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With the rapid development and application ofCRFs (Conditional RandomFields) in computer vision,many researchers havemade
some outstanding progress in this domain becauseCRFs solve the classical version of the label bias problemwith respect toMEMMs
(maximum entropyMarkovmodels) andHMMs (hiddenMarkovmodels).This paper reviews the research development and status
of object recognition with CRFs and especially introduces two main discrete optimization methods for image labeling with CRFs:
graph cut and mean field approximation.This paper describes graph cut briefly while it introduces mean field approximation more
detailedly which has a substantial speed of inference and is researched popularly in recent years.

1. Introduction

Recognizing and labeling objects and properties in a given
image is an important task in computer vision. The goal of
image labeling is to label every pixel or groups of pixels in
the image with one of several predetermined semantic object
or property categories, for example, “dog,” “building,” and
“car.” It is a natural ability for human beings to perform
object recognition effortlessly, but it is not straightforward
for a computer to do so. Researchers [1–4] are still trying to
improve the image labeling technique to reach a better result
in terms of speed and accuracy. Figure 1 is an example of label
image labeling.

Image labeling usually includes several issues: first we
should set up a model and train it; then we will make
inference of labeling for a new image. The state-of-the-art of
algorithmic solution to image labeling is yet to reach a sat-
isfactory state, especially for the process of inference. Graph
cut method [5–8]was popular previously. But the speed of
graph cutmethod is very slow, especiallywhen there aremany
labels. In [1], Vineet et al. are able to achieve remarkable
speed-ups and improvements in accuracywith graph cut base
inference techniques comparing with the baseline method
in both joint stereo-object labeling and object class segmen-
tation. However, their method [9] has two limitations: the
first is the fact that mean field approximation assumes com-
plete factorization over the individual variables; the second

limitation relates to the form of the pairwise weights in the
formula which are a linear combination of Gaussian kernels.
See Section 3.2 for more details of these two limitations.

Naturally, human beings understand a scene mainly by
using the spatial and visual information assimilated through
their eyes. Inversely, given an image or several images, this
information, such as boundary or object, is extremely neces-
sary for scene interpretation. What we hope is to capture the
full interaction between pixels. Due to the sensor noise and
complexity of the real world, researchers realize that the solu-
tion of vision problems can be transformed to some equiva-
lent optimization process as exact interpretation is unap-
proachable for computers.

In the early history of computer vision, Markov random
field (MRF) was popularly used in both low-level and high-
level vision perception after it was first introduced into vision
by S. Geman and D. Geman in 1984 [10]. The MRF provides
a mathematical framework to find optimal solutions by using
the contextual visual information in the images. Recently, the
MRFmodel regained attention in the field of computer vision
thanks to the progress in powerful energyminimization algo-
rithms [3] such as graph cut [6], belief propagation [11], dual
decomposition [12], fusion move [13], and iterated condi-
tional modes. The MRF has been applied to image problems
such as restoration, matting [14], segmentation, optical flow,
object classification [15, 16], face recognition [17], and text
recognition [18].
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(b) A labeling

Figure 1: An example of image labeling. An image in (a) is a set of pixels 𝑃 with observed intensities 𝐼𝑝 for each 𝑝 ∈ 𝑃. A labeling 𝐿 shown in
(b) assigns some label 𝐿𝑝 ∈ {0, 1, 2} to each pixel 𝑝 ∈ 𝑃. Such labels can represent depth (in stereo), object index (in segmentation), original
intensity (in image restoration), or other pixel properties. Thick lines in (b) show labeling discontinuities between neighboring pixels [5].

(a) Stereo matching (b) Image segmentation (c) Image restoration

Figure 2: Some examples of labeling problems in computer vision. For stereo matching, the goal is to find the corresponding pixel in one
image given a pixel in another image. Its label set is the differences (disparities) between corresponding pixels. For image segmentation, its
goal is to partition an image into multiple disjoint regions with region IDs as its label set. For image restoration, it tries to “compensate for”
or “undo” defects which degrade an image, and its label set is restored intensities or color.

Object classification can be formulated as a pixel labeling
problem; that is, the correct label is to be assigned to each
pixel or clique where the label of a pixel represents some
property in the real scene, such as the same object or disparity.
In [3], Chen et al. introduced the background, basic concepts,
and fundamental formulation of image labeling with MRF.
They discussed two distinct types of discrete optimization
method, that is, belief propagation and graph cut. And they
further applied them to the solutions of two classical vison
problems: stereo and binary image segmentation using MRF
model. Figure 2 shows some examples of labeling problems
in computer vision.

It was later recognized that the image labeling problem
can be naturally described with a Conditional Random Fields
(CRFs) model [1].The CRFmodel was first proposed by John
Lafferty et al. [19] in 2001. In their work they present iterative
parameter estimation algorithms for Conditional Random
Fields and compare the performance of the resulting models
to HMMs and MEMMs on synthetic and natural-language

data.The CRFmodel is brought to image labeling by Shotton
et al., Peng and McCallum, and Kristjansson et al. [20–22].

The use of CRFs was originally restricted in the area of
Information Extraction [22–25], in which, given a dataset,
the problem is to extract relevant information that belongs to
some predefined types. Since the datasets are mostly linguis-
tic, imposing a chain structure on the texts is both effective
in capturing temporal relations and efficient in inference and
learning for texts is inherently sequential. Therefore, CRFs
have been quickly adopted in a wide range of text processing
applications, such as part-of-speech tagging (POS), chunking
[26, 27], and semantic role labeling [28]. Later on, the appli-
cation of CRFs has been expanded to word alignment [29],
question answering [30], and document summarization [31].

Recently, the research of the CRF model in computer
vision has been very popular, as it can be solved by efficient
energy minimization algorithms. The efficiency of inference
is a critical issue for CRFs in training and predicting the labels
on new inputs. After training a CRF model, the marginal



Mathematical Problems in Engineering 3

distribution over subsets of labels is computed so as to
estimate the parameters of the model. As a result, it can be
used to predict the labels of a new input such as a new image
using themost likely labels. A lot of inference algorithms have
been deployed to solve the CRF optimization problems, such
as iterated conditional modes [32], Monte Carlo methods
[33], graph cutmethods [5–8], andmessage passingmethods,
in which mean field inference [1, 34] and belief propagation
[35] are the two most popular ways, and people also devel-
oped many extensions around the methods.

Local information is well captured by the standard form
of a CRF [6, 36]. Since it is not effective for modeling global
information as it often fails to capture global consistency
in image recognition, researches on how to capture global
information of images in CRF with different forms [5–7, 37]
become a hot area. To capture both local and global informa-
tion of images makes the learning and inference very tough;
we should not only focus on the accuracy of the method, but
also consider the efficiency which turns out to be very poor
with the increasing number of the input, such as the dimen-
sions of the feature captured, or the number of input images.
Therefore, many methods [38–41] have been proposed to
solve such a problem. Recently, a number of cross bilat-
eral Gaussian filter-based methods have been proposed for
problems such as object class segmentation [34], denoising
[42], and stereo and optical flow [2]; all of these permit
substantially faster inference, which maintains or improves
accuracy as well. On the basis of [6], Vineet et al. [1] showhow
higher-order terms can be formulated such that filter-based
inference remains possible and demonstrate their techniques
on joint stereo and object labeling problems, as well as object
class segmentation. In fact, they show that they are able to
speed up inference in these model around 10–30 times with
respect to competing graph cut methods.

In this paper, we review the progress in the inference of
image labelingwithCRFmodels. Asmentioned above, a good
inference method algorithm is critical in both predicting a
new label with a new input and learning the parameters of the
model to satisfy the goals of accuracy and efficiencywhich are
two main aspects that we pursue.

Section 2 gives themodel of CRFs and their extensions. In
Section 3, wemainly introduce two inferencemethods: graph
cut and mean field approximation which are widely used in
recent years. And we conclude this paper in Section 4.

2. The Model of CRFs

A CRF is a discriminative undirected probabilistic graphical
model that can represent relationships between different
variables [20, 43]. The structure of a CRF model helps to
estimate the unobserved ones given the observed ones. The
classical CRF model is described as follows [34].

Denote by 𝑋 the input variable and 𝑌 = (𝑦1, 𝑦2, . . . , 𝑦𝑁)
the joint output variable. The input variable𝑋 represents our
knowledge about the domain such as color and texture. The
output 𝑌 can be continuous or discrete, but, in most cases, all
the labels we set are discrete.

We would like to model the mapping from𝑋 to 𝑌 via the
conditional distribution 𝑃(𝑌 | 𝑋). As a result, we are only
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Figure 3: An example of 5th-order neighbor system.

interested in the output structure conditioned on the input.
CRFs approach the modeling of 𝑃(𝑌 | 𝑋) by representing 𝑌
as a Markov random field. More precisely, let 𝐺 = (𝑉, 𝐸) be
an undirected graph, where𝑉 is the set of nodes in the graph
and each node corresponds to a variable 𝑦𝑖, and 𝐸 is the set of
edges. Let 𝑛 = |𝑉| denote the number of nodes in the graph.
Define𝑋 as the set of input randomvariables and𝑌 = {𝑦V}V∈𝑉

as the set of output random variables where 𝑉 = 𝑋 ∪ 𝑌
and each 𝑦V (V ∈ 𝑉) takes a value from a range of possible
discrete labels. In a conditional random field, we assume
that each random variable 𝑦V obeys the Markov property
when conditioned on𝑋, such that the conditional probability
distribution of 𝑦V given its adjacent nodes is independent of
the rest of the nodes in the graph. That is, if 𝐺 is such a
graphical model that

𝑃 (𝑦V | 𝑋, 𝑦𝑤, 𝑤 ̸= V) = 𝑝 (𝑦V | 𝑋, 𝑦𝑤, 𝑤 ∈ 𝑁 (V)) , (1)

where 𝑁(V) is the set of adjacent nodes of V, the (𝑌,𝑋) is
conditional random field (CRF). Let 𝑁 = {𝑁V | ∀V ∈
𝑉} represent the neighbor system to indicate the interrela-
tionship between nodes or the order of CRF. The edges are
added between one node 𝑃V and its neighbors 𝑁V. Usually,
the neighbor system should satisfy the following:

(1) A site does not neighbor with itself: 𝑖 ∉ 𝑁𝑖.
(2) The neighboring relationship is mutual: 𝑖 ∈ 𝑁𝑗 ⇔ 𝑗 ∈

𝑁𝑖.

The definition of the neighbor system is important because
it reflects how far the contextual constraint is. For regular
data, as in Figure 3, the neighbors of 𝑖 are defined as the
set of sites within a radius of sqrt(𝑟) from 𝑖 where 𝑟 is the
order of the neighbor system. One has 𝑁𝑖 = {𝑖, 𝑗 ∈ 𝑉 |

[dis(pixel𝑖, pixel𝑗)]
2
≤ 𝑟, 𝑖 ̸= 𝑗}, where dis(𝑖, 𝑗) measures the

Euclidean distance between 𝑎 and 𝑏.
In object recognition problems, the observations 𝑋 are

often the image data themselves, or extracted visual features,
and 𝑌 correspond to the outputs of vision system, for
example, possible class labels of the image to be classified,
which is shown in Figure 4.

Tomake the concept clear, we only consider the casewhen
each variable in 𝑉 takes a value from a range of possible
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Figure 4: The model of CRF in image labeling. 𝑦𝑖 represents the
label in 𝑖th pixel, and 𝑥𝑖 is the features of the corresponding pixel
such as color and texture. The red lines in this figure only connect
neighboring pixels which means each random variable 𝑦𝑖 obeys the
Markov property.

discrete labels, although they can be either continuous or
discrete in a more general case. The paper will describe it in
two aspects: probabilistic and energy function.

Under probabilistic understanding, it gets the set of all
maximal cliquesΛ of𝐺, by using 𝑥 and 𝑦 to denote the values
assigned to variables 𝑋 and 𝑌, respectively. The conditional
probability distribution of a CRF can be written as

𝑃 (𝑦 | 𝑥) =
1

𝑍 (𝑥)
∏

𝐴∈Λ

Ψ𝐴 (𝑥𝐴, 𝑦𝐴) , (2)

where the so-called potential function or compatibility func-
tion Ψ𝐴 is a nonnegative potential function defined over 𝐴
which is a maximal clique in 𝐺. 𝑍 is a normalization factor
which is also called partition function depending on the
observed values of input variable 𝑥 and is defined as

𝑍 (𝑥) = ∑

𝑦

∏

𝐴∈Λ

Ψ𝐴 (𝑥𝐴, 𝑦𝐴) . (3)

We also assume that the conditional distribution over
graph 𝐺 is an exponential family [44]; thus we require each
potential function Ψ𝐴 to have the form

Ψ𝐴 = exp{∑
𝑘

𝑤𝐴𝑘𝑓𝐴𝑘 (𝑥𝐴, 𝑦𝐴)} , (4)

where 𝑤𝐴 is a real-valued parameter vector and {𝑓𝐴𝑘} is a set
of feature functions defined on the potential Ψ𝐴.

To simplify the solution to the energy function (see (2)),
one can take the negative logarithm of the left hand side and
right side of (2), and the problem of maximizing the condi-
tional probability becomes an energy minimization problem.
In practice, we usually model structures using pairwise con-
straints, since inference is easier in this case and the model
parameters are easy to learn. For example, in computer vision
problems, we often see CRFs with maximal cliques of size 2.
In this case we can write down the energy as

𝐸 (𝑦 | 𝑥) = ∑

𝑖

𝐷(𝑦𝑖 | 𝑥) +∑

𝑖,𝑗

𝑉(𝑦𝑖, 𝑦𝑗 | 𝑥) , (5)

where we call 𝐷 the unary potential and 𝑉 the pairwise
potential. Occasionally we also use high-order cliques and
there are special types of high-order clique potentials that are
useful in a few applications.

Probabilistic models need to be normalized properly and
in many cases require evaluating intractable integrals over
the space of all possible variable configurations.While energy
functions have no such normalization requirement, thus they
provide more flexibility in designing the architecture of the
underlying graphical model.

The standard form [1, 25] of a CRF is good for modeling
local information. We can write down the form of the
standard CRF as follows:

𝑃std (𝐿 | 𝑋)

=
1

𝑍𝑠td
exp
{

{

{

∑

𝑖∈𝑆

𝑓𝑖 (𝑙𝑖 | 𝑋) + 𝛼∑

𝑖∈𝑆

∑

𝑗∈𝑁𝑖

𝑓𝑖𝑗 (𝑙𝑖, 𝑙𝑗 | 𝑋)

}

}

}

,

(6)

where𝑋 is an input image, 𝐿 = {𝑙𝑖}𝑖∈𝑆 represents labeling, and
𝑙𝑖 is a category label at size 𝑖. 𝑆 is a set of sites in the image,𝑁𝑖

is a set of neighbors of 𝑖, and 𝛼 is a coefficient that modulates
the effects of the potentials.

In fact, the unary potential𝑓𝑖 represents relations between
labels and local image features. It predicts label 𝑙𝑖 based on
the local features at site 𝑖. And the pairwise potential 𝑓𝑖𝑗
represents relationships between labels of neighboring sites.
It means if neighboring sites have similar image features,
𝑓𝑖𝑗 favors the same category label for them; if not, they
might be assigned different category labels. So the pairwise
potential 𝑓𝑖𝑗 works for data-dependent smoothing. What
is important is that both potentials represent only local
information, as a result, the global information was lost, and
some intuitive mistakes can happen; for example, a “dog”
might appear in the water [43]. Using the global information,
some classificationmistakes in image labeling will be avoided
which is shown in Figure 5.

Later on, the multiscale CRF [43] (mCRF) was invented
to use regional and global label features that encode partic-
ular label patterns at local and global scales. The form of
mCRF can be presented below by multiplicatively combining
component conditional distributions that capture statistical
structure at different spatial scale 𝑠:

𝑃 (𝐿 | 𝑋) =
1

𝑍
∏

𝑠

𝑃𝑠 (𝐿 | 𝑋) . (7)

Although the mCRF uses regional and global label fea-
tures, it hasmassive variables and parameters to be estimated.
And it also involves inefficient stochastic sampling for learn-
ing and label inference. So the overwhelmingly large dataset
size and number of classes are its limitations in practical
application.

The boosted random fields [37] model long-range inter-
actions learned by using a boosting algorithm [45]. The
hierarchical CRF [23] (hCRF) uses a hierarchical structure of
CRFs to model long-range interaction (e.g., relative config-
urations of objects or regions) and short-range interactions
(e.g., pixel-wise label smoothing) in a tractable manner. Its
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(a) (b)

(c) (d)

Figure 5: (a, b) Two small image patches that are difficult to label based on local information. (c, d) Images containing the patches. We will
usually make mistakes in such classification problems if we use only the local information because the color and texture features in these two
patches are too similar. However, as described in (c, d), the global context makes it clear what the patches are ((a, c) water; (b, d) sky) [43].

two-layer formulation to exploit different levels of contextual
information in images for robust classification is general
enough to be applied to different domains ranging frompixel-
wise image labeling to contextual object detection. Both of
these two methods do not incorporate global information of
the image and thus make the labeling highly dependent on
local information.

The random field model proposed by Toyoda and
Hasegawa [46] explicitlymodels local information and global
information in conditional randomfield.Themethod extracts
global image features as well as local ones and uses them to
predict the scene of the input image. The form is

𝑃 (𝐿 | 𝑋) =
1

𝑍
exp
{

{

{

∑

𝑖∈𝑆

𝑓𝑖 (𝑙𝑖 | 𝑋)

+ 𝛼∑

𝑖∈𝑆

∑

𝑗∈𝑁𝑖

𝑓𝑖𝑗 (𝑙𝑖, 𝑙𝑗 | 𝑋)

+ 𝛽∑

𝑖∈𝑆

𝑔𝑖 (𝑙𝑖 | 𝑋) + 𝜆∑

𝑖∈𝑆

∑

𝑗∈𝑁𝑖

𝑔𝑖𝑗 (𝑙𝑖, 𝑙𝑗 | 𝑋)

}

}

}

,

(8)

where 𝑔𝑖 and 𝑔𝑖𝑗 are global unary potential and global
pairwise potential, respectively, 𝛼, 𝛽, and 𝜆 are coefficients
that modulate the effects of the potentials, and 𝑍 is the
partition function for normalization.The global unary poten-
tial 𝑔𝑖 represents relationships between labels and global
image features. It predicts the spatial configuration of labels
according to the scene of the input image.The global pairwise
potential 𝑔𝑖𝑗 represents the compatibility of all pairs of labels.
This method not only incorporates the local information
and global information, but also enables rapid processing
by using the global image features. However, it will not do
the classification well if there are too many classes (there are
only 7 classes in their experiments) because the relationship
between classes becomes substantially complex.

Some researchers [47–49] move their research point to
the higher-order cliques. In fact, most energy minimization
methods for solving computer vision problems assume that
the energy can be represented in terms of unary pair-
wise clique potentials. As a result, this assumption severely
restricts the representational power of these models making
them unable to capture the rich statistics of natural scenes
[50], while higher-order clique potentials have the capability
to model complex interactions of random variables and thus
could overcome this problem. The initial work with high-
order potentials [36, 50–52] has been quite promising but
their use has been limited due to the unavailability of efficient
algorithms for minimizing the resulting energy functions.
Kohli et al. [49] extend the class of energy functions for
which the optimal 𝛼-expansion and 𝛼𝛽-swap moves can be
computed in polynomial time. In the paper, they propose the
𝑃

𝑛 Potts model for which the optimal move can be found by
solving a st-mincut problem. They define the 𝑃𝑛 Potts model
potential for cliques of size 𝑛 as

𝜓𝑐 (𝑥𝑐) =

{

{

{

𝛾𝑘, if 𝑥𝑖 = 𝑙𝑘, ∀𝑖 ∈ 𝑐,

𝛾max otherwise,
(9)

where 𝛾max > 𝛾𝑘, ∀𝑙𝑘 ∈ 𝐿. For a pairwise clique this reduces
to the 𝑃2 Potts model potential defined as 𝜓𝑖𝑗(𝑎, 𝑏) = 𝛾𝑘 if
𝑎 = 𝑏 = 𝑙𝑘 and 𝛾max otherwise. The Gibbs energy of the CRF
with high-order cliques is as follows in this paper:

𝐸 (𝑥) = ∑

𝑖

𝜓𝑖 (𝑥𝑖) +∑

𝑖

∑

𝑗∈𝑁𝑖

𝜓𝑖𝑗 (𝑥𝑖, 𝑥𝑗) + ∑

𝑐∈𝐶

𝜓𝑐 (𝑥𝑐) , (10)

where 𝑐 is a clique which represents the path 𝐷𝑐 = {𝐷𝑖, 𝑖 ∈ 𝑐}

of the frame 𝐷 and 𝐶 is the set of all cliques. The example
in the paper demonstrates the importance of enforcing
label consistency over homogeneous regions for object class
segmentation. However, the inference speed is inefficient
comparing to mean field inference method.
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The 𝑃𝑛 Potts model potential is a particular case of the
pattern-based potentials [48] which is defined as

𝜓
pat
𝑐
(𝑥𝑐) =

{

{

{

𝛾𝑥𝑐
, if 𝑥𝑐 ∈ 𝑃𝑐,

𝛾max otherwise,
(11)

where 𝑃𝑐 ⊂ 𝐿
|𝑐| is a set of recognized patterns (i.e., label

configurations for clique) each associated with an individual
cost 𝛾𝑥𝑐 , while a common cost 𝛾max is applied to all other
patterns. If we set 𝑃𝑐 to be the 𝐿 configurations with constant
labels, then we will get the 𝑃𝑛 Potts model as described.

Cooccurrence relations capture global information about
which classes tend to appear together in an image and which
do not. And to model object class cooccurrence statistics a
new term 𝐾(𝑥) is added to the energy:

𝐸 (𝑥) = ∑𝜓𝑐 (𝑥𝑐) + 𝐾 (𝑥) . (12)

Torralba et al. [53] proposed the use of additional unary
potentials to capture scene based occurrence priors. Their
costs took the form:

𝐾 (𝑥) = ∑

𝑖∈𝑉

𝜙 (𝑥𝑖) . (13)

However, the complexity of inference over such potentials
scales linearly with the size of the graph; they are prone to
overcounting costs and it also requires an initial hard decision
of scene type before inference.

Rabinovich et al. [54, 55] proposed cooccurrence as a soft
constraint that took the form:

𝐾 (𝑥) = ∑

𝑖,𝑗∈𝑉

𝜙 (𝑥𝑖, 𝑥𝑗) , (14)

where 𝜙 is some potential which penalizes labels that should
not occur together in an image. It can capture the global infor-
mation, however, because it is on the basis of a fully connected
graph; the memory requirements of inference scale badly
with the size of a fully connected graph. It grows with com-
plexity 𝑂(|𝑉|2) rather than 𝑂(|𝑉|) with the size of the graph.

To improve these methods, Ladicky et al. [40] proposed a
new form of𝐾(𝑥):

𝐾 (𝑥) = 𝐶 (𝐿 (𝑥)) , (15)

where 𝐿(𝑥) = {𝑙 ∈ 𝐿 : ∃𝑥𝑖 = 𝑙}which guarantees invariance to
the size of an object and 𝐶(𝐿(𝑥)) can be seen as a particular
higher-order potential defined over a clique which includes
the whole of 𝑉, that is, 𝜓𝑉(𝑥). And the restriction is placed
on𝐶(𝐿(𝑥)) that it should be nondecreasingwith respect to the
inclusion relation; that is, 𝐿1, 𝐿2 ∈ 𝐿, and 𝐿1 ∈ 𝐿2 imply that
𝐶(𝐿1) ≤ 𝐶(𝐿2). By incorporating these potentials, they got
a quantitatively better and visually more coherent labelings.
But it carries a comparable higher computer cost comparing
to mean field inference.

Similar to Ladicky et al.’s form of 𝐾(𝑥), Vineet et al. [47]
proposed the form of 𝐶(Λ(𝑥)):

𝐶 (Λ) = ∑

𝑙∈𝐿

𝐶𝑙 ⋅ Λ
𝑙
+ ∑

𝑙1 ,𝑙2∈𝐿

𝐶𝑙1 ,𝑙2
⋅ Λ

𝑙1 ⋅ Λ
𝑙2 , (16)

where Λ𝑙
= [𝑙 ∈ Λ], where [] is 1 for a true condition and

0 otherwise. They used filter-based mean field inference to
solve the energy with higher-order terms and showed that
they are able to spend up inference in relative models about
10–30 times with respect to competing graph cut methods
[43].

Joint optimization for object class segmentation is
another important area of research in image labeling, such
as combining objects and attributes for image segmentation
[56], or joint optimization for object class segmentation and
dense stereo reconstruction [4]. In [57], Farhadi et al. pro-
posed a method to shift the goal of recognition from naming
to description; for example, we not only recognize a basket-
ball as a basketball, but also describe its attributes such as
round.Therefore, themethod allows them not only to name a
familiar object, but also to report unusual aspects of a familiar
object and to learn how to recognize new objects with few
or no visual examples. The attributes in the paper consist of
two aspects: semantic and discriminative. Since the concepts
of objects and attributes are both important for describing
images precisely, in [57], they formulated the problem of
joint visual attribute and object class image segmentation as
a dense multilabeling problem, where each pixel in an image
should be associated with both an object class and a set of
visual attributes labels. In the paper, they proposed a factorial
multilabel CRF model which combines the multiclass CRF
model and the multilabel model.

The multiclass CRF for objects can be defined in terms of
an energy function:

𝐸
𝑂
(𝑥) = ∑

𝑖∈𝑉

𝜓
𝑂

𝑖
(𝑥𝑖) + ∑

{𝑖,𝑗}∈𝐸

𝜓
𝑂

𝑖𝑗
(𝑥𝑖, 𝑥𝑗) , (17)

where 𝜓𝑂

𝑖
and 𝜓𝑂

𝑖𝑗
are unary potential and pairwise potential

functions, respectively, and 𝐸 = {(𝑖, 𝑗) | 𝑖, 𝑗 ∈ 𝑉, 𝑖 ̸= 𝑗}.
The multilabel CRF for attributes is defined as

𝐸
𝐴
(𝑦) = ∑

𝑖∈𝑉

𝜓
𝐴

𝑖
(𝑦𝑖) + ∑

{𝑖,𝑗}∈𝐸

𝜓
𝐴

𝑖𝑗
(𝑦𝑖, 𝑦𝑗) , (18)

where 𝑦 = {𝑌1, 𝑌2, . . . , 𝑌𝑛} are a set of random variables
and 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑚} are a set of random attribute labels.
Rather than taking values directly in 𝐴 though, the 𝑌𝑖’s take
values in the power-set operator.

They also defined a joint CRF in terms of a pairwise
energy over the 𝑍𝑖 (𝑍𝑖 = (𝑋𝑖, 𝑌𝑖)):

𝐸
𝐽
(𝑧) = ∑

𝑖∈𝑉

𝜓
𝐽

𝑖
(𝑧𝑖) + ∑

{𝑖,𝑗}∈𝐸

𝜓
𝐽

𝑖𝑗
(𝑧𝑖, 𝑧𝑗) , (19)

where

𝜓
𝐽

𝑖
(𝑧𝑖) = 𝜓

𝑂

𝑖
(𝑥𝑖) + 𝜓

𝐴

𝑖
(𝑦𝑖) +∑

𝑙,𝑎

𝜓
𝑂𝐴

𝑖,𝑙,𝑎
(𝑥𝑖, 𝑦𝑖,𝑎) ,

𝜓
𝐽

𝑖𝑗
(𝑧𝑖, 𝑧𝑗) = 𝜓

𝑂

𝑖𝑗
(𝑥𝑖, 𝑥𝑖) + 𝜓

𝐴

𝑖𝑗
(𝑦𝑖, 𝑦𝑖) .

(20)
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Using a two-level hierarchical model, where labeling
object classes and attributes is done not only at the pixel level
but also at a regional level, they gave the following energy:

𝐸
𝐻
(𝑧) = ∑

𝑖∈𝑉pix

𝜓
𝐽

𝑖
(𝑧𝑖) + ∑

{𝑖,𝑗}∈𝐸

𝜓
𝐽

𝑖𝑗
(𝑧𝑖, 𝑧𝑗) + ∑

𝑖∈𝑉reg

𝜓
𝐽
󸀠

𝑖
(𝑧𝑖)

+ ∑

{𝑖,𝑗}∈𝐸

𝑖∈𝑉pix,𝑗∈𝑉reg

𝜓
𝐽
󸀠

𝑖𝑗
(𝑧𝑖, 𝑧𝑗) .

(21)

It was recognized that the problems of dense stereo
reconstruction and object class segmentation can both be
transformed as one CRF model based labeling problem, in
which every pixel in the image is assigned a label correspond-
ing to either its disparity, or an object class. This inspires
[4, 46] to provide an energy minimization framework that
unifies the two problems. In their paper, the energy function
of object class segmentation using a CRF took the form

𝐸
𝑂
(𝑥) = ∑

𝑖∈𝑉

𝜓
𝑂

𝑖
(𝑥𝑖) + ∑

𝑖∈𝑉,𝑗∈𝑁𝑖

𝜓
𝑂

𝑖𝑗
(𝑥𝑖, 𝑥𝑗)

+ ∑

𝑐∈𝐶

𝜓
𝑂

𝑐
(𝑥𝑐) .

(22)

And the problem of dense stereo reconstruction using a CRF
can be written as

𝐸
𝐷
(𝑥) = ∑

𝑖∈𝑉

𝜓
𝐷

𝑖
(𝑦𝑖) + ∑

𝑖∈𝑉,𝑗∈𝑁𝑖

𝜓
𝐷

𝑖𝑗
(𝑦𝑖, 𝑦𝑗) . (23)

Thus the energy of the CRF for joint estimation can bewritten
as

𝐸 (𝑥) = ∑

𝑖∈𝑉

𝜓
𝐽

𝑖
(𝑧𝑖) + ∑

𝑖∈𝑉,𝑗∈𝑁𝑖

𝜓
𝐽

𝑖𝑗
(𝑧𝑖, 𝑧𝑗) + ∑

𝑐∈𝐶

𝜓
𝑂

𝑐
(𝑥𝑐) . (24)

Using the fact that certain objects occupy a certain range of
real world heights, they jointed unary potentials successfully
by

𝜓
𝐶

𝑖
([𝑥𝑖, 𝑦𝑖]) = − log (𝐻 (ℎ (𝑦𝑖, 𝑖) | 𝑥𝑖)) , (25)

where ℎ(𝑦𝑖, 𝑖) is the corresponding height above the ground
plane and𝐻(ℎ | 𝑙) is a histogram based measure of the näıve
probability that a pixel taking label 𝑙 has height ℎ in the train-
ing set. So the combined unary potential can be written as

𝜓
𝐽

𝑖
([𝑥𝑖, 𝑦𝑖]) = 𝑤

𝑤

𝑂
𝜓

𝑂

𝑖
(𝑥𝑖) + 𝑤

𝑤

𝐷
𝜓

𝐷

𝑖
(𝑦𝑖)

+ 𝑤
𝑢

𝐶
𝜓

𝐶

𝑖
(𝑥𝑖, 𝑦𝑖) ,

(26)

where 𝑤𝑢

𝑂
, 𝑤𝑢

𝐷
, and 𝑤𝑢

𝐶
are the corresponding weights.

For pairwise interactions, we know that an object classes
boundary is more likely to occur if the disparity of two
neighboring pixels differs significantly. Taking it into account,
they chose tractable pairwise potentials of the form

𝜓
𝐽

𝑖𝑗
([𝑥𝑖, 𝑦𝑖] , [𝑥𝑗, 𝑦𝑗])

= 𝑤
𝑝

𝑂
𝜓

𝑂

𝑖𝑗
(𝑥𝑖, 𝑥𝑖) + 𝜓

𝑝

𝐷
𝜓

𝐷

𝑖𝑗
(𝑦𝑖, 𝑦𝑖)

+ 𝜓
𝑝

𝐶
𝜓

𝑂

𝑖𝑗
(𝑥𝑖, 𝑥𝑖) 𝜓

𝐷

𝑖𝑗
(𝑦𝑖, 𝑦𝑖) ,

(27)

Source
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s

t

Figure 6:An example ofmin-cut graph cut.The circles represent the
pixels, and the lines including curves represent the edges between
nodes including 𝑡-links and 𝑛-links. The dotted line indicates a cut
of graph partition [3].

where 𝑤𝑝

𝑂
, 𝜓𝑝

𝐷
, and 𝜓𝑝

𝐶
are the weights of the pairwise

potential.
Although the two models described as above need more

parameters to learn which makes the processes of learning
and inferencemore complicated, they achieved a better scene
understanding comparing to other models before.

3. Inference Methods

Over the years, a large number of inference algorithms have
been developed; although exact inference in such CRFs is
intractable, much attention has been paid to developing fast
approximation algorithms, including graph cut approaches
[6], variants of belief propagation [11, 35, 50], and a number
of Gaussian filter-based methods [1, 39]. In this section, we
briefly introduce two inference methods for approximating
energyminimums; one is the classicalmethod, graph cut, and
the other ismeanfield approximationwhich has been popular
in recent years.

3.1. Graph Cut. Greig and Porteous [59] first applied the
graph cut in computer vision which describes a large family
of MRF inference algorithms based on solving min-cui/max-
flow problem. If a type of computer vision problems can
be formulated in terms of an energy function, then we can
use graph cut to get the minimum energy configuration that
corresponds to the MAP theory. Figure 6 is an example of
min-cut graph cut.

In this method, we set a directed weighted graph 𝐺 =
(𝑉, 𝐸) which consists of a set of nodes 𝑉 and a set of directed
edges 𝐸 and the edge weight is nonnegative. The nodes
correspond to pixels in image labeling problem. There are
two additional nodes which are called terminals, that is, the
source 𝑠 and the sink 𝑡. In computer vision, terminals corre-
spond to the set of labels that can be assigned to pixels. All
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(a) Observed image (b) Restored image at convergence

Figure 7: Restoration using the 𝛼-expansion algorithm [6].

edges in the graph are assigned some weight or cost. In fact,
it is very important to assign edge weights for many graph-
based applications in vision. And there are two types of edges
in the graph: 𝑛-links and 𝑡-links. The former connect pairs
of neighboring pixels so they can represent a neighborhood
system in an image. The latter connect pixels with terminals;
thus a 𝑡-link connecting a pixel and a terminal corresponds to
a penalty for assigning the corresponding label to the pixel.
A cut 𝐶 ⊂ 𝐸 is a set of edges such that the terminals are
separated in the induced graph𝐺(𝐶) = (𝑉, 𝐸−𝐶). In addition,
no other proper subset of 𝐶 separates the terminals in 𝐺(𝐶).
And the weight of a cut 𝐶 is the sum of its edge weights, for
example, |𝐶|. The minimum cut problem is to find the cut
with the smallest cost.

Boykov et al. [6] proposed the two most graph cut
algorithms: 𝛼-expansion and 𝛼𝛽-swap. 𝛼𝛽-swap is described
as follows: for a pair of labels 𝛼, 𝛽, it exchanges the labels
between an arbitrary set of pixels labeled 𝛼 and another
arbitrary set labeled 𝛽. The algorithm generates a labeling
such that there is no swap move that decreases the energy. As
for 𝛼-expansion: for a label 𝛼, this move assigns an arbitrary
set of pixels to the label 𝛼.This algorithm is ended when there
is no expansionmove that decreases the energy. In their paper
they define two concepts: semimetric and metric. Suppose
𝑉 is the interaction potentials of the energy, for example,
𝑉{𝑝,𝑞}(𝑓𝑝, 𝑓𝑞)with features𝑓(⋅).𝑉 is called a semimetric on the
space of labels 𝐿 if, for any pair of labels 𝛼, 𝛽 ∈ 𝐿, it satisfies
two properties:𝑉(𝛼, 𝛽) = 𝑉(𝛽, 𝛼) ≥ 0 and𝑉(𝛼, 𝛽) = 0 ⇔ 𝛼 =
𝛽. If𝑉 also satisfies the triangle inequality𝑉(𝛼, 𝛽) ≤ 𝑉(𝛼, 𝛾)+
𝑉(𝛾, 𝛽) in 𝐿, then𝑉 is called a metric. Although 𝛼-expansion
is more accurate and efficient and can produce a result with
lower energy, the interaction potential must be ametric when
using 𝛼-expansion, while for 𝛼𝛽-swap, it must be semimetric.

The main idea of the 𝛼-expansion algorithm is to succes-
sively segment all 𝛼 and non-𝛼 pixels with graph cuts and the
algorithm will change the value of 𝛼 at each iteration. The
algorithmwill iterate through each possible label for 𝛼 until it
converges. At each iteration, the 𝛼 region𝑃𝛼 can only expand.

This changes somehow the way to set the graph weights. Also
when two neighboring nodes do not currently have the same
label, an intermediate node is inserted and links are weighted
so they are relative to the distance of the 𝛼 label.

Themain idea of the 𝛼𝛽-swap algorithm is to successively
segment all 𝛼 pixels from 𝛽 pixels with graph cuts and
the algorithm will change the 𝛼-𝛽 combination at each
iteration. The algorithm will iterate through each possible
combination until it converges. Within an iteration the graph
is constructed in a normal way so it can segment efficiently
between the 𝛼 region and the 𝛽 region. Special care must be
taken with nodes that are neither in the 𝛼 nor in the 𝛽 region.
That means, for a pixel, the terminal link weight is the data
term plus the sum of all links to neighbors which are neither
in the 𝛼 region nor in the 𝛽 region.

In [6], the energy formula was described as 𝐸(𝑦) =
∑𝑖∈𝑉𝐷𝑖(𝑑𝑖, 𝑦𝑖) + ∑𝑖,𝑗∈𝑁𝑉𝑖,𝑗(𝑦𝑖, 𝑦𝑗). The first term is known as
the data term. It ensures that the current labeling𝑦 is coherent
with the observed data 𝑑𝑖. It penalizes a label 𝑦𝑖 to pixel 𝑖 if it
is too different from the observed data 𝑑𝑖. The second term
is the smooth term. To make it clear for algorithms used in
[6], a quick implementation of the 𝛼-expansion algorithm
for image restoration is shown in Figure 7. Here an image
with embedded squares is of intensity values 255, 191, 128,
and 64. Noise was added to the original image so intensity
is 𝑖󸀠 = 𝑖 ± 10. Possible labels are all integers between 0 and
255. The algorithm will perform 𝛼-𝛼 segmentations until it
converges. Note that 𝛼 means non-𝛼 labels. The data term
used here is a simple squared difference𝐷(𝑑𝑖, 𝑦𝑖) = (𝑑𝑖 −𝑦𝑖)

2.
The smoothing term used here is Potts model 𝑉(𝑦𝑖, 𝑦𝑗) =
𝜆𝑇(𝑦𝑖 ̸= 𝑦𝑗), where 𝑇(𝑥) = 1 if 𝑥 is true, or zero otherwise.

For more details about 𝛼𝛽-swap and 𝛼-expansion, one
can go to [6]. In addition, Kolmogorov and Rother [60]
wrote a survey about graph cut and pointed out that graph
cut can be applied to both submodular and nonsubmodular
functions. Other more recent developments in graph cut
include order-preserving graph cut [61] and combination
graph cut [3, 62].
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3.2. The Mean Field Approximation. Recently, a number of
mean field approximations in computer vision have been
proposed, such as object class segmentation [8, 9, 11, 34].
The mean field algorithm finds the distribution 𝑄, which is
closest to 𝑃 which is the exact distribution by minimizing
the KL-divergence 𝐷(𝑄 | 𝑃) within the class of distributions
representable as a product of independent marginal, 𝑄(𝑋) =
∏𝑖𝑄𝑖(𝑋𝑖) [63]. Although the approximation of 𝑃 as a fully
factored distribution is likely to lose a lot of information
in the distribution, this approximation is computationally
attractive. The mean field approximation can be formulated
as follows:

Find {𝑄𝑖 (𝑋𝑖)}

maximize 𝐹

subject to 𝑄 (𝑋) = ∏
𝑖

𝑄𝑖 (𝑋𝑖)

∑

𝑥𝑖

𝑄𝑖 (𝑥𝑖) = 1, ∀𝑖,

(28)

where 𝐹 is the energy functional. See [63] for more details.
The approach of [34] of provides a filter-basedmethod for

performing fast approximate maximum posterior marginal
(MPM) inference; for example, the solution satisfies 𝑥MPM

𝑖
∈

argmax𝑖∑{𝑥|𝑥𝑖=𝑙} 𝑃(𝑥 | 𝐼), in multilabel CRF models with
fully connected pairwise terms, where the pairwise terms
have the form of a weighted mixture of Gaussian kernels. We
can express the fully connected pairwise CRF as

𝑃 (𝑋 | 𝐼) =
1

𝑍 (𝐼)
exp (−𝐸 (𝑋 | 𝐼))

𝐸 (𝑋 | 𝐼) = ∑

𝑖∈𝑁

𝜓𝑢 (𝑥𝑖) + ∑

𝑖<𝑗∈𝑁

𝜓𝑝 (𝑥𝑖, 𝑥𝑗) ,

(29)

where 𝐸(𝑋 | 𝐼) is the energy associated with a configuration
𝑋 conditioned on 𝐼 and 𝜓𝑢 and 𝜓𝑝 are unary and pairwise
potential functions, respectively. And, in [34], the pairwise
potentials take the form of a weighted mixture of Gaussian
kernels:

𝜓𝑝 (𝑥𝑖, 𝑥𝑗) = 𝑢 (𝑥𝑖, 𝑥𝑗)

𝑀

∑

𝑚=1

𝑤
(𝑚)
𝑘
(𝑚)
(
󳨀→
𝑓𝑖 ,
󳨀→
𝑓𝑗) , (30)

where 𝑢 is a label compatibility function, 𝑘(𝑚)
(⋅, ⋅), 𝑚 =

1 ⋅ ⋅ ⋅𝑀 are Gaussian kernels, and 𝑤(𝑚)
(⋅, ⋅), 𝑚 = 1 ⋅ ⋅ ⋅𝑀 are

the corresponding weight of the kernels. We briefly deduce
the whole process of the iterative update equation:

𝑄𝑖 (𝑥 = 𝑙) =
1

𝑍
exp
{

{

{

−𝜓𝑢 (𝑥𝑖)

− ∑

𝑙󸀠∈𝐿

𝑢 (𝑙, 𝑙
󸀠
)

𝑀

∑

𝑚=1

𝑤
(𝑚)
∑

𝑗 ̸=𝑖

𝑘
(𝑚)
(
󳨀→
𝑓𝑖 ,
󳨀→
𝑓𝑗)𝑄𝑗 (𝑙

󸀠
)

}

}

}

.

(31)

First, we can write the KL-divergence𝐷(𝑄 ‖ 𝑃):

𝐷 (𝑄 ‖ 𝑃) = ∑

𝑥

𝑄 (𝑥) log(𝑄 (𝑥)
𝑃 (𝑥)
)

= −∑

𝑥

𝑄 (𝑥) log𝑃 (𝑥) +∑
𝑥

𝑄 (𝑥) log𝑄 (𝑥)

= −𝐸𝑈∼𝑄 [log𝑃 (𝑈)] + 𝐸𝑈∼𝑄 [log𝑄 (𝑈)]

= −𝐸𝑈∼𝑄 [log 𝑃̃ (𝑈)] + 𝐸𝑈∼𝑄 [log𝑍]

+∑

𝑖

𝐸𝑈𝑖∼𝑄 [log𝑄 (𝑈𝑖)]

= 𝐸𝑈∼𝑄 [𝐸 (𝑈)] +∑

𝑖

𝐸𝑈𝑖∼𝑄𝑖
[log𝑄𝑖 (𝑈𝑖)]

+ log𝑍,

(32)

where𝐸𝑈∼𝑄 refers to the expected value under the distribution
𝑄. Since 𝑄(𝑋) = ∏𝑖𝑄𝑖(𝑋𝑖) and linearity of expectation
𝐸𝑈∼𝑄[log𝑄(𝑈)] = ∑𝑖 𝐸𝑈𝑖∼𝑄𝑖

[log𝑄𝑖(𝑈𝑖)], one has

𝐸𝑈∼𝑄 [𝐸 (𝑈)] = 𝐸𝑈∼𝑄
[

[

∑

𝑖

𝜓𝑢 (𝑈𝑖) +∑

𝑖<𝑗

𝜓𝑝 (𝑈𝑖, 𝑈𝑗)
]

]

= ∑

𝑖

𝐸𝑈𝑖∼𝑄𝑖
[𝜓𝑢 (𝑈𝑖)]

+∑

𝑖<𝑗

𝐸𝑈𝑖∼𝑄𝑖 ,𝑈𝑗∼𝑄𝑗
[𝜓𝑝 (𝑈𝑖, 𝑈𝑗)] ,

(33)

where

∑

𝑖<𝑗

𝐸𝑈𝑖∼𝑄𝑖 ,𝑈𝑗∼𝑄𝑗
[𝜓𝑝 (𝑈𝑖, 𝑈𝑗)] =

1

2

⋅ ∑

𝑖

𝐸𝑈𝑖∼𝑄𝑖
[

[

∑

𝑗 ̸=𝑖

𝐸𝑈𝑗∼𝑄𝑗
[𝜓𝑝 (𝑈𝑖, 𝑈𝑗)]

]

]

=
1

2

𝑀

∑

𝑚=1

𝑤
(𝑚)

⋅ ∑

𝑖

𝐸𝑈𝑖∼𝑄𝑖
[

[

∑

𝑗 ̸=𝑖

𝑘
(𝑚)
(
󳨀→
𝑓𝑖 ,
󳨀→
𝑓𝑗)𝐸𝑈𝑗∼𝑄𝑗

[𝑢 (𝑈𝑖, 𝑈𝑗)]
]

]

.

(34)

The marginal 𝑄𝑖(𝑥𝑖) which we need is found by mini-
mizing a Lagrangian that consists of all terms in 𝐷(𝑄 | 𝑃)
plus Lagrange multipliers assuring that the marginal 𝑄𝑖(𝑋𝑖)

are probability distributions. The detailed derivations will be
presented below:

𝐿 𝑖 (𝑄) = 𝐸𝑈∼𝑄 [𝐸 (𝑈)] +∑

𝑖

𝐸𝑈𝑖∼𝑄𝑖
[log𝑄𝑖 (𝑈𝑖)]

+ log𝑍 + 𝜆(∑
𝑥𝑖

𝑄𝑖 (𝑥𝑖) − 1) .

(35)
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So we can get

𝜕𝐿 𝑖 (𝑄)

𝑄𝑖 (𝑥𝑖)
=
𝜕

𝑄𝑖 (𝑥𝑖)
{𝐸𝑈∼𝑄 [𝐸 (𝑈)]

+∑

𝑖

𝐸𝑈𝑖∼𝑄𝑖
[log𝑄𝑖 (𝑈𝑖)] + log𝑍

+ 𝜆(∑

𝑥𝑖

𝑄𝑖 (𝑥𝑖) − 1)} =
𝜕

𝑄𝑖 (𝑥𝑖)

{

{

{

∑

𝑖

𝐸𝑈𝑖∼𝑄𝑖

⋅ [𝜓𝑢 (𝑈𝑖)] +∑

𝑖<𝑗

𝐸𝑈𝑖∼𝑄𝑖 ,𝑈𝑗∼𝑄𝑗
[𝜓𝑝 (𝑈𝑖, 𝑈𝑗)]

+∑

𝑖

𝐸𝑈𝑖∼𝑄𝑖
[log𝑄𝑖 (𝑈𝑖)] + log𝑍

+ 𝜆(∑

𝑥𝑖

𝑥𝑖 − 1)

}

}

}

= 𝜓𝑢 (𝑥𝑖) +
𝜕

𝑄𝑖 (𝑥𝑖)

{

{

{

1

2

⋅ ∑

𝑖

𝐸𝑈𝑖∼𝑄𝑖
[

[

∑

𝑗 ̸=𝑖

𝐸𝑈𝑗∼𝑄𝑗
[𝜓𝑝 (𝑈𝑖, 𝑈𝑗)]

]

]

}

}

}

+ log𝑄𝑖 (𝑥𝑖) + 1 + 𝜆 = 𝜓𝑢 (𝑥𝑖) +
1

2

⋅ ∑

𝑗 ̸=𝑖

𝐸𝑈𝑗∼𝑄𝑗
[𝜓𝑝 (𝑥𝑖, 𝑈𝑗)] + log𝑄𝑖 (𝑥𝑖) + 1 + 𝜆.

(36)

Setting the derivative to 0,

𝜓𝑢 (𝑥𝑖) +
1

2
∑

𝑗 ̸=𝑖

𝐸𝑈𝑗∼𝑄𝑗
[𝜓𝑝 (𝑥𝑖, 𝑈𝑗)] + log𝑄𝑖 (𝑥𝑖) + 1

+ 𝜆 = 0

(37)

and rearranging terms, we get that

log𝑄𝑖 (𝑥𝑖) = −𝜓𝑢 (𝑥𝑖) −
1

2
∑

𝑗 ̸=𝑖

𝐸𝑈𝑗∼𝑄𝑗
[𝜓𝑝 (𝑥𝑖, 𝑈𝑗)] − 1

− 𝜆 󳨐⇒

𝑄𝑖 (𝑥𝑖) = exp
{

{

{

−𝜓𝑢 (𝑥𝑖)

−
1

2
∑

𝑗 ̸=𝑖

𝐸𝑈𝑗∼𝑄𝑗
[𝜓𝑝 (𝑥𝑖, 𝑈𝑗)] − 1 − 𝜆

}

}

}

󳨐⇒

𝑄𝑖 (𝑥𝑖) =
1

𝑍𝑖

exp
{

{

{

−𝜓𝑢 (𝑥𝑖)

−∑

𝑗 ̸=𝑖

𝐸𝑈𝑗∼𝑄𝑗
[𝜓𝑝 (𝑥𝑖, 𝑈𝑗)]

}

}

}

,

(38)

where 𝑍𝑖 is the corresponding partition function.

Substituting the definition of the pairwise potential above
into the mean field update in (38) yields the following
formulation of the update equation:

𝑄𝑖 (𝑥𝑖) =
1

𝑍𝑖

exp
{

{

{

−𝜓𝑢 (𝑥𝑖)

−∑

𝑗 ̸=𝑖

𝐸𝑈𝑗∼𝑄𝑗
[𝜓𝑝 (𝑥𝑖, 𝑈𝑗)]

}

}

}

=
1

𝑍𝑖

exp
{

{

{

−𝜓𝑢 (𝑥𝑖)

−

𝑀

∑

𝑚=1

𝑤
(𝑚)
∑

𝑗 ̸=𝑖

𝐸𝑈𝑗∼𝑄𝑗
[𝑢 (𝑙, 𝑈𝑗) 𝑘

(𝑚)
(
󳨀→
𝑓𝑖 ,
󳨀→
𝑓𝑗)]

}

}

}

=
1

𝑍𝑖

exp
{

{

{

−𝜓𝑢 (𝑥𝑖)

−

𝑀

∑

𝑚=1

𝑤
(𝑚)
∑

𝑗 ̸=𝑖

∑

𝑙󸀠∈𝐿

𝑄𝑗 (𝑙
󸀠
) [𝑢 (𝑙, 𝑙

󸀠
) 𝑘

(𝑚)
(
󳨀→
𝑓𝑖 ,
󳨀→
𝑓𝑗)]

}

}

}

=
1

𝑍𝑖

exp
{

{

{

−𝜓𝑢 (𝑥𝑖)

− ∑

𝑙󸀠∈𝐿

𝑢 (𝑙, 𝑙
󸀠
)

𝑀

∑

𝑚=1

𝑤
(𝑚)
∑

𝑗 ̸=𝑖

[𝑘
(𝑚)
(
󳨀→
𝑓𝑖 ,
󳨀→
𝑓𝑗)]𝑄𝑗 (𝑙

󸀠
)

}

}

}

.

(39)

In fact, the general form of the mean field update
equations (see [52]) is

𝑄𝑖 (V𝑖 = V)

=
1

𝑍𝑖

exp
{

{

{

−∑

𝑐∈𝐶

∑

{V𝑐|V𝑖=V}
𝑄𝑐−𝑖 (V𝑐−𝑖) ⋅ 𝜓𝑐 (V𝑐)

}

}

}

,

(40)

where V is a value in the domain of random variable V𝑖, V𝑐

denote an assignment of all variables in clique 𝑐, and V𝑐−𝑖

is an assignment of all variables in 𝑐 apart from 𝑉𝑖, and
𝑄𝑐−𝑖 denotes the marginal distribution of all variables in 𝑐
apart from 𝑉𝑖 derived from the joint distribution 𝑄. Thus
∑{V𝑐|V𝑖=V} 𝑄𝑐−𝑖(V𝑐−𝑖) ⋅ 𝜓𝑐(V𝑐) evaluates the expected value of 𝜓𝑐
over 𝑄 given the condition that 𝑉𝑖 takes the value V. When
we set V𝑖 = 𝑥1⋅⋅⋅𝑁 and V = 1 ⋅ ⋅ ⋅ 𝐿 by evaluating (40) across the
unary and pairwise potentials defined in [34], we will directly
get (39).

In [34], it is shown that parallel updates for (39) can be
evaluated by convolution with a high dimensional Gaussian
kernel using any efficient bilateral filter, for example, the
permutohedral lattice method of [39]. It is achieved by the
following transformation:

𝑄̃
(𝑚)

𝑖
= ∑

𝑗 ̸=𝑖

𝑘
(𝑚)
(
󳨀→
𝑓𝑖 ,
󳨀→
𝑓𝑗)𝑄𝑗 (𝑙)

= [𝐺𝑚 ⊗ 𝑄 (𝑙)] (
󳨀→
𝑓𝑖) − 𝑄𝑖 (𝑙) ,

(41)
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(a) (b) (c) (d) (e)

Figure 8: Results of [1] on Leuven dataset. From (a–e): input image, ground truth, object labeling for [4] (using graph cut + range-moves for
inference), object labeling, and stereo outputs from dense CRF with higher-order terms and extended cost-volume filtering [1].

where 𝐺𝑚 is a Gaussian kernel corresponding to the 𝑚th
component of (30), and ⊗ is the convolution operator. The
following algorithms are the algorithms used in [34].

Algorithm 1 (mean field in fully connected CRFs).
while not converged do

𝑄̃
(𝑚)

𝑖
(𝑙) ←󳨀 ∑

𝑗 ̸=𝑖

𝑘
(𝑚)
(
󳨀→
𝑓𝑖 ,
󳨀→
𝑓𝑗)𝑄𝑗 (𝑙) ∀𝑚

𝑄̂𝑖 (𝑥𝑖) ←󳨀 ∑

𝑙∈𝐿

𝑢
(𝑚)
(𝑥𝑖, 𝑙)∑

𝑚

𝑤
(𝑚)
𝑄̃

(𝑚)

𝑖
(𝑙)

𝑄𝑖 (𝑥𝑖) ←󳨀 exp {−𝜓𝑢 (𝑥𝑖) − 𝑄̂𝑖 (𝑥𝑖)}

(42)

end while
In [34], the permutohedral lattice [39] was used for

the filter-based inference; the recently proposed domain
transform filtering approach [58] has certain advantages over
the permutohedral lattice. Since domain transform filtering
approach does not subsample the original signal, its complex-
ity is independent of the filter size, while the complexity and
filter size are inversely related using the permutohedral lattice.
In [47], it was demonstrated that the domain transform
approach achieves even faster inference times than using the
permutohedral lattice for accurate object/stereo labeling. On
the basis of [34, 47] themean field approximation to the infer-
ence of models with higher-order terms was further applied.

In [47] the pattern-based potentials 𝜓pat
𝑐
(𝑥𝑐) were added,

which is described in Section 2, to the energy function; the
required expectation for the mean field updates (39) can be
calculated:
∑

{𝑥𝑐|𝑥𝑖=𝑙}

𝑄𝑐−𝑖 (𝑥𝑐−𝑖) ⋅ 𝜓
pat
𝑐
(𝑥𝑐)

= ∑

𝑝∈𝑃𝑐|𝑖=𝑙

( ∏

𝑗∈𝑐,𝑗 ̸=𝑖

𝑄𝑗 (𝑥𝑗 = 𝑝𝑗))𝛾𝑝

+ (1 − ( ∑

𝑝∈𝑃𝑐|𝑖=𝑙

( ∏

𝑗∈𝑐,𝑗 ̸=𝑖

𝑄𝑗 (𝑥𝑗 = 𝑝𝑗))))𝛾max,

(43)

where 𝑃𝑐|𝑖=𝑙 is the subset of patterns in 𝑃𝑐 for which 𝑥𝑖 = 𝑙.

A particular case of the pattern-based potential is the 𝑃𝑛-
Potts model,

𝜓
potts
𝑐
(𝑥𝑐) =

{

{

{

𝑟𝑙 if ∀𝑖 ∈ 𝑐, 𝑥𝑖 = 𝑙

𝑟max otherwise,
(44)

and the required expectations can be expressed as

∑

{𝑥𝑐|𝑥𝑖=𝑙}

𝑄𝑐−𝑖 (𝑥𝑐−𝑖) ⋅ 𝜓
potts
𝑐
(𝑥𝑐)

= ( ∏

𝑗∈𝑐,𝑗 ̸=𝑖

𝑄𝑗 (𝑥𝑗 = 𝑙)) 𝑟𝑙

+ (1 − ( ∏

𝑗∈𝑐,𝑗 ̸=𝑖

𝑄𝑗 (𝑥𝑗 = 𝑙)))𝛾max.

(45)

The paper [1] also added coconcurrence potentials (see
[47] for more details) which is over the entire image clique
with a defined form and tested their approach on object class
segmentation. As a result, they showed substantial improve-
ments in inference speed with respect to graph cut based
methods, particularly by using recent domain transform
filtering techniques, while also observing similar or better
accuracies. Figures 8 and 9 are the results of [1] in both stereo
and image labeling. All the experiments in [1] are based on an
Inter� Xeon� 3.33GHz processor, and they fixed the number
of full mean field update iterations to 5 for all models.

In Figure 8, [1] applied their model to the Leuven dataset,
consisting of stereo images of street scenes, with ground truth
labeling for 7 object classes, and manually annotated ground
truth stereo labeling quantized into 100 disparity labels. In
their model they used JointBoost classifier responses to form
the object unary potentials. A truncated 𝑙2-norm of the
intensity differences is used to form the disparity potentials.
For the densely connected pairwise terms, identical kernels
and weightings and Ising model for the label compatibility
function were used. For the 𝑃𝑛-Potts potentials, 𝛾𝑙 = 0 for
all 𝑙 = 1, . . . , 𝐿 was set and 𝛾max was set by cross-validation.
Figure 9 is the results of [1] on PascalVOC-10 dataset.
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Table 1: Quantitative comparison on Leuven dataset of [1]. The table compares the average time per image and performance (object and
stereo labeling accuracy) of joint object and stereo algorithms, using graph cut + range-move (GC + Range (𝑥)), an extension of cost-volume
filtering, and [1]’s dense CRF with higher-order terms and filter-based inference (with and without cost-volume filtered unary, and using
different approaches). HO means higher-order terms of [1] in the table.

Algorithm Time (s) Object (% correct) Stereo (% correct)
GC + Range (1) [4] 24.6 95.94 76.97
GC + Range (2) [4] 49.9 95.94 77.31
GC + Range (3) [4] 74.4 95.94 77.46
Extended CostVol ([39] filter) 4.2 95.20 77.18
Dense + HO ([39] filter) 3.1 95.24 78.89
Dense HO ([58] filter) 2.1 95.06 78.21
Dense + HO + CostVol ([58] filter) 6.3 94.98 79.00

(a) (b) (c) (d) (e)

Figure 9: Results of [1] on PascalVOC-10 dataset. From (a–e): input image, ground truth, output from [40] (AHCRF + cooccurrence), output
from [34] (dense CRF), and output from dense CRF with Potts and cooccurrence terms [1].

From Figure 8 and Table 1, we note that the densely
connected CRF with higher-order terms (Dense + HO)
achieves comparable accuracies to [4], and that the use of
domain transform filtering methods [58] permits an extra
speed-up, with inference being almost 12 times faster than the
least accurate setting of [4] and over 35 times faster than the
most accurate.TheDense +HO+CostVol approach achieves
the best overall stereo accuracies. Although the improved
stereo performance appears to generate a small decrease in
the object labeling accuracy in [1]’s full model, the former
remains at an almost saturated level.

Figure 9 and Table 2 compare timing and performance
of [1]’s approach (final 2 lines) against two baseline. The
importance of higher-order information is confirmed by

Table 2: Quantitative results of [1] on PascalVOC-10 dataset.

Algorithm Time (s) Overall (% correct)
AHCRF + Cooc [40] 36 81.43
Dense CRF [34] 0.67 71.63
Dense + Potts 4.35 79.87
Dense + Potts + Cooc 4.4 80.44

the better performance of all algorithms compared to the
basic dense CRF of [34]. Further, the filter-based inference is
able to improve substantially on the inference time and class-
average performance of the AHCRF [40], with 𝑃𝑛-Potts and
cooccurrence potentials each giving notable gains.



Mathematical Problems in Engineering 13

Although the mean field algorithm is an easy approxima-
tion method, it still has several limitations. As mentioned in
[9], the first limitation is related to the fact that the mean
field approximation assumes complete factorization over the
individual variable. As a result, the mean field inference
methods are usually sensitive to initialization although the
simplified model leads to efficient and tractable models for
learning and inference. Another limitation relates to the
form of the pairwise weights in (30) which are a linear
combination of Gaussian kernels. In fact, they allow each
Gaussian component to take only zeromean and use the same
combination ofGaussian kernels for each label pair. Although
these are improved in [9], they are still lead to unsatisfactory
results. Therefore, in the future, we hope to find some other
methods which have not only substantial speed of inference
but also considerable accuracies.

4. Conclusion

Recently, CRF is accepted as one of the popular approaches
for solving the image labeling problem in computer vision
and image analysis. An important issue in CRF models is
to develop an efficient inference algorithm to find the most
appropriate labels especially when considering the global
information of an image.

In this paper we review the research development and
status of object recognition with CRFs, especially the two
main discrete optimization methods for image labeling with
CRFs: graph cut and mean field approximation. We describe
graph cut briefly while we introduce mean field approxi-
mation more detailedly which has a substantial speed of
inference and is popular in recent years. Compared to the
graph cut method, the mean field inference improves speed
substantially for its simplified model.

In the application of image labeling problem in computer
vision, one typical problem is that there are too many nodes.
For example, for an image with the size of 𝑖 × 𝑗, supposing
each node takes 𝐿 possible labels, the computation space is
𝐿

𝑖×𝑗.Thus the computation space expands exponentially with
the growth of image’s size. It is very clear that the inference
algorithm plays a very important role in these problems.
Another key issue is to construct reasonable CRF models
as Section 2 introduces. Learning the parameters of a CRF
model efficiently from images instead of being manually or
empirically chosen is also an important issue, though it is not
the focus of this paper.

Nowadays, many tasks in computer vision and image
analysis can be formulated as a labeling problem where the
correct label has to be assigned to each pixel or clique.
However, computational expense of training is still a compu-
tational burden for the need to perform inference repeatedly
during training process. In the future, we hope to improve
the accuracy of mean field inference for image labeling
while maintaining its efficiency. Solving these problems will
greatly influence some technology such as driverless car.
On the other hand, with the development of the skills for
capturing image depth information such as Kinect, depth
information of an image is easily obtained like color features.
So it is considerable to combine these properties with CRF

models and efficient inference approaches for image labeling
and stereo reconstruction in 3-dimensional space. Moreover,
using these theories for facial action labeling research may be
another strategy.
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