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In this paper a nonlinear Gabor Wavelet Transform (GWT) discriminant feature extraction approach for enhanced face recognition
is proposed. Firstly, the low-energized blocks from Gabor wavelet transformed images are extracted. Secondly, the nonlinear
discriminating features are analyzed and extracted from the selected low-energized blocks by the generalized Kernel Discriminative
Common Vector (KDCV) method. The KDCV method is extended to include cosine kernel function in the discriminating method.
The KDCV with the cosine kernels is then applied on the extracted low-energized discriminating feature vectors to obtain the real
component of a complex quantity for face recognition. In order to derive positive kernel discriminative vectors, we apply only
those kernel discriminative eigenvectors that are associated with nonzero eigenvalues. The feasibility of the low-energized Gabor-
block-based generalized KDCV method with cosine kernel function models has been successfully tested for classification using the
L1, L2 distance measures; and the cosine similarity measure on both frontal and pose-angled face recognition. Experimental results
on the FRAV2D and the FERET database demonstrate the effectiveness of this new approach.

1. Introduction

Face authentication has gained considerable attention in the
near past through the increasing need for access verification
systems using several modalities like voice, face image, finger-
prints, pin codes, and so forth. Such systems are used for the
verification of a user’s identity on the Internet, when using
automated banking system, or when entering into a secured
building, and so on. The Gabor wavelet transformation
(GWT) models well the receptive field profiles of the cortical
simple cells and also has the properties of multiscale and
multidirectional filtering. These properties are in accordance
with the characteristics of human vision [1–3]. Further, the
discriminant analysis is an effective image feature extraction
and recognition technique as they allow the extraction of
discriminative features, reduce dimensionality, and consume
less computing time [4, 5]. In our previous work [6],
we combined the GWT and Bayesian principal component
analysis (PCA) techniques and presented a GWT-Bayesian
PCA face recognition method which outperforms some

conventional linear discriminating methods. As an extension
of linear discriminant technique, the kernel based nonlinear
discriminant analysis technique has now been widely applied
to the field of pattern recognition. Baudat and Anouar
[7] developed a commonly used generalized discriminant
analysis (GDA) method for nonlinear discrimination. Jing et
al. [8] put forward a Kernel Discriminative Common Vectors
(KDCVs) method. In this paper we develop blockbased GWT
KDCV and propose a block-based low-energized nonlinear
GWT discriminant feature extraction for enhanced face
recognition. As the high energized blocks of GWT image
generally have larger nonlinear discriminability values. Then
the nonlinear discriminant features are extracted from the
selected low-energized block of GWT image by presenting
a new generalized KDCV method is then extended to
include cosine kernel model which extracts the nonlinear
discriminating features from the selected blocks to get the
best recognition result. These features are finally used for
classification using three different classifiers. The experimen-
tal results demonstrate the effectiveness of this new approach.
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In this paper a novel method is proposed based on
selecting low-energized blocks of Gabor wavelet responses
as feature points, which contain discriminate facial feature
information, instead of using predefined graph nodes as
in elastic graph matching (EGM) [9], which reduces rep-
resentative capability of Gabor wavelets. This corresponds
to enhancement of edges for eyes, mouth, nose, which are
supposed to be the most important points of a face; hence
the algorithm allows these facial features to keep overall face
information along with local characteristics.

The remainder of this paper is organized as follows.
Section 2 describes the derivation of low-energized blocks
from the GWT images. Section 3 details the generalized
KDCV method with cosine kernel function for enhanced
face recognition. Section 4 shows the performance of the
proposed method on the face recognition by applying it on
the datasets from the FERET [10], and FRAV2D [11] face
databases, and by comparing it with some of the previous
KDCV methods and we conclude our paper in Section 5.

2. 2D Gabor Wavelets

Gabor wavelets are used in image analysis because of their
biological relevance and computational properties [12, 13].
The Gabor transform is suitable for analyzing gradually
changing data such as the face, iris, and eyebrow images. The
Gabor filter used here has the following general form:

ϕμ,ν(z) =
∣
∣
∣kμ,ν

∣
∣
∣

2

σ2
e−‖kμ,ν‖2‖z‖2/2σ2

[

eikμ,νz − e−(σ2/2)
]

, (1)

where μ and ν define the orientation and scale of Gabor
kernels, respectively, z = (x, y) is the variable in spatial
domain, ‖ · ‖ denotes the norm operator, and kμ,ν is the
frequency vector which determines the scale and orientation
of Gabor kernels, kμ,ν = kνeiφμ where kν = kmax/ f ν and
kmax = π/2, φμ = πμ/8, μ = 0, . . . , 7, where f is the spacing
factor. Here Gabor wavelets at five different scales, ν ∈
{0, . . . , 4} and eight orientations μ ∈ {0, . . . , 7} are chosen.
The term e−(σ2/2) is subtracted from (1) in order to make the
kernel DC-free, thus becoming insensitive to illumination.
The magnitude of the convolution outputs is indicated
as Oμ,υ(z). The kernels exhibit strong characteristics of
spatial locality and orientation selectivity, making them a
suitable choice for image feature extraction when one’s goal
is to derive local and discriminating features for (face)
classification.

2.1. Gabor-Based Feature Representation. The Gabor wavelet
representation of an image is the convolution of the image
with a family of Gabor kernels as defined in (1). Let I(x, y)
be the gray level distribution of an image, the convolution
output of image I and a Gabor kernel ϕμ,υ is defined as

Oμ,υ(z) = I(z)∗ ϕη,υ(z), (2)

where z = (x, y), and ∗ denotes the convolution operator.

Applying the convolution theorem, convolution outputs
are derived from (2) via the Fast Fourier Transform (FFT):

�
{

Oμ,υ(z)
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= �{I(z)}�
{

ϕμ,υ(z)
}

,

Oμ,υ(z) = �−1
{

�{I(z)}�
{

ϕμ,υ(z)
}}

,
(3)

Here �, �−1 denote the forward and inverse discrete Fourier
transforms, respectively. The outputs Oμ,υ(z), where v ∈
{0, . . . , 4}, {μ ∈ {0, . . . , 7}}, consist of different local, scale,
and orientation features in both real and imaginary parts
in the specific locality as described later in Section 2.2. The
magnitude of Oμ,υ(z) is defined as modulus of Oμ,υ(z), that
is, ‖Oμ,υ(z)‖.

2.2. Low-Energized Block Based GWT Feature Extraction.
It is to be noted that we considered the magnitude of
Oμ,υ(z), but did not use the phase, which is consistent
with the application of Gabor representations [14, 15]. As
the outputs (Oμ,ν(z) : μ ∈ {0, . . . , 4}, v ∈ {0, . . . , 7})
consist of 40 different local scale and orientation features,
the dimensionality of the Gabor transformed image space
is very high. So the following technique is applied for the
extraction of low-energized discriminability feature vector χk
from the convolution outputs. The method for the extraction
of low-energized block based features from the GWT image
is explained in Algorithm 1.

Algorithm 1. Consider

Step 1. Find the convolution outputs of the original image
with all the Gabor kernels. As the convolution outputs
contain complex values, so replace each pixel value of the
convolution output by its modulus and the resultant image is
termed as GI , where I = 1, 2, . . . , k, k = total Gabor kernels.

Step 2. Obtain the final single Gabor transformed image
IGF =

∑k
I=1 GI , k = no. of Gabor kernels.

Step 3. Compute the overall mean (g) of the final Gabor
transformed image IGF as, g = (1/(m × n))

∑

x,y IGF(x, y),
where m× n is the size of image.

Step 4. Divide the final Gabor transformed image IGF into
windows of size ω × ω. Thus the total number of windows,
l = �m/ω� × �n/ω�.

Step 5. For each window wi, if minimum (wi) ≤ g, then
extract a block Bi of size c × c from wi, with centre pixel as
the minimum (wi). The value of c must be odd integer and
less than ω/2.

Step 6. For each window wi, if minimum (wi) ≤ g, and there
does not exist block Bi of size c × c from wi as mentioned in
Step 5, with centre pixel as the minimum (wi), then create
a block Bi of size c × c, by considering the unavailable pixel
values as g.

Step 7. For each window wi, if minimum (wi) > g, then
create a pseudo block Bi of size c × c with all elements as g.
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Step 8. Extract feature vector fi from each block Bi in a
systematic order, where fi contains all elements of the block
Bi.

Step 9. Concatenate all the feature vectors fi, i = 1, 2, . . . , l to
obtain the final feature vector χ, which is the final extracted
low-energized feature vector. This extracted feature vector
χ encompasses the low valued discriminable elements of
the Gabor transformed image, and the size of this feature
vector is [(Total no. of blocks) × (size of the block)] which
is much lower in dimension in comparison to the original
image (dimension: m× n) and the GWT image (dimension:
k ×m× n).

Thus this augmented Gabor feature vector encompasses
most of the discriminable feature elements of the Gabor
wavelet representation set, S = (Oμ,υ(z) : μ ∈ {0, . . . , 4}, υ ∈
{0, . . . , 7}). The window size ω × ω is one of the important
features of the above algorithm, as it must be chosen small
enough to capture most of the important features and large
enough to avoid redundancy. Since it is observed that there
are some windows each of whose minimum value is not less
than the overall mean, so Step 7 is applied in order not to get
stuck on a local minimum.

In the experiments we took a window and a block
of size 7 × 7 and 3 × 3, respectively, to extract the low-
energized feature vector. Thus the extracted facial features
can be compared locally, instead of using a general structure,
allowing us to make a decision from the parts of the face.

3. Generalized Kernel Discriminative Common
Vector (KDCV) Method

Sometimes the discriminative common vectors are not
distinct in the original sample space. In such cases one can
map the original sample space to a higher-dimensional space
F, where the new discriminative common vectors in the
mapped space are distinct from one another. This is because
a mapping, Φ : RN → F, x → φ(x), can map two
vectors that are linearly dependent in the original sample
space onto two vectors that are linearly independent in F.
As the mapped space can have arbitrarily large, possibly
infinite, dimensionality, hence it is reasonable to use the DCV
method.

Let Φ = {Φ(x1
1),Φ(x1

2) · · ·Φ(x1
N1

),Φ(x2
1) · · ·Φ(xcNc

)}
represent the matrix whose columns are the transformed
training samples in F. Here c is the number of training
classes; the ith class contains Ni samples. The within-class
scatter matrix SΦW , the between-class scatter matrix SΦB , and
the total scatter matrix SΦT in F are given by

sΦW = (φ − φG
)(

φ − φG
)T ;

sΦB =
(

φU − φL
)(

φU − φL
)T ;

sΦT =
(

φ − JMφ
)(

φ − JMφ
)T = SΦB + SΦW ,

(4)

where μΦ is the mean of all samples, and μΦi is the mean of
samples of the ith class in F. Here G = diag(G1,G2, . . . ,Gc) ∈

RM×M is a block-diagonal matrix and each Gi ∈ RNi×Ni

is a matrix with all its elements equal to 1/Ni; U =
diag(u1,u2, . . . ,uc) is a block-diagonal matrix and each ui ∈
RNi×1 is a vector with all its elements equal to 1/Ni; L =
diag(l1, l2, . . . , lc) ∈ RM×C is a block-diagonal matrix and
each li ∈ RM×1 is a vector with the entries

√

Ni/M; JM ∈
RM×M is a matrix with entries 1/

√
M. The aim of the DCV

algorithm is to acquire the optimal projection transform W
in the null space of SW [16]:

J(W) = arg max
WTSWW=0

∣
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∣
∣
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∣
∣
∣WTSTW

∣
∣
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The approach for computing this optimal projection vector
is as follows.

Step 10. Project the training set samples onto the range
R(SΦT ) of SΦT through the Kernel PCA.

Step 11. Find vectors V that span the null space of S̃ΦW .

Step 12. Remove the null space of VTS̃ΦB V if it exists.

Step 13. Obtain the final projection matrix W , which will
then be W = (Φ−Φ1M)UΛ−1/2VL, where Λ is the diagonal
matrix with nonzero eigenvalues, U , the associated matrix of
normalized eigenvectors, and V is the basis for the null space
of S̃ΦW , here there are at most (C − 1) projection vectors.

Let the common vector be Φ(xicom), then each of the
feature vectors can be written as Φ(xim) = Φ(xicom) +Φ(xidiff),
where Φ(xicom) ∈ V⊥, and Φ(xim diff) ∈ V .

Here Φ(xicom) and Φ(xim diff) represent the common and
different parts of Φ(xim) separately. It has been proved by
Gülmezoğlu et al. [17] that for all samples of the ith class,
their common vector parts are same. The common vector can
be written as Φ(xicom) = Φ(xim)−Φ(xim diff).

Thus, a set of common vectors for is obtained as:

Q = {Φ(x1
com

)

,Φ
(

x2
com

) · · ·Φ(xccom

)}

. (6)

Compute the optimal projection transform. Let S̃Φcom denote
the total scatter matrix of Q. Wcom is composed of the
eigenvectors corresponding to the positive eigenvalues of
S̃Φcom. Wcom is designed to satisfy the criteria:

J(W) = arg max
WTS̃WW=0

WTS̃WW

J(W) = arg max
WTS̃WW=0

WTSΦcomW
(7)

Wdiff is calculated from the different vectors. Wdiff is
composed of the eigenvectors corresponding to the positive
eigenvalues of S̃ΦT diff. The optimal projection transform W is
obtained as

W =Wdiff + Wcom. (8)

Thus for each sample Φ(x) in the kernel space using the
generalized nonlinear KDCV method, we construct W and
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then extract the kernel discriminative common and different
vector Ycom and Ydiff. Then, Ycom = WT

comΦ(x), and Ydiff =
WT

diffΦ(x). Finally,

Y = Ydiff + Ycom. (9)

Thus we obtain a new sample set Y corresponding to
X . This sample set Y is used for image classification. All
mathematical properties of the linear DCV are carried over
to the kernel DCV method with the modifications that are
applied to the mapped samples, Φ(xim), i = 1, 2, . . . , c, where
c = 1, 2, . . . ,Ni. After performing the feature extraction, all
training set samples of each class typically give rise to a single
distinct discriminative common vector.

3.1. KDCV Approach Using Cosine Kernel Function. Let
χ1, χ2, . . . , χn ∈ RN be the data in the input space, and Φ
be a nonlinear mapping between the input space and the
feature space; Φ : RN → F. Generally three classes of
kernel functions are used for nonlinear mapping: (a) the
polynomial kernels, (b) the Radial Basis Function (RBF)
kernels, and (c) the sigmoid kernels [18].

The RBF kernels, are also known as isotropic stationary
kernels, are defined by Φ : [0,∞) → R such that k(x, x′) =
Φ(‖x − x′‖), where x, x′ ∈ χ ⊂ R, and ‖ · ‖ is the norm
operator. Normally a Gaussian function is preferred as the
RBF, in most of the RBF kernels in pattern classification
applications. The Gaussian function for RBF kernels is given
by k(x, x′) = exp(−‖x − x′‖/σ2). But the globally used RBF
kernels yield dense Gram matrices, which can be highly ill-
conditioned for large datasets.

So in this work the cosine kernel function is considered
as the kernel function Φ, defined by

Φ
(

x, y
) = π

4
cos

(

π
(

x · y)
2

)

. (10)

This result can be expressed in terms of the angle θ

between the inputs: θ = cos−1(Φ(x, y)/
√

(Φ(x, x))Φ(y, y)).
This shows that this kernel has a dependence on the angle
between the inputs.

As a practical matter, we note that cosine kernels do
not have any continuous tuning parameters (such as kernel
width in RBF kernels), which can be laborious to set by cross
validation.

Large margin classifiers are known to be sensitive to
the way features are scaled [19]. Therefore it is essential to
normalize either the data or the kernel itself. The recognition
accuracy can severely degrade if the data is not normalized
[19]. Normalization can be performed at the level of the
input features or at the level of the kernel. It is often beneficial
to scale all features to a common range, for example, by
standardizing the data. An alternative way to normalize is to
convert each feature vector into a unit vector. If the data is
explicitly represented as vectors one can normalize the data
by dividing each vector by its norm such that ‖x‖ = 1, after
normalization. Here normalization is performed at the level
of the kernel, that is, normalizing in feature-space, leading
to φ(x) = 1 (or equivalently that k(x, x) = 1). This is accom-
plished by using the cosine kernel which normalizes a kernel

k(x, x′) to kcosine(x, x′) = k(x, x′)/
√

k(x, x) · k(x′, x′). Nor-
malizing data to unit vectors reduces the dimensionality of
the data by one since the data is projected to the unit sphere.

In order to derive positive kernel nonlinear discriminat-
ing features (9), we consider only those eigenvectors that are
associated with positive eigenvalues.

4. Similarity Measures and Classification

Finally the lower-dimensional, low-energized extracted fea-
ture vector of the GWT image is used as the input data
instead of the whole image in the proposed method to derive
the kernel discriminative feature vector, W , using (8). Let
M′

k be the mean of the training samples for class wk, where
k = 1, 2, . . . , l where l is the number of classes. The classifier
then applies, the nearest neighbor (to the mean) rule for
classification using the similarity (distance) measure δ:

δ
(

Y ,M′
j

)

= min
k

(

δ
(

Y ,M′
k

))

=⇒ Y ∈ wj. (11)

The low-energized KDCV vector YL is classified to that class
of the closest mean M′

k using the similarity measure δ. The
similarity measures used here are L1 distance measure, δL1 ,
L2 distance measure, δL2 , and the cosine similarity measure,
δcos, which are defined as

δL1 =
∑

i

|Xi − Yi|, (12)

δL2 = (X − Y)T(X − Y), (13)

δcos = −XTY

‖X‖‖Y‖ , (14)

where T is the transpose operator and ‖·‖ denotes the norm
operator. Note that the cosine similarity measure includes
a minus sign in (14) because the nearest neighbour (to the
mean) rule (11) applies minimum (distance) measure rather
than maximum.

4.1. Experiments of the Proposed Method on Frontal and Pose-
Angled Images for Face Recognition. This section assesses
the performance of the low-energized Gabor-block-based
KDCV method for both frontal and pose-angled face recog-
nition. The effectiveness of the low-energized block based
KDCV method is successfully tested on FRAV2D and FERET
databases. For frontal face recognition, the data set is taken
from the FRAV2D database, which consists of 1100 frontal
face images corresponding to 100 individuals. The images are
acquired, with partially occluded face features and different
facial expressions. For pose-angled face recognition, the data
set taken from the FERET database contains 2200 images of
200 individuals with different facial expressions and poses.
Further studies have been made on the FERET dataset using
the standard protocols, that is, the Fa, Fb, DupI, and DupII
set to assess the performance of the proposed method.

4.1.1. FRAV2D Face Database. The FRAV2D face database,
employed in the experiment, consists of 1100 colour face
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Table 1: Average recognition results using FRAV2D database.

Recognition accuracy (%)

Method No. of training samples Average recognition rates (%)

3 4

GWT 85.5 89.5 87.5

KDCV 79.5 82 80.75

GWT-LDA 88.3 90.33 89.33

GWT-KDCV (RBF) 87 90 88.5

GWT-KDCV (Cosine) 88 90 89

GWT-KDCV (RBF, low-energized) 90 92.5 91.25

GWT-KDCV (Cosine, low-energized) 96.125 97.75 96.9

Table 2: Specificity and sensitivity measure of the FRAV2D dataset.

Total no. of classes = 100, total no. of images = 1800

Individual belonging to a particular class

Using first 3 images of an individual as training images

Positive Negative

FRAV2D test
Positive TP = 759 FP = 7

Negative FN = 41 TN = 693

Sensitivity = TP/(TP + FN ) ≈ 94.875% Specificity = TN/(FP + TN ) = 99.0%

Using first 4 images of an individual as training images

Positive Negative

FRAV2D test
Positive TP = 678 FP = 2

Negative FN = 22 TN = 698

Sensitivity = TP/(TP + FN ) ≈ 96.85% Specificity = TN/(FP + TN ) ≈ 99.7%

So considering the first 4 images in Figures 2(a)–2(d) of a particular individual for training the achieved rates are as follows.
False positive rate = FP/(FP + TN ) = 1 − Specificity = .3%.
False negative rate = FN /(TP + FN ) = 1 – Sensitivity = 3.15%.
Accuracy = (TP + TN )/(TP + TN + FP + FN ) ≈ 98.3%.
So considering the first 3 images in Figures 2(a)–2(c) of a particular individual for training the achieved rates are as follows.
False positive rate = FP/(FP + TN ) = 1 − Specificity = 1%.
False negative rate = FN /(TP + FN ) = 1 – Sensitivity = 5.125%.
Accuracy = (TP + TN )/(TP + TN + FP + FN ) ≈ 96.9%.

images of 100 individuals, 11 images of each individual are
taken, including frontal views of faces with different facial
expressions, under different lighting conditions. All colour
images are transformed into gray images and are scaled to
a size of m × n here (92 × 112) is used. The details of the
images are as follows: Figure 1(a) regular facial status; Figures
1(b) and 1(c) are images with a 15◦ turn with respect to the
camera axis; Figures 1(d) and 1(e) are images with a 30◦

turn with respect to the camera axis. Figures 1(f) and 1(g)
are with gestures, such as smiles, open mouth, winks, laughs;
Figures 1(h) and 1(i) are images with occluded face features;
Figures 1(j) and 1(k) are images with change of illumination.
Figure 3 shows all samples of one individual.

4.1.2. Specificity and Sensitivity Measures for the FRAV2D
Dataset. To measure the sensitivity and specificity [23]
the dataset from the FRAV2D database is prepared in the
following manner. For each individual a single class is
constituted with 18 images. Thus a total of 100 classes are
obtained, from the dataset of 1100 images of 100 individuals.

Out of the 18 images in each class, 11 images are of a
particular individual, and 7 images are of other individuals
taken by permutation as shown in Figure 2. Using this dataset
the true positive (TP); false positive (FP); true negative (TN );
false negative (FN ) are measured. From the 11 images of the
particular individual, at first the first 4 images Figures 2(a)–
2(d), then the first 3 images Figures 2(a)–2(c) of a particular
individual are selected as training samples and the remaining
images of the particular individual are used as positive testing
samples. The negative testing is done using the images of the
other individuals. Figure 2 shows all sample images of one
class of the dataset used from FRAV2D database.

4.1.3. FERET Face Database. The FERET database, employed
in the experiment here, contains 2,200 facial images corre-
sponding to 200 individuals with each individual contribut-
ing 11 images. The images in this database were captured
under various illuminations, which display a variety of facial
expressions and poses. As the images include the background
and the body chest region, so each image is cropped to
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Table 3: Average recognition results using FERET database.

Recognition rates (%)

Method No. of training samples Average recognition rates (%)

3 4

GWT 79.65 82.5 81.1

KDCV 69.5 75 72.25

GWT-LDA 82.76 85.33 84.1

GWT-KDCV (RBF) 81 82.50 81.75

GWT-KDCV (Cosine) 83 85 84.5

GWT-KDCV (RBF, low-energized) 88.5 91.5 90

GWT-KDCV (Cosine, low-energized) 92.5 95.75 94.1

Table 4: Specificity and sensitivity measure of the FERET dataset.

Total no. of classes = 200, Total no. of images = 3600

Individual belonging to a particular class

Using first 3 images of an individual as training images

Positive Negative

Positive TP = 1492 FP = 16

FERET test Negative FN = 108 TN = 1384

Sensitivity = TP/(TP + FN ) ≈ 93.25% Specificity = TN/(FP + TN ) ≈ 98.8%

Using first 4 images of an individual as training images

Positive Negative

Positive TP = 1316 FP = 10

FERET test Negative FN = 84 TN = 1390

Sensitivity = TP/(TP + FN ) ≈ 94% Specificity = TN/(FP + TN ) ≈ 99.28%

So considering the first 4 images in Figures 4(a)–4(d) of a particular individual for training the achieved rates are:
False positive rate = FP/(FP + TN ) = 1 − Specificity = .72%.
False negative rate = FN /(TP + FN ) = 1 – Sensitivity = 6%.
Accuracy = (TP + TN )/(TP + TN + FP + FN ) ≈ 96.6%.
So considering in the first 3 images Figures 4(a)–4(c) of a particular individual for training the achieved rates are:
False positive rate = FP/(FP + TN ) = 1 − Specificity = 1.2%.
False negative rate = FN /(TP + FN ) = 1 – Sensitivity = 6.75%.
Accuracy = (TP + TN )/(TP + TN + FP + FN ) ≈ 96.1%.

exclude those, and are transformed into gray images and
is scaled to m × n here (92 × 112) is used. Figure 3 shows
all samples of one subject. The details of the images are
as follows: Figure 3(a) regular facial status; Figure 3(b) +15◦

pose angle; Figure 3(c) −15◦ pose angle; Figure 3(d) +25◦

pose angle; Figure 3(e) −25◦ pose angle; Figure 3(f) +40◦

pose angle; Figure 3(g) −40◦ pose angle; Figure 3(h) +60◦

pose angle; Figure 3(i) −60◦ pose angle; Figure 3(j) alterna-
tive expression; Figure 3(k) different illumination.

First 4 images of each individual, that is, Figures 3(a)–
3(d) are regarded as training samples. The remainders are
regarded as testing samples. After that 3 images of each
individual, that is, Figures 3(a)–3(c) are regarded as training
samples.

4.1.4. Specificity and Sensitivity Measure for the FERET
Dataset. To measure the sensitivity and specificity, the
dataset from the FERET database is prepared in the following
manner. For each individual a single class is constituted
with 18 images. Thus a total of 200 classes are obtained,
from the dataset of 2200 images of 200 individuals. Out of

these 18 images in each class, 11 images are of a particular
individual, and 7 images are of other individuals taken
using permutation as shown in Figure 4. Similarly using this
dataset from the FERET dataset the specificity and sensitivity
are being measured. From the 11 images of the particular
individual, at first the first 4 images Figures 4(a)–4(d), then
the first 3 images Figures 4(a)–4(c) of a particular individual
are selected as training samples and the remaining images of
the particular individual are used as positive testing samples.
The negative testing is done using the images of the other
individuals. Figure 4 shows all sample images of one class of
the dataset used from FERET database.

4.2. Further Evaluation on the FERET Face Dataset. We
further use the FERET face database for testing our proposed
method, as it is one of the most widely used databases to
evaluate face recognition algorithms [20]. FERET contains a
gallery set, Fa, and four testing sets: Fb, Fc, DupI, and Dup II.
In the Fa set, there are 1196 images and contains one image
per individual. The Fb set has 1195 images of people with
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Table 5: Recognition results of different algorithms on the FERET probe sets.

Method
FERET probe sets

Fb (%) Fc (%) Dup I (%) Dup II (%)

Phillips et al. [20] 96 82 59 52

Local Gabor binary pattern histogram sequence, [21] 98 97 74 71

Grassmann registration manifolds for face recognition, [22] 98 98 80 84

Low-energized Gabor-block-based KDCV with RBF kernels (Gauss) using cosine measure. 96 97 79 81

Low-energized Gabor-block-based KDCV with cosine kernels using L1 measure. 95 96 79 80

Low-energized Gabor-block-based KDCV with cosine kernels using L2 measure. 96 97 86 82

Low-energized Gabor-block-based KDCV with cosine kernels using cosine measure. 98 98 89 84

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k)

Figure 1: Demonstration images of an individual from the FRAV2D database.

different gestures. In the Fc set, there are 194 images under
different lighting conditions. The DupI set has 722 images
of pictures taken between 0 and 34 months of difference
with those taken for Fa. The DupII set contains 234 images
acquired at least 18 months after the Fa set. DupII is a subset
of DupI. Figure 4 shows samples from FERET face database.
All images are aligned and cropped to 112× 92 according to
[24].

The extracted low-energized Gabor feature vector is
considered as input to a trained KDCV with cosine kernel

and its output is compared with a gallery set using the L1,
L2, and cosine similarity measure. The recognition rates of
different methods on the FERET probe sets are shown in
Table 5. The results are compared with the most recent state-
of-the-art with the FERET database. Our results with the
FERET database are equivalent (with a difference of ±1%)
to the most recent works on the FERET dataset. Note that
the methods described in [21, 22] use the Gabor wavelets
to generate their feature vectors. As the Gabor wavelets
have a much higher algorithmic complexity, so the overall
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Figure 2: Demonstration images of one class from the FRAV2D database.

computing cost is very high. On the other hand, our block-
based low-energized Gabor feature is a very low-dimensional
feature vector which reduces the algorithmic complexity.
Also with the use of cosine kernel as the kernel function in
the KDCV makes the proposed method quite fast and more
suitable to real applications.

Furthermore, we compare the face recognition perfor-
mance of our proposed low-energized GWT-KDCV method
using cosine kernels, with some other well-known methods
like generalized discriminant analysis (GDA) method [7],
(EGM) [9], Discrete Cosine transformation (DCT) and
linear discriminant analysis (LDA), DCT-LDA method [4],
DCT-GDA [23], GWT-LDA, DCT-KDCV method [25], and
the Gabor fusion KDCV method [8]. Classification results
obtained from the proposed method are comparable or even
better in some cases than above-mentioned methods. Also
the cosine similarity measure is more suitable for classifying

the nonlinear real KDCV features shown in the tables, Tables
1, 2, 3, 4, 5, and 6.

As the proposed method performs best with the cosine
similarity classifier, so the specificity rate of the proposed
method is evaluated for the FERET and FRAV2D dataset
using the cosine similarity measure shown in Figure 7.

4.3. Results. Experiments conducted using the low-energized
block based Gabor KDCV method, with three different simi-
larity measures on both the FERET and FRAV2D databases
are shown in Figures 5 and 6. Considering, only the low
dimensional, low-energized features of GWT image, greatly
improves the computing speed of nonlinear discriminant
method. The results of recognition accuracy (in terms of
sensitivity) versus dimensionality reduction (number of
features) and the cumulative match curves using the three
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k)

Figure 3: Demonstration images of one individual from the FERET database.

Table 6: Comparison of recognition accuracy of various methods
with the proposed method.

Method Highest recognition accuracy

GDA 78.04%

Elastic graph matching (EGM) [9] 80.00%

DCT-LDA 80.87%

GWT 81.1%

DCT-GDA 82.84%,

GWT-LDA 84.1%

DCT-KDCV 85.13%

Gabor fusion KDCV 91.22%

Proposed approach 94.25%

different similarity measures are shown in Figures 5 and 6.
From the results on both FERET and FRAV2D database it
is seen that the cosine similarity measure performs the best,
followed in order by the L2 and the L1 measure.

Figures 5 and 6 indicate that the proposed method
performs well with a lower dimension as well. These results
show that there is certain robustness to age and illumination.
Our results indicate that

(i) the low-energized block-based Gabor features with
KDCV approach greatly enhance the face recognition
performance as well as reduce the dimensionality of
the feature space when compared with the Gabor
features as shown in Tables 1 and 3. For example,
the similarity measure improves the face recognition
accuracy by almost 10% using only the few low-
energized Gabor features with improved discrimina-
tive power compared to the original Gabor features as
shown in Tables 1 and 3.

(ii) The proposed method further enhances face recog-
nition with the use of cosine kernel along with the
cosine similarity measure.

Experimental result indicates that the use of cosine
kernels in the KDCV further increases the discriminative
power of the feature vector extracted from the low-energized
block of GWT image and hence, is an effective feature
extraction approach, performing better way to extract more
effective discriminating features than the GDA. The extracted
low-energized feature vector by the proposed Algorithm 1
of Section 2.2 enhances the face recognition performance in
presence of occlusions. Experimentally it has been observed
that this method is less time consuming than the EGM and
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(a) (b) (c) (d) (e) (f)
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Figure 4: Demonstration images of one class from the FERET dataset.

other well-known algorithms [4, 21, 22, 24, 25]. (a) Our
results show that the proposed method greatly enhances
recognition performance, (b) reduces the dimensionality of
the feature space, and (c) the Cosine similarity distance
classifier further increases the face recognition accuracy, as
it calculates the angle between two vectors and is not affected
by their magnitude.

5. Conclusion

This paper introduces a novel block-based GWT generalized
KDCV method using the cosine kernel for frontal and
pose-angled face recognition. As cosine kernel function
is used here, so there is no need of data normalization
and the parameter tuning can be avoided as in the case

of (RBF) Gaussian kernels. Also the derived low dimen-
sional low-energized features are characterized by spatial
frequency, locality, and orientation selectivity to cope with
the variations due to illumination and facial expression
changes as a property of Gabor kernels. Such characteristics
produce salient local features, such as the eyes, nose, and
mouth, that are suitable for face recognition. The KDCV
method extended with cosine kernel is then applied on
these extracted feature vectors to finally obtain only the
real nonlinear discriminating kernel feature vector with
improved discriminative power, containing salient facial
features that are compared locally instead of a general
structure, and hence allows to make a decision from the
different parts of a face and thus maximizes the benefit of
applying the idea of “recognition by parts.” So the method
performs well in presence of occlusions (e.g., sunglass, scarf
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Figure 5: Face recognition performance of the proposed method
using cosine kernel function and considering the first 3 images as
training set on the FERET dataset, with the three different similarity
measures: cos (cosine similarity measure), L2 (L2 distance measure),
L1 (L1 distance measure).
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Figure 6: Face recognition performance of the proposed method
using cosine kernel function and considering the first 3 images
as training set on the FRAVD2D dataset, with the three different
similarity measures: cos (cosine similarity measure), L2 (L2 distance
measure), L1 (L1 distance measure).
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Figure 7: Negative recognition performance of the proposed
method using cosine similarity distance measure on the FRAV2D
and FERET dataset.

etc.) that is when there are sunglasses or any other obstacles
the algorithm compares face in terms of mouth, nose, and
other features rather than the eyes.
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