃
1𝑖
< 0.

Therefore, when 𝑡 ∈ [𝑡
𝑘
, 𝑡

𝑘+1
), the 𝑖

𝑘
th subsystem is

activated. From the proof ofTheorem 10 and (53), there exists
a positive constant vectorB

𝑖𝑘
, such that

𝐸 ‖𝑥 (𝑡)‖
2

≤

B
𝑖𝑘
𝐸
󵄩󵄩󵄩󵄩𝑥 (𝑡𝑘)

󵄩󵄩󵄩󵄩

2

𝑒
−𝛽(𝑡−𝑡𝑘) + 𝛽

−1

𝛼
2

𝐽
𝑇

𝑃𝐽 + 𝐻

Υ
𝑖𝑘

= 𝑀
𝑖𝑘
𝐸
󵄩󵄩󵄩󵄩𝑥 (𝑡𝑘)

󵄩󵄩󵄩󵄩

2

𝑒
−𝛽(𝑡−𝑡𝑘) + 𝑁

𝑖𝑘
,

(67)

where 𝑀
𝑖𝑘
= B

𝑖𝑘
/Υ

𝑖𝑘
, Υ

𝑖𝑘
= min

𝑘∈𝑁,1≤𝑖≤𝑛
{𝜆min(𝑃𝑖)}, 𝑁𝑖𝑘

=

(𝛽
−1

𝛼
2

𝐽
𝑇

𝑃𝐽 + 𝐻)/Υ
𝑖𝑘
.

As the system state is continuous, it follows from (67) that

𝐸 ‖𝑥 (𝑡)‖
2

≤

B
𝑖𝑘
𝐸
󵄩󵄩󵄩󵄩𝑥 (𝑡𝑘)

󵄩󵄩󵄩󵄩

2

𝑒
−𝛽(𝑡−𝑡𝑘) + 𝛽

−1

𝛼
2

𝐽
𝑇

𝑃𝐽 + 𝐻

Υ
𝑖𝑘

= 𝑀
𝑖𝑘
𝐸
󵄩󵄩󵄩󵄩𝑥 (𝑡𝑘)

󵄩󵄩󵄩󵄩

2

𝑒
−𝛽(𝑡−𝑡𝑘) + 𝑁

𝑖𝑘
≤ ⋅ ⋅ ⋅

≤ 𝑒
∑
𝑘

V=0 ln𝑀𝑖V−𝛽(𝑡−𝑡0)𝐸
󵄩󵄩󵄩󵄩𝑥 (𝑡0)

󵄩󵄩󵄩󵄩

2

+ [𝑀
𝑖𝑘
𝑒
−𝛽(𝑡−𝑡𝑘)𝑁

𝑖𝑘

+𝑀
𝑖𝑘
𝑀

𝑖𝑘−1
𝑒
−𝛽(𝑡−𝑡𝑘−1)𝑁

𝑖𝑘−1

+𝑀
𝑖𝑘
𝑀

𝑖𝑘−1
𝑀

𝑖𝑘−2
𝑒
−𝛽(𝑡−𝑡𝑘−2)𝑁

𝑖𝑘−2
+ ⋅ ⋅ ⋅

+ 𝑀
𝑖𝑘
𝑀

𝑖𝑘−1
𝑀

𝑖𝑘−2
⋅ ⋅ ⋅𝑀

𝑖1
𝑒
−𝛽(𝑡−𝑡1)𝑁

𝑖1
+ 𝑁

𝑖𝑘
]

≤ 𝑒
(𝑘+1) ln𝑀max−𝛽(𝑡−𝑡0)𝐸

󵄩󵄩󵄩󵄩𝑥 (𝑡0)
󵄩󵄩󵄩󵄩

2

+ [𝑀
𝑘

max𝑁max

+𝑀
(𝑘−1)

max 𝑁max +𝑀
(𝑘−2)

max 𝑁max + ⋅ ⋅ ⋅ + 𝑀
2

max𝑁max

+𝑀max𝑁max + 𝑁max]

≤ 𝑀max𝑒
𝑘 ln𝑀max−𝛽(𝑡−𝑡0)𝐸

󵄩󵄩󵄩󵄩𝑥 (𝑡0)
󵄩󵄩󵄩󵄩

2

+

𝑁max (1 −𝑀
(𝑘+1)

max )

1 −𝑀max

≤ 𝑀max𝑒
ln𝑀max𝑁𝜎(𝑡−𝑡0)−𝛽(𝑡−𝑡0)𝐸

󵄩󵄩󵄩󵄩𝑥 (𝑡0)
󵄩󵄩󵄩󵄩

2

+

𝑁max (1 −𝑀
(𝑘+1)

max )

1 −𝑀max
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≤ 𝑀max𝑒
𝑁0 ln𝑀max−(𝛽−ln𝑀max/𝑇𝛼)(𝑡−𝑡0)𝐸

󵄩󵄩󵄩󵄩𝑥 (𝑡0)
󵄩󵄩󵄩󵄩

2

+

𝑁max (1 −𝑀
(𝑘+1)

max )

1 −𝑀max

≤
Bmax𝑒

𝑁0 ln𝑀max−(𝛽−ln𝑀max/𝑇𝛼)(𝑡−𝑡0)𝐸
󵄩󵄩󵄩󵄩𝑥 (𝑡0)

󵄩󵄩󵄩󵄩

2

Υmin

+

(𝛽
−1

𝛼
2

𝐽
𝑇

𝑃𝐽 + 𝐻) (1 −B(𝑘+1)

max /Υ
(𝑘+1)

min )

Υmin −Bmax
.

(68)

If one chooses

𝐵̃ = √
1

Υmin
+

(𝛽
−1

𝛼
2

𝐽
𝑇

𝑃𝐽 + 𝐻) (1 −B(𝑘+1)

max /Υ
(𝑘+1)

min )

Υmin −Bmax

> 0,

(69)

then for any constant 󰜚 > 0 and ‖𝜑‖ < 󰜚 there is 𝑡󸀠 = 𝑡󸀠(󰜚) > 0,
such that Bmax𝑒

𝑁0 ln𝑀max−(𝛽−ln𝑀max/𝑇𝛼)(𝑡−𝑡0)𝐸‖𝑥(𝑡
0
)‖

2

< 1 for
all 𝑡 ≥ 𝑡󸀠. According to Definition 3, we have 𝐸‖𝑥(𝑡, 𝑡

0
, 𝜑)‖ <

𝐵̃ for all 𝑡 ≥ 𝑡
󸀠. In other words, the switched stochastic

Cohen-Grossberg neural networks system (55) is mean-
square uniformly ultimately bounded. This completes the
proof.

Theorem 14. If all of the conditions of Theorem 10 hold, then
there exists an attractor A

𝐵̃
for the solutions of system (55),

where Ã
𝐵̃
= {𝜑 ∈ 𝐿

𝑏

F0
| 𝐸‖𝜑(𝑠)‖

∞
≤ 𝐵̃, 𝑡 ≥ 𝑡

0
}.

Proof. If one chooses

𝐵̃ = √
1

Υmin
+

(𝛽
−1

𝐽
𝑇

𝑃𝐽 + 𝐻) (1 −B(𝑘+1)

max /Υ
(𝑘+1)

min )

Υmin −Bmax

> 0,

(70)

then Theorem 10 shows that, for any 𝜙, there is 𝑡󸀠 > 0; we
have 𝐸‖𝑥(𝑡, 𝑡

0
, 𝜙)‖ < 𝐵̃ for all 𝑡 ≥ 𝑡󸀠. Let Ã

𝐵̃
= {𝜑 ∈ 𝐿

𝑏

F0
|

𝐸‖𝜑(𝑠)‖
∞

≤ 𝐵̃, 𝑡 ≥ 𝑡
0
}. Clearly, Ã

𝐵̃
is closed, bounded,

and invariant. Furthermore, lim
𝑡→∞

sup inf
𝑦∈Ã
𝐵̃

‖𝑥(𝑡; 𝑡
0
, 𝜙) −

𝑦‖ = 0. Therefore, Ã
𝐵̃
is an attractor for the solutions of sys-

tem (55).

Corollary 15. In addition to all of the conditions ofTheorem 13
that hold, if 𝐽 = 0, 𝐹

𝑗
(0) = 0, then system (55) has a trivial

solution 𝑥(𝑡) ≡ 0, and the trivial solution of system (55) is
mean-square exponentially stable.

Proof. If 𝐽 = 0, 𝐹
𝑗
(0) = 0, then it is obvious that system (55)

has a trivial solution 𝑥(𝑡) ≡ 0. FromTheorem 10, one has

𝐸
󵄩󵄩󵄩󵄩𝑥 (𝑡; 𝑡0, 𝜙)

󵄩󵄩󵄩󵄩

2

≤ Υ̃𝑒
−𝛽(𝑡−𝑡0), ∀𝜙, (71)

where Υ̃ = (Bmax𝑒
𝑁0 ln𝑀max+(ln𝑀max/𝑇𝛼)(𝑡−𝑡0)/Υmin)𝐸‖𝑥(𝑡0)‖

2.
Therefore, the trivial solution of system (55) is mean-

square exponentially stable. This completes the proof.

Remark 16. It is noteworthy that the time-varying delay 𝜏(𝑡)
restricts the interval [𝜏

𝑚
, 𝜏

𝑀
] and the lower bound of time

delay 𝜏
𝑚
may not be equal to 0. In previous work, such as

[19, 24, 26, 37], the well-used Lyapunov functional, in which
the time delay information is from 0 to an upper bound
𝜏
𝑀
, is of the form ∫

0

−𝜏𝑀

∫
𝑡

𝑡+𝜃

. In this paper, a new Lyapunov
functional is constructed, which contains the information of
the lower bound of time delay 𝜏

𝑚
, and is of the form ∫

−𝜏𝑚

−𝜏𝑀

∫
𝑡

𝑡+𝜃

.
Thus the methods in the paper can be adopted to discuss
the dynamic behaviors of interval stochastic switchedCohen-
Grosberg neural networks with time delays. Therefore, the
time-varying from 𝜏

𝑚
to 𝜏

𝑀
is more general and less conserv-

ing of the neural networks models. If the lower bound of time
delay 𝜏

𝑚
= 0, then our results will turn into the traditional

time delay results.

Remark 17. It is known that noise disturbance is a major
source of instability and poor performances in neural net-
works in real neural networks. If 𝜎(𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝜏(𝑡))) = 0,
the switched stochastic Cohen-Grossberg neural networks
(8) degenerate into the ordinary switched Cohen-Grossberg
neural networks, which have been studied for exponential
stability in [22] and robust stability in [37]. In addition, when
𝛼
𝑖
(𝑥

𝑖
(𝑡)) = 1, 𝑖 = 1, 2, . . . , 𝑛, the switched Cohen-Grosberg

neural networks will turn into the famous switched Hopfield
neural networks; this has been investigated in [28] without
distributed time delay and for global robust asymptotic
stability in [32] with finite distributed time delay. However,
the infinite distributed time delay was not taken into account
in neural networks. Therefore, our developed results in this
paper are more comfortable and general than those reported
in [28, 32, 37].

Remark 18. If 𝑁 = 1, then the switched stochastic Cohen-
Grossberg neural networks (8) degenerate into the ordi-
nary stochastic Cohen-Grossberg neural networks without
being switched.The attractor and boundedness for stochastic
Cohen-Grossberg neural networks with delays have been
discussed in [35] by LaSalle-type theorem and stability has
been studied in [2, 18, 19]. So our results generalize these
previous results.

Remark 19. The triple integral terms

∫

0

−𝜏𝑀

∫

0

𝜃

∫

𝑡

𝑡+𝜆

𝑒
𝛽𝑠

𝑥
𝑇

(𝑠) 𝑍𝑥 (𝑠) 𝑑𝑠 𝑑𝜆 𝑑𝜃,

∫

−𝜏𝑚

−𝜏𝑀

∫

0

𝜃

∫

𝑡

𝑡+𝜆

𝑒
𝛽𝑠

𝑥
𝑇

(𝑠) 𝑍̃𝑥 (𝑠) 𝑑𝑠 𝑑𝜆 𝑑𝜃

(72)

considered in this paper lead to new dynamic criteria. We
make full use of Lemma 6 and do not ignore any terms,
which can reduce some conservatism of proposed method.
This can be verified from the numerical examples discussed
in Section 5.

Remark 20. It should bementioned that the nonlinear output
function in [2, 18, 24, 35, 37, 38] is required to satisfy 𝐹

𝑗
(0) =

0; however, in our paper, the assumption condition was



16 Discrete Dynamics in Nature and Society

deleted. In assumption (H1), the constants 𝛿−
𝑖
and 𝛿+

𝑖
are

allowed to be positive, negative, or zero, whereas the constant
𝛿
−

𝑖
is restricted to be zero or positive in [2, 18, 26, 35].

Moreover, assumption (H2) is weaker than those given in
[26, 35] since they are required to be differentiable of the
amplification function 𝛼̂(𝑥(𝑡)). The usual condition (H3)
required to the behaved function 𝛽̂(𝑥(𝑡)) is differentiable in
[18, 37] or satisfies (𝛽

𝑗
(𝑢) − 𝛽

𝑗
(V))/(𝑢 − V) ≥ 𝛾

𝑖
, (𝑢, V ∈ 𝑅) or

𝛽
𝑖
(0) = 0 in [26]. If we take 𝛽̂

𝑖
(𝑥(𝑡)) = 𝑥(𝑡)𝑒

|𝑥(𝑡)/2|, obviously,
the assumption (H3) in this paper holds; yet, the conditions
in [26] can not be achieved.

4. Illustrative Examples

In this section, we present examples to show the effectiveness
of the proposedmethod. Let𝑁 = 2 and consider the switched
stochastic neural networks with two subsystems.

Example 1. Consider the following switched stochastic
Cohen-Grossberg neural network (73)with unknownparam-
eters:

𝑑𝑥 (𝑡) = −𝛼̂ (𝑥 (𝑡)) [𝛽̂ (𝑥 (𝑡)) − (𝐴
𝑖
+ Δ𝐴

𝑖
(𝑡)) 𝐹 (𝑥 (𝑡))

− (𝐵
𝑖
+ Δ𝐵

𝑖
(𝑡)) 𝐹 (𝑥 (𝑡 − 𝜏 (𝑡))) − (𝐶

𝑖
+ Δ𝐶

𝑖
(𝑡))

⋅ ∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝐹 (𝑥 (𝑠)) 𝑑𝑠 − 𝐽] 𝑑𝑡

+ 𝜎 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔 (𝑡) ,

(73)

where Δ𝐴
𝑖
(𝑡), Δ𝐵

𝑖
(𝑡), Δ𝐶

𝑖
(𝑡) are uncertainties, satisfying

Δ𝐴
𝑖
(𝑡) = 𝐻

𝐴𝑖
𝐺
𝐴𝑖
(𝑡)𝐸

𝐴𝑖
, Δ𝐵

𝑖
(𝑡) = 𝐻

𝐵𝑖
𝐺
𝐵𝑖
(𝑡)𝐸

𝐵𝑖
, Δ𝐶

𝑖
(𝑡) =

𝐻
𝐶𝑖
𝐺
𝐶𝑖
(𝑡)𝐸

𝐶𝑖
, where 𝐺

𝐴𝑖
, 𝐺

𝐵𝑖
, 𝐺

𝐶𝑖
are normal bounded

matrices. Let 𝛼̂(𝑥(𝑡)) = diag(3 + sin(𝑥
1
), 3 + cos(𝑥

2
)),

𝛽̂
𝑖
(𝑥

𝑖
(𝑡)) = 2𝑥

𝑖
(𝑡), 𝑓

𝑖
(𝑥

𝑖
(𝑡)) = tanh(𝑥

𝑖
(𝑡)) (𝑖 = 1, 2), 𝐾(𝑡) =

diag(2𝑒−(3/2)𝑡, (1/2)𝑒−2𝑡), 𝐽 = (2, 3)
𝑇 and the connection

weight matrices are as follows.

Subsystems 1. Consider

𝐴
1
= (

5 −2

−1 3
) ,

𝐵
1
= (

6 −2

3 4
) ,

𝐶
1
= (

8 2

−5 2
) ,

𝐸
𝐴1
= (

0.5 0

0 0.4
) ,

𝐸
𝐵1
= (

0.1 0.3

0 0.4
) ,

𝐸
𝐶1
= (

0.1 0

0 0.7
) .

(74)

Subsystems 2. Consider

𝐴
2
= (

2 3

−2 7
) ,

𝐵
2
= (

9 3

−3 4
) ,

𝐶
2
= (

2 2

−1 5
) ,

𝐸
𝐴2
= (

0.1 0

0 0.2
) ,

𝐸
𝐵2
= (

0.1 0

0.3 0.2
) ,

𝐸
𝐶2
= (

0.3 0

0 0.5
) ,

Π
1
= (

0.5 0

0 0.5
) ,

Π
2
= (

0.1 0

0 0.1
) ,

𝐻
𝐴𝑖
= 𝐻

𝐵𝑖
= 𝐻

𝐶𝑖
= (

3 0

0 5
) ,

𝐺
𝐴𝑖
(𝑡) = 𝐺

𝐵𝑖
(𝑡) = 𝐺

𝐶𝑖
(𝑡) = (

sin 𝑡 0

0 cos 𝑡
) .

(75)

Just from assumptions (H1) and (H2), we can obtain 𝛼 =
2, 𝛼 = 4, 𝑏

𝑖
= 1.5, 𝛿−

𝑖
= 0, 𝛿+

𝑖
= 1, 𝜏

𝑚
= 0.1, 𝜏

𝑀
= 0.6, 𝑖 = 1, 2,

𝜇 = 0.5, 𝜄 = 1, 𝐾(1) = diag(4, 1/2).
Therefore, for 𝛽 = 2, by solving LMIS (56) and (57), we

get

𝑃
1
= 1 × 10

−3

(
0.1551 0

0 0.1551
) ,

𝑄
11
= (

1.3273 −0.0001

−0.0001 1.3550
) ,

𝑄
21
= (

17.8857 −0.0011

−0.0011 18.0732
) ,

𝑄
31
= (

1.4294 0.0001

0.0001 1.3633
) ,

𝑄
41
= (

33.2092 0.0020

0.0020 39.9381
) ,

𝑆
1
= (

3.7674 −0.0002

−0.0002 3.7960
) ,
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𝑅
1
= (

3.6154 −0.0002

−0.0002 3.6527
) ,

𝑈
1
= (

42.8137 −0.0140

−0.0140 43.1853
) ,

𝑍
1
= (

11.3563 −0.0003

−0.0003 11.3904
) ,

𝑍̃
1
= (

11.4414 −0.0003

−0.0003 11.4748
) ,

𝐿
1
= (

6.3948 0

0 6.3948
) ,

𝑃
2
= 1 × 10

−3

(
0.1885 0

0 0.1885
) ,

𝑄
12
= (

1.5297 −0.0001

−0.0001 1.6248
) ,

𝑄
22
= (

20.2951 −0.0004

−0.0004 20.5209
) ,

𝑄
32
= (

1.7322 0.0002

0.0002 1.6554
) ,

𝑄
42
= (

40.2433 0.0049

0.0049 47.6254
) ,

𝑆
2
= (

4.2168 −0.0001

−0.0001 4.2518
) ,

𝑅
2
= (

4.0988 −0.0001

−0.0001 4.1437
) ,

𝑈
2
= (

47.0352 −0.0358

−0.0358 47.1122
) ,

𝑍
2
= (

12.4873 0

0 12.5300
) ,

𝑍̃
2
= (

12.5778 0

0 12.6198
) ,

𝐿
2
= (

6.9869 0

0 6.9869
) ,

𝜆
1
= 1.78,

𝜆
2
= 2.18.

(76)

Taking 𝐹
𝑗
(0) = 0, 𝐽 = 0 and using (59), we can obtain the

average dwell time 𝜏
𝑎
> 𝜏

∗

𝑎
= max{6.6718, 6.8237}.Therefore,

one can choose 𝜏
𝑎
= 7.The simulations of arbitrary switching

signal with the average dwell time 𝜏
𝑎
= 7 can be shown in

Figure 1.
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Figure 1: Arbitrary switching signal with the average dwell time 𝜏
𝑎
=

7.
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Figure 2: The mean-square exponential stability with the initial
value as 𝑥

0
= [−8, 8].

Themean-square exponential stability of system (55)with
the initial value as 𝑥

0
= [−8, 8] can be shown in Figure 2.

With the help of MATLAB, the time evolutions of state
variables of the system (55) can be shown in Figure 3. In the
above conditions, phase portraits of simulations under initial
condition of the system (55) are shown in Figure 4.

5. Conclusion

This paper has studied the problem of boundedness for a class
of switched stochastic Cohen-Grossberg neural networks
with both average dwell time and norm-bounded parameter
uncertainties. By employing multiple Lyapunov-Krasovskii
functionals (25) and (60), we formulate amethod that derives
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Figure 3: The mean-square uniformly ultimate boundedness.
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Figure 4: The attractor set A.

new sufficient conditions guaranteeing the mean-square uni-
formly ultimate boundedness, the existence of an attractor,
and the mean-square exponential stability. A numerical
example has been presented to demonstrate the effectiveness
and the merits of the proposed method. It is expected that
the approach presented in this paper can be easily extended
to analyze other neural networks.
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