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Optimizing the mutual coherence of a learned dictionary plays an important role in sparse representation and compressed sensing.
In this paper, a efficient framework is developed to learn an incoherent dictionary for sparse representation. In particular, the
coherence of a previous dictionary (or Gram matrix) is reduced sequentially by finding a new dictionary (or Gram matrix), which
is closest to the reference unit norm tight frame of the previous dictionary (or Gram matrix). The optimization problem can be
solved by restricting the tightness and coherence alternately at each iteration of the algorithm. The significant and different aspect
of our proposed framework is that the learned dictionary can approximate an equiangular tight frame. Furthermore, manifold
optimization is used to avoid the degeneracy of sparse representation while only reducing the coherence of the learned dictionary.
This can be performed after the dictionary update process rather than during the dictionary update process. Experiments on
synthetic and real audio data show that our proposed methods give notable improvements in lower coherence, have faster running
times, and are extremely robust compared to several existing methods.

1. Introduction

In recent years, the research of dictionary learning has
attracted a lot of attention because a learned dictionary
captures some of the intrafeatures of training samples in
many applications like denoising [1], compressed sensing [2],
pattern recognition, and classification tasks [3–5]. A learned
dictionary allows an interesting signal to be represented
as a linear combination with relatively few atoms, and the
representation coefficients are as sparse as possible. Hence,
the problem of dictionary learning can be stated as follows
[6]:

argmin
𝐷∈D,𝑋∈X

1

2
‖𝑌 − 𝐷𝑋‖

2

𝐹

s.t. 󵄩󵄩󵄩󵄩x𝑖
󵄩󵄩󵄩󵄩0
≤ 𝑆, 𝑖 = 1, 2, . . . , 𝐾,

(1)

where 𝑌 = {y
𝑖
}
𝑁

𝑖=1
∈ R𝑀×𝑁, D is the admissible set of all

column-normalized dictionaries, 𝐷 = {d
𝑘
}
𝐾

𝑘=1
∈ R𝑀×𝐾 is an

overcomplete dictionary (𝑀 < 𝐾), and each column of 𝐷
is referred to an atom. X represents the admissible set of all
sparse coefficient matrices (i.e., most of the entries are either
zero or are sufficiently small inmagnitude), and𝑋 = {x

𝑖
}
𝑁

𝑖=1
∈

R𝐾×𝑁. 𝑆 represents nonzero numbers in x
𝑖
.

Equation (1) is not a convex problem regarding the
pair (𝐷,𝑋), so most dictionary learning methods employ
alternating optimization over 𝐷 and 𝑋. The following two
stages are repeated until convergence:
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(1) Sparse coding

𝑋
(iter+1)

= argmin
𝑋∈X

1

2

󵄩󵄩󵄩󵄩󵄩
𝑌 − 𝐷

(iter)
𝑋
󵄩󵄩󵄩󵄩󵄩

2

𝐹

s.t. 󵄩󵄩󵄩󵄩x𝑖
󵄩󵄩󵄩󵄩0
≤ 𝑆, 𝑖 = 1, 2, . . . , 𝐾.

(2)

(2) Dictionary update

𝐷
(iter+1)

= argmin
𝐷∈D

1

2

󵄩󵄩󵄩󵄩󵄩
𝑌 − 𝐷𝑋

(iter+1)󵄩󵄩󵄩󵄩󵄩
2

𝐹
. (3)

The first stage is a sparse coding with 𝐷 fixed, and the
second stage is a dictionary update that updates partial atoms
with𝑋 fixed.

(1) Related Work. Different applications tend to use different
optimization algorithms for learning sparsifying dictionaries
to obtain the desired characteristics. Traditional dictionary
learning methods, such as the method of optimal directions
(MOD) [7] and 𝐾-means singular value decomposition (K-
SVD) [8], aim at optimizing a dictionary to represent all
training samples sparsely, but the coherence between atoms
is ignored. However, many studies of compressed sensing
focus on the mutual coherence of an effective dictionary (the
multiplication of a sensing matrix and dictionary) [9–12],
which is a key factor in controlling the support of solutions
of the least-squares with 𝑙

1
penalized and greedy problems.

Furthermore, highly incoherent dictionaries tend to avoid
ambiguity and improve noise stability when sparse coding is
enforced. Therefore, an incoherent frame is applied typically
to optimize the sensing matrix in compressed sensing. Tsili-
gianni et al. [13] constructed an incoherent frame to optimize
a sensing matrix by the averaged projections onto a Gram
matrix and obtained better performance of sparse signal
recovery. Rusu and González-Prelcic [14] directly optimized
the maximum inner product between pairs of atoms to
construct incoherent frames using convex optimization. It
is unlikely that we will focus on learning an incoherent
dictionary for sparse representation.

Much research has concentrated on reducing the coher-
ence of a learned dictionaries. Yaghoobi et al. [15, 16] intro-
duced the optimization of dictionary coherence by imposing
a minimal coherence constraint to design a parametric
dictionary to deal in advance with a relatively well-known
signal model. The penalty term on the coherence is added in
the dictionary learning; therefore, (1) can be reformulated as
follows [17–20]:

argmin
𝐷∈D,𝑋∈X

1

2
‖𝑌 − 𝐷𝑋‖

2

𝐹
+
1

2

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑇
𝐷 − 𝐼

󵄩󵄩󵄩󵄩󵄩

2

𝐹
,

s.t. 󵄩󵄩󵄩󵄩x𝑖
󵄩󵄩󵄩󵄩0
≤ 𝑆, 𝑖 = 1, 2, . . . , 𝐾.

(4)

Inspired by MOD [7], Ramirez et al. [17] proposed
the method of optimal coherence-constrained directions
(MOCOD) to learn a dictionary. The limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithmwas
used to cooptimized the coherence between atoms and
the performance of sparse representation [18]. Abolghasemi

et al. [19] constructed an incoherent dictionary by using
steepest-gradient descent in the iteration ofK-SVD. Bao et al.
[20] proposed a hybrid alternating proximal algorithm for
incoherent dictionary learning accompanied by a convergent
analysis and a proof. The abovementioned methods cannot
reduce the coherence obviously because the sum of the
squared inner product of all atom pairs is minimized in
the second term of (4). Meanwhile, a learned dictionaries
cannot obtain the target coherence arbitrarily. Mailhé et al.
[21] proposed an incoherent K-SVD (INKSVD) algorithm,
in which each pair of atoms, having a higher value than the
target coherence, is decorrelated in the dictionary update
after K-SVD is performed. The key idea is to cluster atoms
and symmetrically decrease the correlation of each pair of
atoms based on a greedy method. The main drawback is
that if the target coherence is set too low, the work will not
perform well on sparse representation (Figure 5), and the
computation will rise dramatically (Table 2). Barchiesi and
Plumbley [22] proposed an incoherent dictionary learning
method that enforces the iterative projection (IP) onto the
spectral and structural constraint set in order to obtain the
optimal Gram matrix. As a result, dictionary optimization
was performed based on the orthogonal Procrustes problem
(OPP) for better sparse representation performance. More
recently, Rusu and González-Prelcic [14] directly constructed
an incoherent dictionary followed by orthogonal constraints
such as in [22] for sparse representation. Similar work has
been done with regard to the dictionary optimization by
[14, 22].We are only reporting results obtained usingmethods
from [21, 22], as they seem to provide better performance of
incoherent dictionaries and sparse representation. Note that
it is a difficult task to obtain an arbitrarily low coherence, and
this is not approximating the flat spectrum of an equiangular
tight frame (ETF) using the methods from the literature
[21, 22] (see Section 4). Additionally, our proposed methods
improved [21, 22]. Manopt is employed to solve orthogonal
Procrustes problem in the dictionary optimization because
only reducing the coherence of a learned dictionary will
degenerate the performance of sparse representation, which
is very different from the work done in [14, 21, 22] and is also
the major contribution of our work.

(2) Our Contributions. There are three specific characteristics
of our proposed incoherent dictionary learningmethods that
distinguish them from prior methods.

(1) Rather than general dictionary learning methods,
an efficient framework based on a unit norm tight
frame (UNTF) is developed for solving the incoherent
dictionary learning problem, which constrains the
dictionary to approximate to ETF.

(2) The mutual coherence of the dictionary is reduced
by alternately restricting the tightness and coherence,
which gives a significantly higher incoherence than
those reports in [21, 22].

(3) We use manifold optimization (Manopt) to solve the
problem of optimization with orthogonal constraints,
that is, (14), which aims to obtain better performance
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from incoherent dictionaries and sparse representa-
tion. Experiments are carried out on synthetic data
and real audio data to illustrate the better perfor-
mance of our proposed methods.

(3) Organization of Paper. The rest of this paper is organized
as follows. Section 2 gives the definitions ofmutual coherence
and ETFs, after which our proposed algorithms are presented
in Section 3. Section 4 gives the details of dictionary optimiza-
tion by employing Manopt. Section 5 reports on extensive
experiments that were carried on synthetic data and real
audio data. Finally, conclusions are drawn in Section 6.

2. Incoherent Dictionary

2.1. The Mutual Coherence. The mutual coherence of a
dictionary is defined as themaximum inner product between
atoms [23]:

𝜇 (𝐷) = max 󵄨󵄨󵄨󵄨󵄨⟨d𝑘 ⋅ d𝑗⟩
󵄨󵄨󵄨󵄨󵄨
, 𝑘 ̸= 𝑗, (5)

where d
𝑘
and d

𝑗
denote two different atoms.

The coherence measures the similarities between atoms.
We have that 𝜇(𝐷) ∈ (0, 1), and a dictionary is considered
incoherent if 𝜇(𝐷) is small. Mutual coherence is an important
sufficient condition to provide a theoretical guarantee for
exactly sparse signal recovery.

Theorem 1 (see [9, 10]). Let 𝐷 ∈ R𝑀×𝐾 be overcomplete
dictionary with mutual coherence 𝜇(𝐷), if condition (6) is
satisfied

𝑆 <
1

2
(1 +

1

𝜇 (𝐷)
) , (6)

where 𝑆 is nonzero numbers in x. Consider the system y = 𝐷x,
in which case x can be recovered using basis pursuit (BP) and
orthogonal matching pursuit (OMP). Theorem 1 shows that an
incoherent dictionary is desirable; here, the best expectation is
that the mutual coherence can reach the Welch bound.

Theorem 2 (see [25]). Consider overcomplete dictionary 𝐷 ∈

R𝑀×𝐾 with normalized columns. The coherence satisfies

𝜇 (𝐷) ≥ √
𝐾 −𝑀

𝑀(𝐾 − 1)
. (7)

The bound is achieved if and only if matrix𝐷 is an equiangular
tight frame (ETF).

Therefore, optimizing a dictionary to approximate ETF
is an effective method to reduce the coherence in sparse
representation.

2.2. Equiangular Tight Frames. ETF can be defined as fol-
lows.

Definition 3 (see [26]). Let 𝐹 be a𝑀×𝐾matrix, where𝑀 <

𝐾, whose columns are f
1
, f
2
, . . . , f

𝐾
. Matrix 𝐹 is named an

equiangular tight frame if the following conditions are met:

(1) Each column has unit norm: ‖f
𝑘
‖
2

= 1 for 𝑘 =

1, 2, . . . , 𝐾.
(2) The columns are equiangular. For some nonnegative

𝑐, we have |⟨f
𝑘
, f
𝑗
⟩| = 𝑐 when 1 ≤ 𝑘 ≤ 𝑗 ≤ 𝐾.

(3) The columns form a tight frame.That is to say, 𝐹𝐹𝑇 =
(𝐾/𝑀)I

𝑀
,

where 𝐼
𝑀

is a unit matrix with 𝑀 × 𝑀. It follows that 𝑐
is the lowest coherence, and matrix 𝐹 is full row rank, and𝑀
nonzero singular values are equal to√𝐾/𝑀.

3. Our Proposed Incoherent
Dictionary Learning

Frames are an overcomplete version of a basis set and
tight frames are an overcomplete version of an orthogonal
basis set. ETFs generalize the geometric properties of an
orthogonal basis [26]. However, ETF is difficult to construct.
In particular, Tropp et al. [27] have demonstrated that 𝛼-tight
frame is the closest design in the Frobenius-norm sense to the
solution of the relaxed problem.

Theorem 4 (see [27]). Given the matrix 𝐷 ∈ R𝑀×𝐾 with
𝑀 < 𝐾, suppose that it has singular value decomposition
𝑈Σ𝑉
𝑇, then the matrix 𝑈𝑉𝑇 is called orthogonal polar factor.

With regard to Frobenius norm, 𝛼𝑈𝑉𝑇 is proximate 𝛼-tight
frame to the matrix 𝐷, and it is also obtained by computing
𝛼(𝐷𝐷

𝑇
)
−1/2

𝐷.

We call the given 𝛼-tight frame UNTF if all columns
‖𝑓
𝑘
‖
2
= 1, in which case 𝛼 = √𝐾/𝑀. UNTF is employed in

our proposed methods, because it is closest to the computed
low-coherent dictionary in terms of its Frobenius norm.

3.1. Our Proposed Incoherent Dictionary Learning Algorithms.
To constrain the coherence between atoms, (3) can be
reformulated as

argmin
𝐷∈D

1

2
‖𝑌 − 𝐷𝑋‖

2

𝐹

s.t. 𝜇 (𝐷) ≤ 𝜇
𝑡
,

(8)

where 𝜇
𝑡
is the target coherence. Next, we modify the

INKSVD [21] and IP [22] algorithms according toTheorem 4
in the expectation that the new dictionary will be proximal to
ETFs. Following thesemodification, the proposed algorithms
are named UNTF-INKSVD and UNTF-IP, respectively, in
order to emphasize our different framework as well as prior
work.

3.1.1. The Improvement of INKSVD Algorithm. In the
INKSVD algorithm [21], coherent optimization is added
after K-SVD is performed. It is expressed as follows:

argmin
𝐷∈D

1

2

󵄩󵄩󵄩󵄩󵄩
𝐷 − 𝐷

󵄩󵄩󵄩󵄩󵄩

2

𝐹

s.t. 𝜇 (𝐷) ≤ 𝑢
𝑡
,

(9)
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Input: initial dictionary𝐷, 𝜇
𝑡
, 𝜖, iterations

Output:𝐷opt
(1) Initialize:
(2) 𝑞 = 1;
(3) [𝑈Σ𝑉] = SVD(𝐷);
(4) Φ

0
= 𝑈Σ

𝐼
𝑉
𝑇;

(5) normalize the columns of Φ
0
;

(6) while 𝑞 ≤ iterations do
(7) Obtain the new dictionary𝐷

𝑞
by solving (10) based on the Φ

𝑞−1
;

(8) Φ
𝑞
= √𝐾/𝑀(𝐷

𝑞
𝐷
𝑇

𝑞
)
−1/2

𝐷
𝑞
;

(9) Normalize the columns of Φ
𝑞
,𝐷
𝑞
;

(10) Compute the new mutual coherence 𝜇(Φ
𝑞
) and 𝜇(𝐷

𝑞
);

(11) if 𝜇(Φ
𝑞
) ≤ 𝜇(Φ

𝑞−1
) then

(12) 𝜖 = 𝜖/2;
(13) end
(14) Update𝐷,𝐷opt = 𝐷

𝑞
;

(15) if 𝜇(𝐷
𝑞
) ≤ 𝜇
𝑡
then

(16) break;
(17) end
(18) end
(19) return𝐷opt;

Algorithm 1: Improved INKSVD algorithm: UNTF-INKSVD.

where 𝐷 is the given dictionary and the minimization of
matrix nearest problem is employed to resolve (9).

In the first algorithm, the coherence of an initial dic-
tionary is reduced sequentially by finding a new dictionary,
which has a lower coherence and is nearest to the previous
one. Accordingly, we modify the objective function based on
Theorem 4:

argmin
𝐷∈D

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑇
Φ − 𝐼

󵄩󵄩󵄩󵄩󵄩∞

s.t. ‖𝐷 − Φ‖
2

𝐹
< 𝜖,

Tr (𝐷𝑇Φ) = 𝑀,

(10)

where Φ is the reference UNTF of the previous dictio-
nary. Equation (10) can be resolved based on local con-
vex problems by using convex-optimization toolbox (CVX)
(http://cvxr.com/cvx/doc/CVX.pdf).

The proposed algorithm is called UNTF-INKSVD, as
discussed in relation to Algorithm 1. Firstly, we take the
normalized Φ

0
as the initial UNTF; then (10) is used to

seek for a new dictionary with a lower coherence, which is
proximal to the reference UNTF of the previous one. That is
to say, Φ

𝑞−1
can be viewed as the reference UNTF in the 𝑞th

iteration. Lastlywe project the newdictionary onto theUNTF
manifold, √𝐾/𝑀(𝐷𝐷

𝑇
)
−1/2

𝐷, achieving an incoherent tight
frame. Thus, the constraints between optimizing coherence
and projection onto the UNTF manifold are performed
alternately in the iterative dictionary update, yielding a
tightness and lower coherence between atoms.

3.1.2. The Improvement of IP Algorithm. The off-diagonal
entries 𝑔

𝑘𝑗
of the Gram matrix 𝐺 = 𝐷

𝑇
𝐷 represent the

coherence between atoms, so another technique for reducing
coherence is to operate on the entries of the Grammatrix also
in order to meet the following property:

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑘𝑗

󵄨󵄨󵄨󵄨󵄨
≤ 𝜇
𝑡
, 1 ≤ 𝑘, 𝑗 ≤ 𝐾, 𝑘 ̸= 𝑗,

𝑔
𝑘𝑘
= 1, 1 ≤ 𝑘 ≤ 𝐾,

(11)

where 𝜇
𝑡
is the target coherence.

Barchiesi and Plumbley [22] proposed iterative pro-
jections (IP) onto Gram matrix to reduce the correlation
between atoms. Shrinkage is performed on the off-diagonal
entries of the Gram matrix based on the following function:

𝑔
𝑘𝑗
=

{{{{

{{{{

{

1 𝑘 = 𝑗

𝑔
𝑘𝑗

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑘𝑗

󵄨󵄨󵄨󵄨󵄨
< 𝜇
𝑡

sign (𝑔
𝑘𝑗
) 𝜇
𝑡

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑘𝑗

󵄨󵄨󵄨󵄨󵄨
> 𝜇
𝑡
.

(12)

Unfortunately, the rank of shrunken Gram matrix may be
greater than𝑀.Therefore, SVD is used to keep the best rank-
𝑀 approximation. The decomposition can be used further
to extract the square root of the new Gram matrix, thus
obtaining the optimal dictionary𝐷.

In the second algorithm, the coherence of the initial
Gram matrix decreases sequentially upon finding a new
Gram matrix that has a lower coherence and is nearest to the
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Input: initial dictionary𝐷, 𝜇
𝑡
, iterations;

Output:𝐷opt
(1) Initialize 𝑞 = 1;
(2) [𝑈Σ𝑉] = SVD(𝐷);
(3) Φ

0
= 𝑈Σ

𝐼
𝑉
𝑇;

(4) normalize the columns of Φ
0
;

(5) while 𝑞 ≤ iterations do
(6) Compute the reference Gram matrix 𝐺

𝑞
= Φ
𝑇

𝑞−1
Φ
𝑞−1

;
(7) Apply (12) to 𝐺

𝑞
for decreasing the coherence;

(8) Apply SVD to 𝐺
𝑞
to obtain the matrix 𝐺

𝑒
which rank is equal to be𝑀;

(9) Building the squared-root of 𝐺
𝑒
= 𝐷
𝑇

𝑞
𝐷
𝑞
to obtain a new dictionary;

(10) Compute Φ
𝑞
= √𝐾/𝑀(𝐷

𝑞
𝐷
𝑇

𝑞
)
−1/2

𝐷
𝑞
to obtain the next closest UNTF;

(11) Normalize the columns of𝐷
𝑞
and Φ

𝑞
;

(12) Update𝐷,𝐷opt = 𝐷
𝑞
;

(13) Compute the new mutual coherence 𝜇(𝐷opt);
(14) if 𝜇(𝐷opt) ≤ 𝜇

𝑡
then

(15) break;
(16) end
(17) end
(18) return𝐷opt;

Algorithm 2: Improved IP algorithm: UNTF-IP.

previous one. The optimization of (9) can be modified into
the following problem:

argmin 󵄩󵄩󵄩󵄩󵄩
𝐺
𝑒
− 𝐺
𝑞

󵄩󵄩󵄩󵄩󵄩∞

s.t. rank (𝐺
𝑒
) = 𝑀,

diag (𝐺
𝑒
) = 1,

𝐺
𝑒
⪰ 0,

(13)

where 𝐺
𝑞
= Φ
𝑇
Φ is called to be reference Gram matrix.

The core methodology is to operate the reference Gram
matrix 𝐺

𝑞
, instead of 𝐷

𝑇
𝐷. Our modified algorithm is

referred to as UNTF-IP, and the optimization process is
described as Algorithm 2.

Firstly, the closest 𝛼-tight frame Φ
0
is obtained. Nor-

malization is then executed, after which the Gram matrix
𝐺
1
= Φ
𝑇

0
Φ
0
is computed. In the 𝑞th iteration, Φ

𝑞−1
can be

viewed as the best coherence set over the current dictionary
by employing Theorem 4. The above shrinkage operation
equation (12) is performed, and SVD is enforced to obtain
the rank 𝑀. The updated Gram matrix is then decomposed
to obtain the new dictionary. Lastly, we project the new
dictionary onto the UNTF manifold, √𝐾/𝑀(𝐷𝐷

𝑇
)
−1/2

𝐷,
achieving the next reference UNTF. Consequently, we obtain
an effectively tighter and lower coherence dictionary that
those obtained with the IP algorithms [22].

4. Dictionary Optimization with Manopt

Only reducing the coherence in (10) and (13) will result in
poor performance of the sparse representation. Hence, after

(10) and (13) are resolved, we add dictionary optimization
to maintain good performance of the sparse representa-
tion based on the OPP. Equation (1) can be formulated
equivalently as an orthogonal-constraint minimization as
follows:

argmin
𝑅∈R𝑀×𝑀

1

2
‖𝑌 − 𝑅𝐷𝑋‖

2

𝐹

s.t. 𝑅
𝑇
𝑅 = 𝐼.

(14)

It is clear that (𝑅𝐷)𝑇(𝑅𝐷) = 𝐷
𝑇
𝑅
𝑇
𝑅𝐷 = 𝐷

𝑇
𝐷.

So the dictionary optimization in (14) has two advantages:
(I) good representation performance can be obtained; (II)
incoherence remains unchanged.

In [14, 22], dictionary rotation (DR) is employed to solve
(14), but this is performed in the iterative dictionary update
of (10) and (13). As demonstrated in [28], Manopt provides
efficient algorithms to find an optimal solution of the OPP.
In the next section, we introduce an optimization framework
based on Manopt.

Let 𝑓(𝑅) = (1/2)‖𝑌 − 𝑅𝐷𝑋‖
2

𝐹
. We consider the special

orthogonal constraint as a Riemannian submanifold of 𝑅 ∈

R𝑀×𝑀. Hence the purpose ofmanifold optimization is to find
an optimal solution of 𝑅 for the following model:

argmin
𝑅∈M

𝑓 (𝑅) , (15)

where the search spaceM is a Riemannian manifold that can
be linearized locally at each point 𝑅 as a tangent space 𝑇

𝑅
M.
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The inner problem at the current iterate 𝑅
𝑘

∈ M is
defined as follows:

min
𝜂𝑘∈𝑇𝑅

𝑘
M

𝑚
𝑅𝑘
(𝜂
𝑘
)

= 𝑓 (𝑅
𝑘
) + ⟨𝜂

𝑘
, grad𝑓 (𝑅

𝑘
)⟩

+
1

2
⟨𝜂
𝑘
,Hess𝑓 (𝑅

𝑘
) [𝜂
𝑘
]⟩

s.t. 󵄩󵄩󵄩󵄩𝜂𝑘
󵄩󵄩󵄩󵄩𝑀

≤ Δ
𝑘
,

(16)

where grad𝑓(𝑅
𝑘
) and Hess𝑓(𝑅

𝑘
) are the Riemannian gradi-

ent and the Hessian of the cost function at 𝑅
𝑘
, respectively.

The Riemannian gradient of 𝑓 at 𝑅 is defined as follows:

grad𝑓 (𝑅) = skew (𝑅
𝑇
∇𝑓 (𝑅)) , (17)

where ∇𝑓(𝑅) = (𝑅𝐷𝑋 − 𝑌)(𝐷𝑋)
𝑇 is the gradient of 𝑓 as a

function in R𝑀×𝑀 and skew(𝐴) = (𝐴 − 𝐴
𝑇
)/2.

Intuitively, we also define the Riemannian Hessian of 𝑓 at
𝑅 along grad𝑓(𝑅):

Hess𝑓 (𝑅)

= skew (𝑅
𝑇
∇
2
𝑓 (𝑅) − grad𝑓 (𝑅) sym (𝑅

𝑇
∇𝑓 (𝑅))) ,

(18)

where ∇
2
𝑓(𝑅) = 𝑅 grad𝑓(𝑅)(𝐷𝑋)(𝐷𝑋)𝑇 is the Hessian

matrix of 𝑓 at 𝑅 along grad𝑓(𝑅) as a function in R𝑀×𝑀 and
sym(𝐴) = (𝐴 + 𝐴

𝑇
)/2.

Next, 𝜂
𝑘
is calculated based on inner iterations with

Steihaug-Toint truncated conjugate gradient (tCG) [29]; a
candidate next iteration is produced by

𝑅
+

𝑘
= 𝑃
𝑅𝑘
(𝜂
𝑘
) . (19)

The term 𝑃
𝑅𝑘

is a retraction function on the manifold
M and describes the mapping between the tangent space
𝑇
𝑥
𝑀 andM for any point 𝑅

𝑘
. A simpler mapping is selected:

𝑃
𝑅𝑘
(𝜂
𝑘
) = 𝑅
𝑘
+ 𝑅
𝑘
𝜂
𝑘
. Let 𝑅+

𝑘
be orthogonalized. The selection

of whether to receive or discard the candidate and quotient is
used to update the trust-region radius:

𝜌
𝑘
(𝑅
𝑘
)

=
𝑓 (𝑅
𝑘
) − 𝑓 (𝑅

+

𝑘
)

− ⟨grad𝑓 (𝑅
𝑘
) , 𝜂
𝑘
⟩ − (1/2) ⟨Hess𝑓 (𝑅𝑘) [𝜂𝑘] , 𝜂𝑘⟩

.

(20)

We optimize 𝑅 using the Manopt toolbox [29] while
𝐷 is fixed. Algorithm 3 presents the procedure for this
optimization. Afterwards, the optimal 𝐷 is obtained by
𝐷 = 𝑅𝐷. A better performance can be achieved for
sparse representation, and the dictionary coherence remains
unaffected. Furthermore, this optimization leads to a faster
algorithm because it can be performed after the dictionary
update process, which is in contrast to [22].

5. Experiment Results

In this section, we report on the experiments with synthetic
data and real audio data that were intended to compare

Input: 𝑌,𝐷,𝑋 and iterations
Output:𝐷

(1) Initialize 𝑘 = 0, 𝑅
0
= eye(𝑀);

(2) 𝜌
0
= 0.1, Δ

0
= 45.6889, Δ = 365.5114, 𝜀 = 1𝑒 − 9;

(3) while 𝑘 < iterations and ‖𝑌 − 𝑅𝐷𝑋‖
2

𝐹
≥ 𝜀 do

(4) Apply (16) 𝜂
𝑘
← tCG(𝑅

𝑘
, Δ
𝑘
);

(5) Apply (19) to compute the next iterate 𝑅+
𝑘
;

(6) Apply (20) to compute the trust region radius 𝜌
𝑘
;

(7) if 𝜌
𝑘
(𝑅
𝑘
) < 1/4 then

(8) Δ
𝑘+1

= (1/4)Δ
𝑘
;

(9) else if 𝜌
𝑘
(𝑅
𝑘
) > 3/4 and ‖𝜂

𝑘
‖ = Δ

𝑘
then

(10) Δ
𝑘+1

= min (2Δ
𝑘
, Δ);

(11) else
(12) Δ

𝑘+1
= Δ
𝑘

(13) end
(14) end
(15) end
(16) if 𝜌

𝑘
(𝑅
𝑘
) > 𝜌
0
then

(17) 𝑅
𝑘+1

= 𝑅
+

𝑘
;

(18) else
(19) 𝑅

𝑘+1
= 𝑅
𝑘
;

(20) end
(21) end
(22) end
(23)𝐷 = 𝑅𝐷;
(24) return𝐷;

Algorithm 3: Dictionary optimization with Manopt.

our proposed incoherent dictionary learning with the prior
methods. All the experiments were performed on a Dell
computer with 4GB of memory and a 2-core 2.6GHz Intel
Pentium processor. All the codes were written in MATLAB.

5.1. Incoherent Dictionary Construction. In this experiment,
incoherent dictionaries are constructed without learning
from training samples, and we aim to reduce directly the
mutual coherence of a given dictionary. We set the initial
dictionary 𝐷 ∈ R𝑀×𝐾 randomly, and 𝑀 = 20 and 𝐾 =

50 are chosen according to the condition that 𝑀 < 𝐾.
Each atom is normalized as a unit norm, and the Welch
bound is 0.1750. In order to observe the benefits of our
proposed methods, the dictionary update is taken as follows:
(I) INKSVD [21]; (II) IP [22]; (III) UNTF-INKSVD; (IV)
UNTF-IP. The INKSVD and IP are taken from the web
(http://code.soundsoftware.ac.uk/). Each algorithm is exe-
cuted for ten times, and average results are taken. Specifically,
the same initial dictionary and iterations are used for the
measurements, and we evaluate the mutual coherence of the
constructed dictionaries using each algorithm.

Figure 1 shows the mutual coherence of the constructed
dictionaries. We note that our proposed algorithms exhibit
significantly lower coherences, with the performance of the
UNTF-IP algorithm slightly exceeding those of IP, UNTF-
INKSVD, and INKSVD. A standard line is √𝐾/𝑀 = 1.5811

in Figure 2, which indicates that ETF has 20 nonzero singular
values that are same. As can be seen, the UNTF-IP and
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Figure 1: The mutual coherence of constructed dictionaries.
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Figure 2: The singular values of constructed dictionaries.

UNTF-INKSVD algorithms give approximately flat spectra
and approximate the properties of ETF. This is a better
outcome than with the IP or INKSVD algorithms, because
alternating the constraints on tightness and coherence has
a beneficial effect on incoherent dictionary construction.
As a result, the incoherent dictionary constructed with
the UNTF-IP algorithm possess an apparent property with
approximation of ETFs.The error bars in Figures 1 and 2 show
the standard deviation based on running each test 10 times
and demonstrate the consistency of the results.

Table 1: Our proposed methods for learning incoherent dictionary.

Method
Sparse
coding
[24]

Dictionary
learning

[8]

Dictionary
update

Dictionary
optimization

Literature
[21] OMP 𝐾-SVD INKSVD —

Literature
[22] OMP 𝐾-SVD IP DR

The proposed
method I OMP 𝐾-SVD UNTF-

INKSVD Manopt

The proposed
method II OMP 𝐾-SVD UNTF-IP Manopt

5.2. Incoherent Dictionary Learning for Sparse Representation
with Synthetic Data. In this section, we have investigated
the incoherent dictionary learning performance for sparse
representation of synthetic data. The training samples are
generated via underdetermined 𝑌 = 𝑅𝐷𝑋, where 𝑅 ∈ R𝑀×𝑀

and 𝐷 ∈ R𝑀×𝐾 are generated randomly. The dictionary
is enforced by a column normalization, where 𝑀 = 64

and 𝐾 = 256. The matrix 𝑋 ∈ R𝐾×𝑁 is a sparse matrix
with 𝑁 = 20,000. The nonzero coefficients are distributed
randomly, and their values are determined according to
a standard Gaussian distribution. The target coherence 𝜇

𝑡

is set as a Welch bound of 0.1085. Table 1 summarizes
the tested methods, which are executed for 30 iterations
between dictionary update and optimization. Each algorithm
is executed for 10 times, and average results are taken.

The error bars in Figures 3 and 4 show the standard
deviation based on running each test 10 times, and they
demonstrate the consistency of the results. Figure 3(a) shows
significant coherence of each learned dictionary. The UNTF-
IP and UNTF-INKSVD algorithms have better mutual
coherence on average than those of IP [22] and INKSVD
[21] algorithms. In particular, the coherence of the learned
dictionary with the UNTF-IP algorithm is closest to the
Welch bound. Note that we have used Manopt to achieve
a better performance of sparse representation. A signal-to-
noise (SNR) value of 20 log

10
(‖𝑌‖
2

𝐹
/‖𝑌−𝑅𝐷𝑋‖

2

𝐹
) is computed

in order to evaluate the performance of sparse representation.
The SNR value is showed in Figure 3(b), where it can
be seen that Manopt gives a better performance of sparse
representationwith compared to [21, 22], while the coherence
is reduced.

Figure 4 shows the ratio between the SNR and the
coherence, 𝑟 = SNR/𝜇(𝐷). The experimental results show
that our proposed algorithms perform well equilibrium
between the coherence and sparse representation and exhibit
a generalized performance of learned incoherent dictionaries.

5.3. Application on Audio Data. To verify the efficiency of
our proposed methods, experiments are reported in this
section on real audio data via 𝑌 = 𝐷𝑋 + 𝜀, where 𝜀 is a
predetermined noise. For the purposes of comparison and
analysis, the audio dataset that we use is the one adopted
by [21, 22], in which the data comprise an audio sample
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Figure 3: The mutual coherence and SNR with incoherent dictionary learning methods.
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Figure 4: The ratio between the SNR and 𝜇(𝐷) with incoherent
dictionary learning methods.

from a 16 kHz guitar recording. Furthermore, all columns
in the initial dictionary are selected randomly from training
samples and are normalized.

In this simulation, the target coherence 𝜇
𝑡
is set in a range

from 0.05 to 0.5, and the step size is 0.05.The tested methods
are the same as those in Table 1, which are executed 10 times,
and average results are taken. The termination criterion
is that the target coherence is satisfied. We then evaluate
our proposed incoherent dictionary learning methods by
computing the mutual coherence and SNR.

As shown in Figure 5, the standard deviation based on
running 10 times is showed, and the consistency in many
tests is obtained. And when the target coherence is less than
0.3, the proposed method II in Table 1—employing UNTF-IP
followed by Manopt—generates the best effect compared to
othermethods and approximates the lowest bound. However,
if the target coherence is greater than 0.3, the SNRof [21] is the
highest, followed by that of our proposed method I. Table 2
shows the computational running times.The key idea behind

Table 2: The overall execution times (in seconds) with different
incoherent dictionary learning methods.

𝜇
𝑡

0.05 0.1 0.15 0.2 0.25 0.3 0.35
Literature [21] 1.82 × 10

4
8252 2309 1127 942 733 623

Literature [22] 3628 3881 3732 3455 3362 3459 3437

Proposed method I 1533 1076 1093 988 936 871 942

Proposed method II 992 948 909 902 744 835 725
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Figure 5: Comparing incoherent dictionary learning methods on
audio data.

[21] is to decrease symmetrically the correlation of each pair
of atoms having higher coherence based on a greedy method.
Therefore, when the target coherence is higher, the number of
pairs of atoms to be decorrelated will decrease dramatically,
and the computation decreases dramatically as shown in the
first row of Table 2. Unlike [22], the most important benefit
of our proposed methods is to obtain a better computational
efficiency when the target mutual coherence is very low,
becauseManopt can be performed after the dictionary update
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process rather than during the dictionary update process.
Compared with the prior methods, the present experimental
results indicate that our learned dictionaries have a lower
coherence, andwith a certain degree of sparse representation.

6. Conclusion

In this paper, we have proposed two methods of learning
an incoherent dictionary for sparse representation, adding
the dictionary update and dictionary optimization in the
traditional dictionary learning.

First, UNTF-INKSVD and UNTF-IP algorithms were
developed to solve the problem of the higher incoherent
and tighter dictionary effectively. Unlike other dictionary
learning algorithms, our proposed algorithms learned an
incoherent dictionary based on a unit norm tight frame in the
dictionary update. An efficient framework was developed for
sequentially reducing the coherence of an initial dictionary
(or Gram matrix) by finding a new dictionary (or Gram
matrix), which has a lower coherence and is nearest to the
previous one. Hence, our learned incoherent dictionaries
approximate the properties of ETFs, and the support of sparse
coding is maximized.

Second, Manopt was employed to solve the orthogonal
Procrustes problem in dictionary optimization, because only
reducing the coherence of a learned dictionary will degen-
erate the performance of sparse representation. Meanwhile,
we compared our proposedmethods with the othermethods,
and the experimental results showed that our proposed
methods balance the performance between incoherence and
sparse representation. In particular, our proposed methods
provide state-of-the-art results when 𝜇

𝑡
is too low and have

higher running speeds and better representation perfor-
mances when compared to [21, 22]. This is because Manopt
is performed after the dictionary update rather than during
the dictionary update process.

However, a drawback is that our proposed methods
are mainly suitable for learning an incoherent dictionary
for sparse representation. Traditional dictionary learning
seems to work well if the coherence of a learned dictio-
nary is not restricted. In our work, more general, objective
functions are proposed (see (10) and (13)) to construct an
incoherent dictionary where tightness and coherence are
restricted alternately at each iteration of the algorithm, and
this method is similar to each alternating minimization. The
theoretical proof of convergence in alternating minimization
on more than two sets is still an open issue in [13, 15,
22]. Nevertheless, the experiments in our work show that
incoherent dictionary learning methods can converge with
a set of accumulation points under certain conditions. Our
proposed algorithms can result in approximate converge to
the values of objective coherence as in Figures 1, 3(a), and
5. Constructed dictionaries with our proposed algorithms
give approximately flat spectrum of ETF in Figure 2. The
SNR value is shown in Figures 3(b) and 5, which prove the
effectiveness of our proposed algorithm when compared to
[21, 22]. The convergence of the objective value does not
prove the convergence of our proposed algorithms.Therefore,
we will continue to work to prove the convergence of our

proposed algorithms. And apply our proposed methods to
other domains.
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