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Based on the finite element software ABAQUS and graded element method, we developed a dummy node fracture element, wrote
the user subroutines UMAT and UEL, and solved the energy release rate component of functionally graded material (FGM) plates
with cracks. An interface element tailored for the virtual crack closure technique (VCCT) was applied. Fixed cracks and moving
cracks under dynamic loads were simulated. The results were compared to other VCCT-based analyses. With the implementation
of a crack speed function within the element, it can be easily expanded to the cases of varying crack velocities, without convergence
difficulty for all cases. Neither singular element nor collapsed element was required. Therefore, due to its simplicity, the VCCT
interface element is a potential tool for engineers to conduct dynamic fracture analysis in conjunction with commercial finite

element analysis codes.

1. Introduction

Functionally graded materials (FGMs) are composites
formed of two or more constituent phases with a continuously
variable composition. They are attractive in potential
applications owing to their numerous advantages, including
the reduction of in-plane and transverse through-the-
thickness stresses and stress intensity, and the improvement
in residual stress distribution, thermal properties, and
fracture toughness. There are a number of reviews dealing
with various aspects of FGMs in recent years [1-3]. For
instance, an embedded crack in an orthotropic FGM layer
is considered in the case of mechanical loading [4]. Diverse
areas relevant to the theory and applications of FGMs are
reflected in [5], including homogenization of particulate
FGM, heat transfer, stress, stability and dynamic analyses,
manufacturing and design, applications, and fracture. Many
aspects of FGMs such as free vibration [6], shear deformation
[7], thermal buckling [8], and stress intensity factor [9] have
been investigated. Moreover, the fracture toughness of

functionally graded (FG) sections is of interest especially
for a material with elastic behavior [10, 11]. Using a plate
bending finite element based on FOST, Singha et al. studied
the nonlinear behaviors of FG plates under transverse load,
considering the physical/exact neutral surface position and
assuming the power law gradation of material properties in
the thickness direction [12]. Isogeometric analysis was also
very promising to be applied to a wide range of practical
mechanics problems such as laminated composite and
sandwich plates based on inverse trigonometric shear
deformation theory, functionally graded plates based on
generalized shear deformation theory [13]. Until now, FGM is
one predominant mode of material and has been investigated
extensively.

In recent years, there are growing concerns on how
cracked functional material body responds to collision under
impulse loading. To accurately evaluate the fracture mechan-
ics under dynamic loading, researchers proposed dynamic
fracture parameters, such as dynamic stress intensity factor
(DSIF) and strain energy release rate (SERR). The dynamic



fracture parameter of simple geometric model, ideal material
model, or special load model can be determined by the
analytical method. However, this method is not applica-
ble to complex structure or boundary conditions, and its
experimental measurements are very expensive and time-
consuming. Nevertheless, this type of problems can be well
resolved by numerical calculations.

At present, the finite element method (FEM) is widely
used for fracture analysis in FGMs. For instance, a pair of
FEM-based elastodynamic contour integrals was developed
to calculate the elastodynamic asymptotic mixed-mode stress
field for plane elastic materials containing a stationary notch
tip [16]. Graded finite elements can be used in fracture anal-
ysis in FGMs where the elastic moduli are smooth functions
of spatial coordinates, which are integrated into the element
stiffness matrix. The stress intensity factors for mode I and
mixed-mode two-dimensional problems can be compara-
tively evaluated through three FGMs-tailored approaches:
path-independent J-integral, modified crack closure integral,
and displacement correlation [17]. The feasibility of FEM in
cracked or uncracked FGM plates was studied. The J contour
integral of ABAQUS was used to calculate stress intensity
factors for an edge cracked FGM plate [18]. Matthews used the
finite element analysis (FEA) for large displacement J-integral
test to analyze mode I interlaminar fracture in composite
materials [19]. The dynamic crack tip fields were determined,
and the crack propagation of anisotropic materials was also
characterized [20]. These previous works are important;
however, they only focus on the dynamic cracks of isotropic
and orthotropic materials, but not on the direction of crack
propagation.

The methods used to resolve the fracture parameters
include J-integral, M-integral, extrapolation, and virtual
crack closure technique (VCCT). Among all fracture param-
eters, SERR is used increasingly in conjunction with linear
elastic fracture mechanics (LEFM) and can be computed by
VCCT together with FEA. VCCT requires a preexisting crack
with a sharp neat tip within a material for crack initiation as
well as conditions of small-scale yield to hold. With material
nonlinearity at the crack tip (small process zone) ignored,
LEFM-based approaches were proven effective in predicting
crack initiation and subsequent growth [21, 22].

VCCT was proposed for 2D crack configurations [23]
and extended to 3D-VCCT later [24]. Recently, the VCCT
formulation for kinking cracks was proposed [25]. Krueger
summarized historical developments and discussed different
applications [26]. Combining 2D-VCCT and FEA, Sun and
Qian compared the SERRs of interfacial cracks between two
isotropic materials [27]. As reported, the SERRs for the
delamination between the face sheet and the core material
of sandwich structures were calculated [28, 29]. Glaessgen
et al. calculated SERRs to evaluate the suppressing effect
of stitching on debonding [30]. VCCT was also applied to
electronic packaging [31-33]. Leski used VCCT to study the
interface crack propagation [34]. Ramu used a differential
transform method (DTM) to study free transverse vibra-
tion of isotropic rectangular plates resting on a Winkler
foundation [35]. Modified crack closure integral technique
was extended to the element-free Galerkin method [36].
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A cohesive theory assumes the presence of a process zone
in front of the crack tip whose fracture properties consist
of upper and lower surfaces controlled by the cohesive
traction-displacement discontinuity relationship and allows
non-self-similar crack propagation [37]. An automated frac-
ture procedure implemented in the large-scale, nonlinear,
and explicit, finite element code DYNA3D can be used to
simulate dynamic crack propagation in arbitrary directions
[38]. Manolis et al. used boundary element method (BEM) to
analyze the dynamic fracture of a smoothly inhomogeneous
and defective plane [39]. Solving crack growth problems,
the recent approach on smoothed finite element methods
is really a good candidate [40, 41]. The DSIF around the
antiplane crack in an infinite strip FGM under impact loading
was investigated [42]. FG cracked plates under different
loads and boundary conditions were numerically simulated
using NURBS-based XIGA [43]. XIGA has been applied to
stationary and propagating cracks in 2D [44], plastic collapse
load analysis of cracked plane structures [45], and cracked
plate/shell structures [46].

At present, the emerging computing method is strongly
pertinent, nonversatile, and difficult to promote. Analysis of
dynamic crack problems based on secondary development
of ANSYS, ABAQUS, and so on is mainly focused on
homogeneous materials, but it should be further expanded
into FGMs.

In this study, based on the commercial FEA software
ABAQUS and graded element method, we developed a
dummy node fracture element, wrote the user subroutines
UMAT and UEL, and solved the energy release rate compo-
nent of cracked FGM plates.

2. FGMs

FGMs are often formed by two or more materials whose
volume fractions change continuously along certain dimen-
sions of the structure (Figure 1) [22]. The effective moduli
of two constituents are homogenized by the rule of mixture
or the Mori-Tanaka models which are used to evaluate
the effective elastic properties of the grade composite. The
effective property is expressed by a power law of volume
fraction exponent as follows:

M(z) =M, V.+ M. V,;

Vm
VC=(0.5+£> (—SSZS];,OSHSOO); )

=1-V, O

where subscripts m and ¢ refer to the metal and ceramic
components, respectively; z is the thickness coordinate and
varies from —h/2 to h/2; n is the power law index; M,, and
M, denote the material properties of ceramic and metal,
respectively, including Young’s modulus, Poisson’s ratio, and
density. Equation (1) denotes the volume fraction variation
versus nondimensional thickness (z/h) with different n.
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FIGURE 2: The effective modulus of Al/ZrO, FGM plate computed by the rule of mixture (in solid line) and the Mori-Tanaka model (in dash
dot line) [15].

However, the rule of mixture does not reflect the interac- The effective Young modulus E, and Poisson’s ratio v, are,
tions among the two materials [47, 48]. Meanwhile, the Mori- ~ respectively, now written as
Tanaka model [49] is assumed to calculate their interactions
through the effective bulk and shear modulus given by = 9K, 1,
¢ 3K, +p,
(4)
3K, - 2u,
_ Vo= ——————.
Ke =K _ Ve ; © 2(3K, +u,)
K.-K, 1+V, ((Kc _Km)/(Km +4/3[’lm))
3 v Figure 2 illustrates comparison of the effective Young
He =t _ ¢ , (3)  modulus of Al/ZrO, FGM plate calculated by the rule of
e =t 1+ Vi ((pe = ) | (#1 + 1)) mixture and the Mori-Tanaka scheme via the power index

n. Note that with homogeneous material the two models
produce the same values. For inhomogeneous material, the
effective property through the thickness of the former is

(9K, + 84,
S = 6K+ 200)
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FIGURE 3: Fracture dummy node element.

higher than that of latter. Moreover, increasing in power index
n leads to decrement of the material property due to the
rise of metallic volume fraction. In this paper the power law
distribution of constituent materials along the plate thickness
is assumed, and the effective homogeneous properties are
calculated by the rule of mixture [15].

Graded elements were implemented by directly sampling
the properties at the Gauss points of each element [50, 51]. The
graded finite element stiffness matrix relations can be written
as follows [52]:

K°U® = F, (5)

where U° is a nodal displacement vector, F° is a load vector,
and

K = I (B°)" D° (x) B°d °, (6)
Q

where B? is the strain-displacement matrix which contains
the gradients of the interpolating functions; D°(x) is a
constitutive matrix variable; QO° is the domain of element e.
In the present work, the elasticity matrix D°(x) = D°(x, y)
was assumed to be a function of spatial coordinates.

The integral in (6) was evaluated by Gauss quadrature,
and D°(x) was specified at each Gaussian integration point.
Thus the integral for two-dimensional problems becomes

(B°)" D (x) B¢

.M:
M=

I
—_

K =

]ij' w;w, 7)

I
—_

i=11i

where the subscripts i and j refer to the Gaussian integration
points, |J;;| is the determinant of the Jacobian matrix, and w;
is the Gaussian weight.

D?(x) can be determined by interpolation, wherein the
elastic modulus E and Poisson’s ratio v can be expressed as

(8)
m
V= ZNIVI’
i=1

where N; is the shape function of FEM.

This part was written by UMAT in ABAQUS®. The
file .inp should include the following statements:

*MATERIAL, NAME=FGM

*Depvar
1)

*User Material, constants=2
200000., 0.3

where 200000 and 0.3 are the initial values of E and v,
respectively.

3. VCCT Interface Element

Figure 3 shows the definition and node numbering of a typical
VCCT interface element for 2D fracture problems. The details
for the VCCT interfacial element can be found in [36-38].
Specifically, each element has five nodes. Such an element is
placed in a way that nodes 1 and 2 are located at the crack tip,
while nodes 3 and 4 are behind and node 5 is ahead of the
crack tip. The element contains two sets of nodes: a top set
(nodes 1, 3, and 5) and a bottom set (nodes 2 and 4). A very
stiff spring is placed between nodes 1 and 2 to compute the
crack tip nodal forces as follows:

szKx(ul_MZ)’

€
F, =K, (v; = v),

where (1, v;) and (u,, v,) are the displacement components
of nodes 1 and 2, respectively, under the global coordinate
system (X,Y); K, and K|, are the X- and Y-direction spring
stiffness, respectively. Initially, they are assigned with large
numbers [37], but once the crack is predicted to grow, they
are set to zero.

Dummy nodes 3, 4, and 5 do not contribute to the stiffness
matrix and are introduced only to extract the information
of displacement opening behind the crack tip and the crack
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jump length ahead of the crack tip. For nodes 3 and 4 behind
the crack tip, the displacement openings are

Au = uz — uy,
(10)
Av=v;—v,,

where (u3, v;) and (u,, v,) are the displacement components
of nodes 3 and 4, respectively, under the global coordinate
system (X, Y). Therefore, the crack jump length, which is the
distance between nodes 1 and 5, is calculated as follows:

Aa = \/(x5 - xl)z +(ys5 - J’1)2’ (1)

where (x,, ;) and (x5, y5) are the global coordinates of nodes
1and 5, respectively. If they are updated at each step, the crack
orientation is also updated. This is of particular interest when
large deformation cannot be neglected [45].

In order to separate the fracture modes (modes I and II),
we computed the SERRs (G; and Gy;) with respect to the local
coordinate system (x, y) attached to the crack tip as shown in
Figure 1. The included angle between X and x is determined
as follows:

cosf = %,
a
(12)
sinf = =—— Vs~ yl
Aa

Then the nodal forces and the displacement openings in
(9) and (10) are projected into the local coordinate system
(x, y) as follows:

F,=F,cos0 +F,sin0,

F,=-F, sin0+F, cos®,

At = AucosB + Avsin 6,
AV = —Ausin 0 + Av cos 6.

Based on 2D-VCCT, the SERRs can be approximated as
follows:

TDyM

%= 2 Baa’
o (14)

_F.Au

T~ 9BAa’

where B is the body thickness.
For the fixed crack problem under dynamic loading,

the relationship between DSIF Kdyn (Kdyn) and SERR G?Yn

(GII ") is expressed as follows:

dyn (t) = 51gn( ) \/EG?yn (1),

(15)
dyn (t) = 31gn( ) \/EG?IY“ (1),
where plane stress E = E"F; plane strain E = E"P/(1 - (+'?)?);

E" and »"* are the modulus of elasticity and Poisson’s ratio
in the crack tip, respectively.

This part was written by UEL in ABAQUS. The .inp file
should include the following statements:

*USER ELEMENT, NODES=5, TYPE=U600, PROP-
ERTIES=3, COORDINATES=2, VARIABLES=9
1,2
*ELEMENT, TYPE=U600, ELSET=CRACKTIP
60001, 13, 9013, 12, 9014, 14
“UEL PROPERTY, ELSET=CRACKTIP
200.0E6, 200.0E6, <B>
In the above statements, 60001 is the element number;
13, 9013, 12, 9014, and 14 are the node numbers, 200.0E6,
200.0E6, and <B> are the x-direction spring stiftness, y-
direction spring stiffness, and thickness of the plate, respec-
tively.
For dynamic running cracks with constant velocity C,
their DSIFs are related to the corresponding SERRs as follows:

dyn _ z‘utip dyn
K7 (€)= \/A (C) (©),
(16)
tip
dYn ) = \/AZ.M(C) dyn ©),

where p is shear modulus. The crack speed functions are

B(1-5)

4O =" .
B (1-5)
AII (C) D (C) >
where
2 c?
131 =1- C_‘Z,,
c?
pr=1- c (18)
D(C) =468, - (1+5)
where
tip 1 tip
g (19)

oo
s tip
p

where C, is the dilatational speed; C; is the shear wave speed;
" = 3 — 49" for plane strain which is the case in examples
2 and 3; p' is material density at the crack tip.

The above procedure for the VCCT interface element
regarding dynamic crack propagation was implemented into
ABAUQUS with its user subroutine UMAT and UEL. DSIFs
are directly outputted through ABAQUS state variable “SDV”
and thus can be determined simultaneously during FEA on
ABAQUS without any postprocessing.
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FIGURE 4: Center-crack functionally graded plate under impact
loading.

This part was written by UEL in ABAQUS. The .inp file
should include the following statements:

*USER ELEMENT, NODES=5, TYPE=U600, PROP-
ERTIES=11, COORDINATES=2, VARIABLES=9

1,2

*ELEMENT, TYPE=U600, ELSET=CRACKTIP
60001, 13, 9013, 12, 9014, 14

“UEL PROPERTY, ELSET=CRACKTIP

74.588E12, 74.588E12, <B>, 0.0, <C>, 0.0, 2, 0.0, 32.0,
12.8, 44.8

In the above statements, 0.0, <C>, and 0.0, 2 are the
amount of crack propagation, speed of crack propagation,
initial crack length, and number of propagation steps; 0.0
and 32.0 are the x- and y-direction coordinates of the initial
crack, respectively; 12.8 and 44.8 are the x- and y-direction
coordinates of the final crack, respectively.

4. Numerical Results

4.1. Example 1. The rectangular panel with a central crack is
the first example of a convergence study in this field. As shown
in Figure 4, two FGMs Y-TZP and y-TiAl were used. The
components were subjected to (1)-(2), where the shape factor

Advances in Materials Science and Engineering
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FIGURE 5: Heaviside step function type impulsive loading.
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FIGURE 6: The convergence of the normalized DSIFs K at t = 7 ps.

n=0,0.2,0.5,1.0,and 5.0 and the elastic moduli of Y-TZP and
y-TiAl are M,, = 200 GPa and M, = 186 GPa, respectively;
Poisson’s ratios v of two materials are both 0.3 and the mass
density p = 5x10° kg/m’. The load form is plotted in Figure 5,
the amplitude o, = 0.4 GPa, undamped.

In order to study the convergence of the present method,
a discrete model of four grids (I: 100 x 200 elements, II:
200 x 400 elements, III: 400 x 800 elements, and IV: 500
x 1000 elements) is simulated to the normalized DSIFs
K;. The body geometry was modeled with two-dimensional
ABAQUS standard plane strain elements such as “CPE4.”
Neither special singular elements nor the collapsed element
technique was used at the crack tip.

The SERR solved by VCCT is converted to DSIFs, which
are normalized by

dyn
P ) (20)

' oyvma’
The dimensionless DSIFs K; of FGM plate of four differ-

ent grid models solved by our method at ¢ = 7 us are plotted
in Figure 6, when the shape factor n = 0.0, 0.2, 0.5, 1.0, and
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FIGURE 7: Inclined-crack functionally graded plate under impact
loading.

5.0. Atn = 0, material gradient does not change at all, and the
FGM is only Y-TZP. Then the result was compared with FDM
and [53]. Clearly, at n = 0, the result of our method is basically
the same as in [53], and well consistent with the calculation
of FDM. The result proves the accuracy of our method.

4.2. Example 2. The second example is a 60 mm long and
30 mm wide rectangular plate containing a 14.14 mm long
central crack inclined at an angle &« = 45° (Figure 7). Two
types of FGMs Y-TZP and y-TiAl were used. The components
were subjected to (1)-(2), where the shape factor n = 0, 0.2,
0.5, 1.0, and 5.0, the elastic moduli of Y-TZP and y-TiAl are
M,, = 200GPa and M, = 186 GPa, respectively; Poisson’s
ratios ¥ of two materials are both 0.3, and the mass density
p =5 x 10’ kg/m®. The load form is plotted in Figure 5,
the amplitude o, = 0.4 GPa, undamped. The normalized
DSIFs K;(t) and Ky (¢) of the right crack tip are plotted in
Figures 8 and 9, respectively. The solutions obtained by the
two methods are similar to those of Xie and Biggers Jr. [53]
who used the VCCT and finite differencing method (FDM).
Figure 10 shows the mesh before deformation and at several
time points.

The dimensionless DSIFs K| and K;; of FGM plate solved
by our method are plotted in Figures 8 and 9, respectively,

1.6

-0.2 4 T T T T T T T

t (ps)

—+— ABAQUSn = 1.0
- ABAQUS# = 5.0

—— FDM

—s— Reference [53]
—— ABAQUS#n = 0.0
—— ABAQUSn =0.2

FIGURE 8: Dynamic stress intensity factor K; of inclined-crack
functionally graded plate with different shape factors.

t (ps)

—+— ABAQUSn = 0.5
—— ABAQUS#xn = 1.0
- ABAQUSn = 5.0

—— FDM

—=— Reference [53]
—o— ABAQUS#n = 0.0
—— ABAQUSn=10.2

FIGURE 9: Dynamic stress intensity factor Kj; of inclined-crack
functionally graded plate with different shape factors.

when the shape factor n = 0.0, 0.2, 0.5, 1.0, and 5.0. At
n = 0, material gradient does not change at all, and the
FGM is only Y-TZP. Then the result was compared with FDM
and [53]. Clearly, at n = 0, the result of our method is
basically the same as in [53], and well consistent with the
calculation of FDM. The result further proves the accuracy
of our method. Besides high precision and simplicity, the
new method puts forward relevant information to calculate
DSIF with the help of ABAQUS, and it endows the program
with strong commonality and large extension space. The
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F1GURE 10: Different time steps of deformation figures of inclined-crack functionally graded plate.

deformation patterns of inclined-crack functionally graded
plate in different methods and time steps are plotted in
Figure 10. Visibly, the new method is correct and effective.

4.3. Example 3. The third example is a rectangular panel
with a central crack as shown in Figure 11. Two FGMs Y-
TZP and y-TiAl were used. The components were subjected
to (1)-(2), where the shape factor n = 0, 0.2, 0.5, 1.0, and
5.0 and the elastic moduli of Y-TZP and y-TiAl are M,, =
200 GPa and M, = 186 GPa, respectively. The initial crack
starts to propagate in a self-similar manner along the dashed
line shown in Figure 11. The plate was subjected to a time-
independent tensile stress at the edges. The constant crack

velocity was C = 1000 m/s. The normalized DSIF solution
computed here is shown in Figure 12. The results developed
here at n = 0 (Figure 12) are found to be nearly identical to the
numerical solutions by Xie et al. [54]. The load form is plotted
in Figure 5, at the amplitude o, = 0.1 GPa, undamped. The
normalized K;(t) is plotted in Figure 12 and compared with
Xie et al. [54]. The solutions obtained by the two methods are
similar. Figure 13 shows the mesh before deformation and at
several time sets.

The body geometry was modeled with two-dimensional
ABAQUS standard plane strain elements such as “CPE4.”
Neither special singular elements nor the collapsed element
technique was used at the crack tip. The VCCT interface
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FIGURE 12: Dynamic stress intensity factor K; of central-crack functionally graded plate with different shape factors.

elements were placed along the crack path (dashed line in Fig-
ure 11) and used as easy as the ABAQUS standard elements.
An implicit dynamic analysis procedure was employed,
without encountering convergence difficulty. No damping
was included in the model. Variations of normalized DSIFs
during the crack propagations at C = 1000 m/s are shown in
Figure 12. Clearly, the normalized K| remains almost constant
throughout the crack propagation, while the normalized K;
gradually decreases. Moreover, the DSIFs drop immediately
after the crack propagation begins. Figure 13 shows the
deformation during the dynamic crack propagation.

4.4. Example 4. An FGM plate with a slanted edge crack
shown in Figure 14 was used as an example of mixed-mode
dynamic crack propagation to illustrate the new method

of VCCT interface element. The initial crack (a,cosf, =
0.4W, W 32mm) starts to propagate in a self-similar
manner along the dashed ling shown in Figure 14. The plate
was subjected to a time-independent tensile stress at the
edges. The crack velocity was constant at C = 0.2 Cs. The
components were subjected to (1)-(2), where the shape factor
n=0,0.2,0.5,1.0,and 5.0 and the elastic moduli of Y-TZP and
y-TiAl are M,, = 200 GPa and M, = 186 GPa, respectively;
Poisson’s ratios v of two materials are both 0.3, and the mass
density is p = 5 x 10> kg/m’. The body geometry was modeled
with 2D ABAQUS standard plane strain elements such as
“CPE4” and “CPE3.” Neither special singular elements nor
the collapsed element technique was used at the crack tip. The
VCCT interface elements were placed along the crack path
(dashed line in Figure 14) and used as easily as the ABAQUS
standard elements. An implicit dynamic analysis procedure
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F1GURE 13: Deformed body for dynamic crack propagation at different crack length (C = 1000 m/s).

TTTTTTT
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FIGURE 14: Geometry and boundary conditions for dynamic crack propagation under time-independent loading.

was employed, without encountering convergence difficulty. ~ the normalized Kj; remains almost constant throughout
No damping was included in the model. the crack propagation, while the normalized K; gradually

Variations of normalized DSIFs during the crack propa-  decreases. Moreover, the DSIFs drop immediately upon the
gation at C = 0.2 Cs are shown in Figures 15 and 16. Clearly,  crack propagation. Figure 17 shows the deformation during
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FIGURE 15: Normalized stress intensity factors K;(t) for propagating crack (C = 0.2 Cs).
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FIGURE 16: Normalized stress intensity factors K;;(t) for propagating crack (C = 0.2 Cs).

the dynamic crack propagation. The results obtained by the
new method agree well with those by Qian and Xie [38] using
moving singular elements.

5. Conclusions

A 2D-VCCT interface element based on graded finite element
method was presented for dynamic fracture analysis. The
element was implemented into commercial FEA software
ABAQUS via the user element subroutine UMAT and
UEL. This new method was evaluated with three examples.
The results agree well with the available numerical and

experimental results in previous studies. With this interface
element, fracture mechanics can be directly applied to crack
growth problem on commercial FEA software. The element
has several significant advantages, such as no need of extra
postprocessing to extract fracture parameters, and no special
burden on definition of body mesh. It can be applied in
conjunction with conventional finite elements. Finally, the
interface element proven reliable in a variety of cases can
be employed potentially in other cases of dynamic fracture.
In summary, the new 2D-VCCT interface element is simple,
efficient, universal, and robust. This element method is a
potential tool for structure-level analysis of dynamic crack
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FIGURE 17: Deformed body for dynamic crack propagation at different crack length (C = 0.2 Cs).
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propagation problems by resorting to the commercial FEA
codes with user subroutines.
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