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In the recent past, the work in the area of ROC analysis gained attention in explaining the accuracy of a test and identification
of the optimal threshold. Such types of ROC models are referred to as bidistributional ROC models, for example Binormal, Bi-
Exponential, Bi-Logistic and so forth. However, in practical situations, we come across data which are skewed in nature with
extended tails. Then to address this issue, the accuracy of a test is to be explained by involving the scale and shape parameters.
Hence, the present paper focuses on proposing an ROCmodel which takes into account two generalized distributions which helps
in explaining the accuracy of a test. Further, confidence intervals are constructed for the proposed curve; that is, coordinates of the
curve (FPR, TPR) and accuracy measure, Area Under the Curve (AUC), which helps in explaining the variability of the curve and
provides the sensitivity at a particular value of specificity and vice versa. The proposed methodology is supported by a real data set
and simulation studies.

1. Introduction

In classification analysis, the Receiver Operating Charac-
teristic (ROC) curve is a widely used tool to evaluate the
performance of a test. Further, the intrinsic measures such as
sensitivity, specificity, and accuracy are essential to describe
a diagnostic test’s ability to classify an individual into one of
the two groups/populations. Sensitivity provides an estimate
of how good the test is at predicting a disease. Specificity
estimates how likely patients without disease can be correctly
identified. ROC curve is a graphical representation of 1 −

specificity and sensitivity. That is, the points of the curve
are obtained by moving the classification threshold from the
most positive classification value to the most negative. For
a random classification, the ROC curve is a straight line
connecting the origin (0, 0) to top right corner of the graph
(1, 1). Further, the accuracy measure is defined as the area
under the ROC curve. Therefore, the criterion widely used
to measure the accuracy of a test in ROC context is the area
under an ROC curve (AUC).

In classification, the main aim is to discriminate between
normal and abnormal populations with better accuracy. In
the literature so far many ROC models exist based on
bidistributional assumptions such as binormal (Egan [1]),
bilogistic and bilognormal (Dorfman andAlf Jr. [2, 3]), bibeta
and biexponential (Zou et al. [4]; Tang et al. [5]; Tang and
Balakrishnan [6]), and bigamma etcetera (Hussain [7]). If the
test scores of normal and abnormal populations follow dif-
ferent distributions, then these ROC forms will not produce
reliable outputs. For instance, consider that a marker, namely,
APACHE (Acute Physiology and Chronic Health Evaluation)
II, is used to predict the mortality status of patients who
gets admitted into ICU. The pattern of APACHE scores for
live and dead patient’s does not possess the normality and
explains skewed nature of the data. Here, the conventional
binormal ROC model will fail to produce reliable outputs in
terms of AUC, threshold, sensitivity, and specificity. However,
the distribution of scores may follow any skewed distribu-
tions. Hence, the main concentration of the paper lies in
handling the situationswhendistributions of two populations
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are different and the data skewed nature of the data. We
propose an ROC model that takes into account Generalized
Half Normal (normal population) and Weibull (abnormal
population) distribution with shape and scale parameters.
In medical, engineering, and life studies, data tend to have
extended tails; in this situation, the conventional binormal
ROC curve fails to explain the hidden accuracy of the test
considered. Recently, Balaswamy et al. [8] addressed this issue
and developed a Hybrid ROC (HROC) curve which is based
onHalf Normal and Exponential distributions. However, this
model is restricted by considering only scale parameters to
illustrate the accuracy. But there are other statistical measures
which accounts the information about the tail property of the
data. In this paper, an extended version of the HROC curve
is proposed by considering the Generalized Half Normal and
Weibull distributions with both scale and shape parameters
corresponding to normal as well as abnormal populations.
A bootstrap study is used to construct the 95% confidence
intervals and other measures of the proposed ROC curve.
Further, the proposed methodology is demonstrated using
simulation studies as well as a real data set.

The present paper is organized as follows.The ROC curve
is developed based on Generalized Half Normal (GHN) and
Weibull distributions with scale (𝜎) and shape (𝛼) parameters
of both functions and GHROC curve accuracy measure,
Area Under the Curve, is derived. Further, the confidence
intervals for AUC and proposed ROC curve are estimated
through bootstrap method. Finally, the results obtained
using proposed methodology are illustrated in Results and
Discussion.

2. Methodology

Let {𝑥
1
, 𝑥

2
} ∈ 𝑆 be the test scores, which are observed in nor-

mal (𝐻) and abnormal (𝐷) populations, respectively. Here,
it is assumed that 𝐻 and 𝐷 populations follow Generalized
Half Normal (GHN) and Weibull distributions with shape
and scale parameters as 𝛼 > 0 and 𝜎 > 0, respectively.
The probability density function and cumulative distribution
function of GHN (Cooray and Ananda [9]) and Weibull
distributions are given as follows:
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where Φ(⋅) is the c.d.f. of the standard normal distribution:
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In classification, ROC curve is a graphical plot that illustrates
the performance of a binary classifier as its discrimination
threshold varies (Green and Swets [10]).The curve is obtained
by plotting the false positive rate (FPR) against the true
positive rate (TPR).

The expression for FPR is derived by using its probabilis-
tic definition as
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on further simplification, the expression for 𝑡 can be obtained
by the formula
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where Φ

−1
(⋅) is the inverse cumulative standard normal

distribution function.
Similarly, the expression for TPR is derived by using its

probabilistic definition fromWeibull distribution as
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on substituting (4) into (6), the expression for TPR can be
written as
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here 𝛽 = 𝜎

𝐻
/𝜎

𝐷
, 𝜍 = 𝛼

𝐷
/𝛼

𝐻
, and (7) is the expression of

ROC Curve based on Generalized Half Normal and Weibull
distributions. This expression (7) can be referred to as the
Generalized Hybrid ROC (GHROC) curve, since the ROC
curve is developed based on two generalized distributions.

In ROCmethodology, the statistical measure which helps
in explaining the overlapping area and the accuracy of a
classifier is the Area Under the Curve (AUC). It can be
interpreted as the probability that a subject randomly selected
from the group with the condition will have a discriminating
score indicating greater likelihood than that of a randomly
selected subject from the group without condition (Bamber
[11]).The AUC can take values between 0 and 1 with practical
lower bound value of 0.5 (chance diagonal). The expression
for the accuracymeasure AUC can be obtained by integrating
the ROC expression (7) over the range [0, 1] with respect to
the false positive rate as

AUC = ∫

1
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The above expression has no closed form; hence it has to be
solved using numerical integration. In the next subsection,
the variance and confidence intervals for AUC are estimated
through bootstrapping method.

2.1. Confidence Intervals for AUC. The 100(1−𝛼)%confidence
interval for AUC can be defined as

̂AUC ± 𝑍

1−𝛼/2
√Var (̂AUC),

(9)
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where 𝑍

1−𝛼/2
is the 1 − 𝛼/2 standard normal percentile

and Var(̂AUC) is the estimated variance of ̂AUC, which is
obtained using bootstrapping. Let “𝐵” be the number of
bootstraps obtained from the data with the sample sizes 𝑛

𝐻

and 𝑛

𝐷
, respectively, fromnormal and abnormal populations.

Then the bootstrapped AUC estimate and its variance are
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where AUC
𝑏
is the 𝑏th bootstrap estimate of AUC. The next

subsection dealswith the construction of confidence intervals
for the proposed ROC curve to explain the variability of the
curve at each and every threshold value.

2.2. Confidence Intervals for GHROCCurve. The 100(1−𝛼)%
confidence intervals for the GHROC curve are estimated
using delta method. This confidence interval for the ROC
Curve represents the range at each point of false positive
rate and its corresponding true positive rate. Therefore, the

100(1 − 𝛼)% confidence intervals for FPR and TPR are as
follows:
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where ̂FPR and ̂TPR are the estimated FPR and TPR,
respectively, and their variances are
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Further, the confidence intervals for FPR and TPR can be
obtained using the following expression:
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(for complete proof, refer to appendix). These confidence
interval lines show the variability of the proposed ROC curve
at each and every point on the ROC curve.

In the next section, the results are carried out using
simulation studies and a real data set to explain the proposed
methodology. Further, the confidence intervals are evaluated
for the summary measure AUC and the intrinsic measures
FPR and TPR.

3. Results and Discussion

Theproposedmethodology is demonstrated using simulation
studies and real data set (SAPS III).

3.1. Simulation Studies. Simulation studies are conducted
with different combinations of scale and shape param-
eters of both normal and abnormal populations and
the entire simulations are done at various sample sizes
{50, 100, 200, 300 and 500} with 𝐵 = 100 bootstraps. At
every parameter combination and sample size, the AUC and
its confidence intervals are obtained. The main purpose of
conducting simulations is to show how the AUC of GHROC
curve possesses different values as the scale and shape

parameters of the normal and abnormal distributions change.
The variations in the parameter values of both populations
are used to explain the overlapping area in terms of AUC;
this mean that the higher the AUC, the lesser the overlapping
area and vice versa. Further, to demonstrate the behavior of
AUC, the entire simulation work is carried out with three
different experiments. In the first experiment, the shape
parameter of abnormal population is varied by fixing the
other parameters as constant; in second experiment, the scale
parameter of abnormal population is varied by fixing the
other parameters as constant and, in the third experiment,
the shape parameters of both populations are considered to be
equal with varying scale in abnormal population. The results
so obtained from these experiments are reported in Table 1.

In the first experiment, when 𝛼

𝐷
= 2 with 𝜎

𝐻
= 1,

𝜎

𝐷
= 1.5, and 𝛼

𝐻
= 0.6, the AUC is observed to be

around 0.6791 (67.91% of accuracy) and, as 𝛼

𝐷
takes higher

values as 3 and 5, the AUC is observed to have a better value
indicating high level of accuracy, thus, reflecting the scenario
that as the discrepancy between shape parameters of both
normal and abnormal population’s increases, AUC attains a
larger value indicating a better extent of correct classification
with minimum percentage of overlapping area. Suppose that
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Table 1: Confidence intervals for AUC at various combinations of scale and shape parameters of normal and abnormal populations with
different sample sizes.

Experiment Parameter values Sample size
50 100 200 300 500

1

𝜎

𝐻
= 1, 𝜎

𝐷
= 1.5, 𝛼

𝐻
= 0.6

𝛼

𝐷
= 2

0.6791
(0.5728, 0.7854)

0.724
(0.6503, 0.7978)

0.7036
(0.6564, 0.7509)

0.6810
(0.6407, 0.7212)

0.7186
(0.6864, 0.7509)

𝛼

𝐷
= 3

0.7609
(0.6651, 0.8568)

0.7336
(0.6623, 0.8049)

0.7385
(0.6873, 0.7897)

0.7513
(0.7116, 0.7910)

0.7249
(0.6954, 0.7545)

𝛼

𝐷
= 5

0.7311
(0.6384, 0.8239)

0.7655
(0.7033, 0.8277)

0.7408
(0.6971, 0.7846)

0.7811
(0.7526, 0.8096)

0.7807
(0.7586, 0.8028)

2

𝜎

𝐻
= 1.5, 𝛼

𝐻
= 1.5, 𝛼

𝐷
= 3

𝜎

𝐷
= 1.5

0.5953
(0.4814, 0.7092)

0.5588
(0.4881, 0.6294)

0.5765
(0.5241, 0.6290)

0.5592
(0.5198, 0.5986)

0.5739
(0.5416, 0.6061)

𝜎

𝐷
= 2.25

0.8033
(0.7230, 0.8836)

0.7684
(0.7061, 0.8307)

0.769
(0.7353, 0.8027)

0.7656
(0.7328, 0.7983)

0.7871
(0.7604, 0.8139)

𝜎

𝐷
= 3.5

0.9133
(0.8737, 0.9528)

0.8973
(0.8606, 0.9339)

0.9132
(0.8944, 0.9321)

0.9058
(0.8898, 0.9218)

0.9144
(0.9028, 0.9259)

3

𝜎

𝐻
= 1.5, 𝛼

𝐻
= 2, 𝛼

𝐷
= 2

𝜎

𝐷
= 1.5

0.5395
(0.4340, 0.6450)

0.5212
(0.4480, 0.5943)

0.4886
(0.4347, 0.5425)

0.5395
(0.4949, 0.5841)

0.5178
(0.4840, 0.5516)

𝜎

𝐷
= 2.25

0.7303
(0.6296, 0.8310)

0.6904
(0.6146, 0.7663)

0.7222
(0.6803, 0.7641)

0.7101
(0.6756, 0.7447)

0.7084
(0.6776, 0.7391)

𝜎

𝐷
= 3.5

0.8319
(0.7562, 0.9076)

0.8193
(0.7689, 0.8697)

0.8458
(0.8076, 0.8840)

0.8584
(0.8352, 0.8815)

0.8563
(0.8400, 0.8726)

if we have real data set with these parameter values then
that particular test will provide a better accuracy. Along
with the shape, scale parameter also influences the measure
AUC. Further, in experiment 2, scale parameter of abnormal
population (𝜎

𝐷
) is varied by keeping all the other parameters

(𝛼

𝐷
, 𝛼

𝐻
, 𝜎

𝐻
) as constant. Moderate levels of discrepancy in

the shape values and scale parameters influence the accuracy
of the classification. As 𝜎

𝐷
attains a larger value, the AUC

of GHROC curve tend to have better values of accuracy. So
this reveals that along with discrepancy in shape parameters
of both populations, scale parameter also tends to explain
better variability in the data giving rise to talk about the exact
performance of the test considered. The accuracy of the test
needs to be examined when there is an equal discrepancy in
the shape parameter with varying scale parameters. This is
addressed by conducting another experiment (third). Here,
the first part is defined by considering the scale and shape
parameters of both populations to be equal and, in the
second part of this experiment, the scale parameters are
varied by taking equal shape parameters.The first part reveals
the finding that, when all parameters tend to be equal to
unit value, then two populations get overlapped giving rise
to having AUC nearer to 0.5. The results of the second
part outline the observation that even though the shape
parameters are equal, the discrepancy in scale parameters of
abnormal population tends to explain the hidden accuracy
and when the discrepancy between the scale values of two
populations is larger, the explanation about the accuracy of
the test can be given better. Thus, from three experiments
it is noticed that shape parameter has its major influence in

explaining better accuracy of a test than that observed with
scale parameter alone. However, scale parameter also has its
role in explaining the accuracy and it should not be neglected.

To demonstrate the proposed methodology with the help
of graphical visualization, ROC curves are drawn for three
experiments (Figure 1). From Figure 1(a), it is visualized that
the curve moves towards the top left corner of the plot with
increasing accuracy as the shape of abnormal population
tends to have a larger value. Further, Figure 1(b) explains the
effect of scale in abnormal population and it can be seen that
the curve moves away from chance line with high accuracy
as the scale attains larger value in abnormal population.
Figure 1(c) illustrates the effect of scale parameter in presence
of equal shape parameter and it is observed that the shape
of the ROC curve is affected as the scale changes. From
Figure 1, it is reasonable to say that the proposed ROC curve
completely depends on the shape and scale parameters of
normal and abnormal populations.

Apart from explaining the importance and the influence
of the scale and shape parameters in GHROC context, it
is essential to construct the confidence intervals for the
measures of GHROC curve. This attempt is to illustrate
the changing behavior of the estimates of the proposed
ROC curve. In statistical literature, the theory of interval
estimation has gained its importance over point estimation
because it reveals the true information of the estimate within
the potential uncertainties. Hence, it is very important to
address the position of the true estimate in the presence
of sample size within the range of potential uncertainties.
The 100(1 − 𝛼)% confidence intervals are constructed for
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(c) Effect of scale parameter in abnormal population with constant
shape parameter (experiment 3)

Figure 1: Plot of ROC curves with various combinations of scale and shape parameters of both normal and abnormal populations.

all the combinations which are defined as three different
experiments.

With respect to the approach of confidence interval, the
perception about the impact of sample size on the width of
the confidence intervals and the graphical visualization of the
true estimates of GHROC curve along with its confidence
intervals is more important and to be addressed. From
the results, it is evident that the sample size effect can be
witnessed in terms of the width of the confidence interval,

notifying that the true estimate is independent from the effect
of sample size and its corresponding confidence interval
possesses a narrowing-down phenomenon. These simula-
tion studies points out the information that, irrespective of
the sample size and width of the confidence interval, the
information about the true estimate of the ROC curve lies
within the potential uncertainties. Even though this is a
generally observed phenomenon but the fact to be noticed
is that the variability in the populations will get diminished
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Figure 2: The confidence intervals for GHROC curve at various combinations of scale and shape parameters of both populations.

as the sample size takes a larger number, giving rise to a
shortened confidence interval.

Figure 2 clearly explains the variability of GHROC curve
at each and every point on the ROC curve. This means
the lower control limit and the upper control limit for the
proposed ROC curve are plotted at a particular sample size
𝑛 = 200 (Figure 2) and these curves explain the range of
false positive rate and true positive rate at each and every
threshold. Further, the optimal threshold is also depicted
in Figure 2 along with the pair (FPR,TPR) obtained at that
particular optimal threshold. Further, this optimal threshold

is used to classify the subjects with better accuracy and this
can be used as a reference value for future classification.
For example, consider the combination 𝜎

𝐻
= 1.5, 𝜎

𝐷
=

3.5, 𝛼
𝐻

= 1.5, and 𝛼

𝐷
= 3 and, at this combination, the

optimal threshold is found to be 2.0592 with true positive
rate 0.8096. This explains the identification of abnormal
subjects as abnormal with 80.96% of correct classification
at the optimal threshold value 2.0592 for the considered
combination. At the case of worst classification (equal scale
and shape parameters), the optimal threshold is observed
to be 1.9914 with very less value of true positive rate 0.1846
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Table 2: Results for SAPS III using GHROC curve methodology.

̂
𝜎

𝐻
̂
𝜎

𝐷
�̂�

𝐻
�̂�

𝐷
𝑡

AUC
(LCL, UCL)

32.6927 37.9974 1.1831 1.9872 22 0.6278
(0.5530, 0.6917)

(Figure 2). Similarly, the interpretation can be given for all the
remaining combinations which are considered in the study
using Figure 2.

3.2. Real Data Set. The real data set is about the ICU scoring
system; SAPS III is a system for predicting mortality (dead or
alive) status of a patient in ICU. SAPS III has been designed
to provide a real-life predicted mortality for a patient by
following a well defined procedure, based on a mathematical
model that needs calibration.This data consists of a total of 111
respondents of which 66 (59.45%) are alive and 45 (40.54%)
are dead.

From this data set it is observed that the SAPS III scores
for dead patients followWeibull distribution (KS − Statistic =
0.1280; 𝑝 value = 0.4165 at 0.05 level of significance) whereas
the scores for patients who are alive follow GHN distribution
(KS − Statistic = 0.0901; 𝑝 value = 0.6243 at 0.05 level of
significance). The results for the prognosis of disease are
reported in Table 2. It is observed that the accuracy of the
test is 62.78% indicating that the SAPS III score is able to
identify the status of mortality about 62.78%. The optimal
threshold value is observed to be 22.00 which means that
when the SAPS III score exceeds the optimal threshold
22.00, the patient will have 71.35% chance of death. Further,
the confidence interval of AUC is (0.5530, 0.6917) and the
proposed ROC curve for SAPS III uniformly lies above the
chance line to explain the mortality rate (Figure 3) depicting
lower and upper confidence intervals for proposed ROC
curve along with its optimal threshold.

4. Conclusion

Thepresent paper is focused on addressing the practical issue
where the populations with and without condition underlie
two different generalized skewed distributions with scale and
shape parameterswhich are useful in explaining andhandling
skewed nature of the data. Simulation studies are conducted
at various combinations of the parameters.The entire exercise
is done using three experiments and the effect of sample
size is also noted. Further, it is observed that the width of
the confidence interval is affected by the size of the sample
in turn providing shortened confidence intervals as sample
size is considered to be large. Moreover, from the proposed
methodology it is feasible to identify the sensitivity at a
specific false positive rate and vice versa.

Further, the proposed methodology is applied to a real
data set, namely, SAPS III, which is used to predict the
mortality status of the patient in ICU. The accuracy of SAPS
III system in predicting the mortality event, death, is 62.78%.
The optimal threshold is identified to be 22.00 which can be
used to identify the status of a new individual whose SAPS III
score is calculated.

CIs for GHROC curve for SAPS III data set
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Figure 3: GHROC curve for SAPS III with its confidence intervals.

Appendix

The partial differentiations of FPR and TPR with respect to
their parameters are

𝜕FPR
𝜕𝜎
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= (
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(A.1)

Now, by substituting the above partial derivatives in (12), we
have

Var (̂FPR)
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(A.2)
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The bootstrapped estimates and their variances of the param-
eters 𝜎

𝐻
, 𝛼
𝐻
, 𝜎
𝐷
, and 𝛼
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where 𝜎

𝐻𝑏
, 𝜎
𝐷𝑏
, 𝛼
𝐻𝑏

, and 𝛼

𝐷𝑏
are the 𝑏th bootstrap esti-

mates of 𝜎
𝐻
, 𝜎
𝐷
, 𝛼
𝐻
, and 𝛼

𝐷
, respectively.

Now, by substituting the above variances of the param-
eters of two considered distributions in (A.2) and (A.3), we
can obtain the expressions for the variances of FPR and TPR,
respectively. Further, using (A.2) and (A.3), the confidence
intervals can be estimated for the intrinsic measures which
results in producing the confidence intervals for the proposed
ROC curve as follows:
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