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For an analytical expression of Vandermonde inverse matrix, a new derivation process based on Wronskian matrix and Lagrange
interpolation polynomial basis is presented. Recursive formula and implementation cases for the direct formula of Vandermonde
inverse matrix are given based on deriving the unified formula of Wronskian inverse matrix. For the calculation of symbol-type
Vandermonde inverse matrix, the direct formula and recursive method are verified to be more efficient than Mathematica which
is good at symbolic computation by comparing the computing time in Mathematica. The process and steps of recursive algorithm
are relatively simple. The derivation process and idea both have very important values in theory and practice of Vandermonde and
generalized Vandermonde inverse matrix.

1. Introduction

Vandermonde matrix and generalized Vandermonde matrix
and their inverses are always widely concerned in many
research fields, such as numerical analysis, data and signal
processing, and control theory [1–8].There aremany effective
ways to calculate the Vandermonde inverse matrix. Fox
example, Tou [1] and Reis [2] obtained the matrix for-
mula from the coefficients of polynomial terms. Neagoe [3]
deduced an analytic formula of complex-type Vandermonde
inverse matrix based on symmetric polynomials. Eisinberg
and Fedele [4] presented a general explicit formula for the
elements of inverse matrix and two different algorithms were
deduced. In this paper, based on results in [1, 2], a new deriva-
tion process of an analytical expression of Vandermonde
inverse matrix is presented based on Wronskian matrix
and Lagrange interpolation polynomial basis, and recursive
formula and implementation cases for the direct formula
of Vandermonde inverse matrix are presented based on
deducing the unified formula of Wronskian inverse matrix.

The rest of this paper is arranged as follows. Firstly, we
summarize the main idea and analytical formulas presented
in [3] and give a new derivation process for the formula in
Section 2. In Section 3, a recursive formula of Vandermonde

inverse matrix is deduced. In Section 4, numerical sim-
ulations are presented with some cases in Mathematica
and conclusion and prospect are given by comparing and
analyzing the numerical results in the last section.

2. A New Derivation of Vandermonde
Inverse Matrix

If 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
(𝑛 ≥ 1) are different numbers, that is to say,

they are not equal to each other, then we define the 𝑛-order
matrix

𝑉
𝑛
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = (V

𝑖𝑗
)
𝑛×𝑛

= (𝑥
𝑖−1

𝑗
)
𝑛×𝑛

=
(

(

1 1 ⋅ ⋅ ⋅ 1

𝑥
1

𝑥
2

⋅ ⋅ ⋅ 𝑥
𝑛

.

.

.

.

.

.

.

.

.

𝑥
𝑛−1

1
𝑥
𝑛−1

2
⋅ ⋅ ⋅ 𝑥
𝑛−1

𝑛

)

)

,

(1)

where 𝑖, 𝑗 = 1, 2, . . . , 𝑛 as a Vandermonde matrix. For the
inverse of this matrix, Neagoe [3] obtained the calculation
formula (2) according to relations between the determinant
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of the matrix (1) and the determinant of the matrix which
was obtained by adding a row whose elements were 𝑥

𝑛

𝑗
(𝑗 =

1, 2, . . . , 𝑛) and a column whose elements were 𝑥
𝑖
(𝑖 =

0, 1, 2, . . . , 𝑛) to (1) and based on the calculation formula of
inverse matrix by using the matrix determinant:

𝑉
−1

𝑛
= [(V−1
𝑖𝑗

)
𝑛×𝑛

]

𝑇

=
[

[

((−1)
𝑖+𝑗

⋅

𝜎
𝑛−𝑖

(𝑗)

∏
𝑗−1

𝑘=1
(𝑥
𝑗
− 𝑥
𝑘
)∏
𝑛

𝑘=𝑗+1
(𝑥
𝑘
− 𝑥
𝑗
)

)

𝑛×𝑛

]

]

𝑇

,

(2)

where 𝑖 = 1, 2, . . . , 𝑛 are column subscripts and 𝑗 = 1, 2, . . . , 𝑛

are row subscripts and

𝜎
0
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 1,

𝜎
𝑘
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = ∑

1≤𝑗
1
<⋅⋅⋅<𝑗

𝑘
≤𝑛

𝑥
𝑗
1

𝑥
𝑗
2

⋅ ⋅ ⋅ 𝑥
𝑗
𝑘

,

𝑘 = 1, 2, . . . , 𝑛,

𝜎
𝑘
(𝑗) = 𝜎

𝑘
(𝑥
1
, . . . , 𝑥

𝑗−1
, 𝑥
𝑗+1

, . . . , 𝑥
𝑛
) .

(3)

Here we will use a newmethod entirely different from [3]
to deduce formula (2).

For a group of linearly independent functionsΦ = {𝜑
1
(𝑥),

𝜑
2
(𝑥), . . . , 𝜑

𝑛
(𝑥)}, where 𝜑

𝑖
(𝑥) (𝑖 = 1, 2, . . . , 𝑛) has the (𝑛 −

1)th derivative, Wronskian matrix is defined as

𝑊[𝜑
1
(𝑥) , 𝜑

2
(𝑥) , . . . , 𝜑

𝑛
(𝑥)] = (𝑤

𝑖𝑗
)
𝑛×𝑛

= (𝜑
(𝑖)

𝑗
)
𝑛×𝑛

,

𝑗 = 1, 2, . . . , 𝑛; 𝑖 = 0, 1, . . . , 𝑛 − 1.

(4)

If there is another group of functions Φ̃ = {𝜑
1
(𝑥), 𝜑
2
(𝑥), . . . ,

𝜑
𝑛
(𝑥)} which satisfy

𝑛

∑

𝑖=1

𝜑
𝑖
(𝑥) 𝜑
𝑖
(𝑡) =

(𝑥 − 𝑡)
𝑛−1

(𝑛 − 1)!

, (5)

then the inverse matrix 𝑊
−1

[𝜑
1
(𝑥), 𝜑
2
(𝑥), . . . , 𝜑

𝑛
(𝑥)] of (4)

can be obtained [9] as

𝑊
−1

[𝜑
1
(𝑥) , . . . , 𝜑

𝑛
(𝑥)] = [(−1)

𝑛−𝑗
𝜑
(𝑛−𝑗)

𝑖
(𝑥)]
𝑛×𝑛

, (6)

where 𝑗 = 1, 2, . . . , 𝑛 and 𝑖 = 1, . . . , 𝑛.
If we set 𝑦

𝑖
(𝑥) = (1/(𝑛 − 1)!)(𝑥 − 𝑥

𝑖
)
𝑛−1

(𝑖 = 1, 2, . . . , 𝑛),
then we can verify that the Lagrange interpolation polyno-
mial basis

𝑙
𝑖
(𝑥) =

1

𝑤

(𝑥
𝑖
)

𝑛

∏

𝑗=1

𝑗 ̸=𝑖

(𝑥 − 𝑥
𝑗
) (𝑖 = 1, 2, . . . , 𝑛) , (7)

where 𝑤(𝑥) = ∏
𝑛

𝑖=1
(𝑥 − 𝑥

𝑖
) satisfy (5); that is to say,

𝑛

∑

𝑖=1

𝑦
𝑖
(𝑥) 𝑙
𝑖
(𝑡) =

(𝑥 − 𝑡)
𝑛−1

(𝑛 − 1)!

. (8)

For Wronskian matrix 𝑊[𝑦
1
(𝑥), . . . , 𝑦

𝑛
(𝑥)],

𝑊[𝑦
1
(𝑥) , . . . , 𝑦

𝑛
(𝑥)] = [

1

(𝑛 − 𝑖)!

(𝑥 − 𝑥
𝑗
)

𝑛−𝑖

]

𝑛×𝑛

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1

(𝑛 − 1)!

(𝑥 − 𝑥
1
)
𝑛−1 1

(𝑛 − 1)!

(𝑥 − 𝑥
2
)
𝑛−1

⋅ ⋅ ⋅

1

(𝑛 − 1)!

(𝑥 − 𝑥
𝑛
)
𝑛−1

1

(𝑛 − 2)!

(𝑥 − 𝑥
1
)
𝑛−2 1

(𝑛 − 2)!

(𝑥 − 𝑥
2
)
𝑛−2

⋅ ⋅ ⋅

1

(𝑛 − 2)!

(𝑥 − 𝑥
𝑛
)
𝑛−2

.

.

.

.

.

. ⋅ ⋅ ⋅

.

.

.

𝑥 − 𝑥
1

𝑥 − 𝑥
2

⋅ ⋅ ⋅ 𝑥 − 𝑥
𝑛

1 1 ⋅ ⋅ ⋅ 1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

(9)
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From (6), the inverse matrix of 𝑊[𝑦
1
(𝑥), . . . , 𝑦

𝑛
(𝑥)] is

𝑊
−1

[𝑦
1
(𝑥) , . . . , 𝑦

𝑛
(𝑥)] = [(−1)

𝑛−𝑗
𝑙
(𝑛−𝑗)

𝑖
(𝑥)]
𝑛×𝑛

=

[

[

[

[

[

[

[

[

[

[

[

[

[

(−1)
𝑛−1

𝑙
(𝑛−1)

1
(𝑥) (−1)

𝑛−2
𝑙
(𝑛−2)

1
(𝑥) ⋅ ⋅ ⋅ 𝑙

1
(𝑥)

(−1)
𝑛−1

𝑙
(𝑛−1)

2
(𝑥) (−1)

𝑛−2
𝑙
(𝑛−2)

2
(𝑥) 𝑙

2
(𝑥)

.

.

.

.

.

.

.

.

.

.

.

.

(−1)
𝑛−1

𝑙
(𝑛−1)

𝑛
(𝑥) (−1)

𝑛−2
𝑙
(𝑛−2)

𝑛
(𝑥) 𝑙

𝑛
(𝑥)

]

]

]

]

]

]

]

]

]

]

]

]

]

,

(10)

where 𝑖 = 1, 2, . . . , 𝑛 are row subscripts and 𝑗 = 1, 2, . . . , 𝑛 are
column subscripts in the above two matrices.

Denote by 𝐷
𝑛

the diagonal matrix composed of
{(−1)
𝑛−𝑖

(𝑛 − 𝑖)!}
𝑖=1,2,...,𝑛−1,𝑛

; that is,

𝐷
𝑛
=

[

[

[

[

[

[

[

[

(−1)
𝑛−1

(𝑛 − 1)! 0 ⋅ ⋅ ⋅ 0

0 (−1)
𝑛−2

(𝑛 − 2)! ⋅ ⋅ ⋅ 0

.

.

.

.

.

. d
.
.
.

0 0 ⋅ ⋅ ⋅ 1

]

]

]

]

]

]

]

]

. (11)

It is easily proved that

𝐷
𝑛
⋅ 𝑊 [𝑦

1
(𝑥) , . . . , 𝑦

𝑛
(𝑥)] = [(𝑥

𝑗
− 𝑥)

𝑛−𝑖

]

𝑛×𝑛

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

(𝑥
1
− 𝑥)
𝑛−1

(𝑥
2
− 𝑥)
𝑛−1

⋅ ⋅ ⋅ (𝑥
𝑛
− 𝑥)
𝑛−1

(𝑥
1
− 𝑥)
𝑛−2

(𝑥
2
− 𝑥)
𝑛−2

⋅ ⋅ ⋅ (𝑥
𝑛
− 𝑥)
𝑛−2

.

.

.

.

.

.

.

.

.

.

.

.

𝑥
1
− 𝑥 𝑥

2
− 𝑥 ⋅ ⋅ ⋅ 𝑥

𝑛
− 𝑥

1 1 ⋅ ⋅ ⋅ 1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

(12)

Denoted by

𝐴
𝑛
(𝑥, 𝑥
1
, . . . , 𝑥

𝑛
) = [(𝑥

𝑗
− 𝑥)

𝑛−𝑖

]

𝑛×𝑛

, (13)

using inverse matrix formula of matrix multiplication, we
have

(𝐷
𝑛
⋅ 𝑊 [𝑦

1
(𝑥) , . . . , 𝑦

𝑛
(𝑥)])
−1

= 𝑊
−1

[𝑦
1
(𝑥) , . . . , 𝑦

𝑛
(𝑥)] ⋅ 𝐷

−1

𝑛

= 𝐴
−1

𝑛
(𝑥, 𝑥
1
, . . . , 𝑥

𝑛
) .

(14)

From (10) and (14), we can get

𝐴
−1

𝑛
(𝑥, 𝑥
1
, . . . , 𝑥

𝑛
) = [

(−1)
𝑛−𝑗

(𝑛 − 𝑗)!

⋅ (−1)
𝑛−𝑗

𝑙
(𝑛−𝑗)

𝑖
(𝑥)]

𝑛×𝑛

= [

𝑙
(𝑛−𝑗)

𝑖
(𝑥)

(𝑛 − 𝑗)!

]

𝑛×𝑛

.

(15)

Let 𝑥 = 0; then (12) changes to

𝐴
𝑛
(0, 𝑥
1
, . . . , 𝑥

𝑛
) =

[

[

[

[

[

[

[

[

[

[

[

𝑥
𝑛−1

1
𝑥
𝑛−1

2
⋅ ⋅ ⋅ 𝑥
𝑛−1

𝑛

𝑥
𝑛−2

1
𝑥
𝑛−2

2
⋅ ⋅ ⋅ 𝑥
𝑛−2

𝑛

.

.

.

.

.

.

.

.

.

.

.

.

𝑥
1

𝑥
2

⋅ ⋅ ⋅ 𝑥
𝑛

1 1 ⋅ ⋅ ⋅ 1

]

]

]

]

]

]

]

]

]

]

]

. (16)

Its inverse matrix is

𝐴
−1

𝑛
(0, 𝑥
1
, . . . , 𝑥

𝑛
) = [

𝑙
(𝑛−𝑗)

𝑖
(0)

(𝑛 − 𝑗)!

]

𝑛×𝑛

. (17)

For the values of 𝜎
𝑘
(𝑥
1
, . . . , 𝑥

𝑛
) (𝑘 = 1, 2, . . . , 𝑛) in (2), we

specify them by the following case. For example, taking 𝑛 = 3,
from (3), we can get

𝜎
0
(𝑥
1
, 𝑥
2
, 𝑥
3
) = 1,

𝜎
1
(𝑥
1
, 𝑥
2
, 𝑥
3
) = 𝑥
1
+ 𝑥
2
+ 𝑥
3
,

𝜎
2
(𝑥
1
, 𝑥
2
, 𝑥
3
) = 𝑥
1
𝑥
2
+ 𝑥
1
𝑥
3
+ 𝑥
2
𝑥
3
,

𝜎
3
(𝑥
1
, 𝑥
2
, 𝑥
3
) = 𝑥
1
𝑥
2
𝑥
3
.

(18)

Then we have

𝑙
(𝑛−𝑗)

𝑖
(0) = (−1)

𝑖+𝑗
(𝑛 − 𝑗)!𝜎

𝑗−1
(𝑖)

∏
𝑖−1

𝑘=1
(𝑥
𝑖
− 𝑥
𝑘
) ⋅ ∏
𝑛

𝑘=𝑖+1
(𝑥
𝑘
− 𝑥
𝑖
)

, (19)

where 𝑖 = 1, 2, . . . , 𝑛 are row subscripts and 𝑗 = 1, 2, . . . , 𝑛 are
column subscripts, and from (17) and (19), we can get

𝐴
−1

𝑛
(0, 𝑥
1
, . . . , 𝑥

𝑛
)

= [(−1)
𝑖+𝑗

𝜎
𝑗−1

(𝑖)

∏
𝑖−1

𝑘=1
(𝑥
𝑖
− 𝑥
𝑘
) ⋅ ∏
𝑛

𝑘=𝑖+1
(𝑥
𝑘
− 𝑥
𝑖
)

]

𝑛×𝑛

.

(20)

Thus, according to the corresponding relations of elements
between 𝐴

𝑛
(0, 𝑥
1
, . . . , 𝑥

𝑛
) and 𝑉

𝑛
(𝑥
1
, . . . , 𝑥

𝑛
) and 𝐴

−1

𝑛
(0,

𝑥
1
, . . . , 𝑥

𝑛
) and 𝑉

−1

𝑛
(𝑥
1
, . . . , 𝑥

𝑛
), we can obtain (2); that is,

𝑉
−1

𝑛
(𝑥
1
, . . . , 𝑥

𝑛
)

= [

(−1)
𝑖+𝑗

𝜎
𝑛−𝑗

(𝑖)

∏
𝑖−1

𝑘=1
(𝑥
𝑖
− 𝑥
𝑘
) ⋅ ∏
𝑛

𝑘=𝑖+1
(𝑥
𝑘
− 𝑥
𝑖
)

]

𝑛×𝑛

,

(21)

where 𝑖 = 1, 2, . . . , 𝑛 are row subscripts and 𝑗 = 1, 2, . . . , 𝑛 are
column subscripts.
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3. Recursive Algorithm of Vandermonde
Inverse Matrix

By the above method of function matrix, we denote 𝑉
𝑛
(𝑥, 𝑥
1
,

. . . , 𝑥
𝑛
) as

𝑉
𝑛
(𝑥, 𝑥
1
, . . . , 𝑥

𝑛
) = [(𝑥

𝑗
− 𝑥)

𝑖−1

]

𝑛×𝑛

=

(

(

(

(

(

1 1 ⋅ ⋅ ⋅ 1

𝑥
1
− 𝑥 𝑥

2
− 𝑥 ⋅ ⋅ ⋅ 𝑥

𝑚
− 𝑥

(𝑥
1
− 𝑥)
2

(𝑥
2
− 𝑥)
2

⋅ ⋅ ⋅ (𝑥
𝑚

− 𝑥)
2

.

.

.

.

.

.

.

.

.

.

.

.

(𝑥
1
− 𝑥)
𝑛−1

(𝑥
2
− 𝑥)
𝑛−1

⋅ ⋅ ⋅ (𝑥
𝑚

− 𝑥)
𝑛−1

)

)

)

)

)

.

(22)

According to the property of Vandermonde determinant, we
have

det𝑉
𝑛
(𝑥, 𝑥
1
, . . . , 𝑥

𝑛
) = ∏

1≤𝑖<𝑗≤𝑛

[(𝑥
𝑗
− 𝑥) − (𝑥

𝑖
− 𝑥)]

= ∏

1≤𝑖<𝑗≤𝑛

(𝑥
𝑗
− 𝑥
𝑖
) .

(23)

For the convenience of description, we introduce the
following notations.

𝐴
𝑛
(𝑖, 𝑗, 𝑥) denotes the algebraic complement of the ele-

ment of𝑉
𝑛
(𝑥, 𝑥
1
, . . . , 𝑥

𝑛
)whose row subscript is 𝑖 and column

subscript is 𝑗. 𝐴
(𝑘)

𝑛
(𝑖, 𝑗, 𝑥) denotes 𝑘th derivative on 𝑥 of

𝐴
𝑛
(𝑖, 𝑗, 𝑥) and

𝐵
𝑛𝑗

(𝑥) = ∏

1≤𝑘≤𝑛

𝑘 ̸=𝑗

(𝑥
𝑘
− 𝑥) ,

𝐶
𝑛𝑗

= ∏

1≤𝑖<𝑘≤𝑛

𝑖,𝑘 ̸=𝑗

(𝑥
𝑘
− 𝑥
𝑖
) ,

𝑗 = 1, 2, . . . , 𝑛.

(24)

It is easily obtained that

𝐴
(1)

𝑛
(𝑖 − 1, 𝑗, 𝑥) = (𝑖 − 1) 𝐴

𝑛
(𝑖, 𝑗, 𝑥) , (25)

𝐵
𝑛𝑗

(𝑥) = (𝑥
𝑛
− 𝑥) 𝐵

𝑛−1,𝑗
(𝑥) ,

𝐵
𝑛𝑛

(𝑥) = (𝑥
𝑗
− 𝑥) 𝐵

𝑛−1,𝑗
(𝑥)

(𝑗 = 1, 2, . . . , 𝑛 − 1) .

(26)

From (25) and (26), we can get

𝐴
𝑛
(𝑖, 𝑗, 𝑥) =

1

(𝑖 − 1)!

𝐴
(𝑖−1)

𝑛
(1, 𝑗, 𝑥)

(𝑖 = 1, 2, . . . , 𝑛) ,

𝐴
𝑛
(1, 𝑗, 𝑥) = (−1)

𝑗+1
𝐶
𝑛𝑗
𝐵
𝑛𝑗

(𝑥) , 1 ≤ 𝑗 ≤ 𝑛,

𝐴
𝑛
(𝑖, 𝑗, 𝑥) =

(−1)
𝑗+1

(𝑖 − 1)!

𝐶
𝑛𝑗
𝐵
(𝑖−1)

𝑛𝑗
(𝑥) , 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

(27)

Calculating 𝑘th derivative on 𝑥 at both sides of (26), we
can obtain

[𝐵
𝑛𝑗

(𝑥)]

(𝑘)

= (𝑥
𝑛
− 𝑥) 𝐵

(𝑘)

𝑛−1,𝑗
(𝑥) − 𝑘𝐵

(𝑘−1)

𝑛−1,𝑗
(𝑥) ,

[𝐵
𝑛𝑛

(𝑥)]
(𝑘)

= (𝑥
𝑗
− 𝑥) 𝐵

(𝑘)

𝑛−1,𝑗
(𝑥) − 𝑘𝐵

(𝑘−1)

𝑛−1,𝑗
(𝑥) ,

𝑗 = 1, 2, . . . , 𝑛 − 1.

(28)

They can lead to

𝐴
𝑛
(𝑖, 𝑗, 𝑥) =

(−1)
𝑗+1

𝐶
𝑛𝑗

(𝑖 − 1)!

[(𝑥
𝑛
− 𝑥) 𝐵

(𝑖−1)

𝑛−1,𝑗
(𝑥)

− (𝑖 − 1) 𝐵
(𝑖−2)

𝑛−1,𝑗
(𝑥)] , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛 − 1,

𝐴
𝑛
(𝑖, 𝑛, 𝑥) =

(−1)
𝑛+1

𝐶
𝑛𝑛

(𝑖 − 1)!

[(𝑥
𝑛−1

− 𝑥) 𝐵
(𝑖−1)

𝑛−1,𝑛−1
(𝑥)

− (𝑖 − 1) 𝐵
(𝑖−2)

𝑛−1,𝑛−1
(𝑥)] , 1 ≤ 𝑖 ≤ 𝑛.

(29)

It is easy to know that

𝐶
𝑛𝑗

= ∏

1≤𝑘≤𝑛−1

𝑘 ̸=𝑗

(𝑥
𝑛
− 𝑥
𝑘
) ⋅ 𝐶
𝑛−1,𝑗

(1 ≤ 𝑗 ≤ 𝑛 − 1) ,

𝐶
𝑛𝑛

= ∏

1≤𝑘≤𝑛−2

(𝑥
𝑛−1

− 𝑥
𝑘
) ⋅ 𝐶
𝑛−1,𝑛−1

,

det𝑉
𝑛
(𝑡) = ∏

1≤𝑘≤𝑛−1

(𝑥
𝑛
− 𝑥
𝑘
) det𝑉

𝑛−1
(𝑥) .

(30)

Denoted by 𝑉
−1

𝑛
(𝑥, 𝑥
1
, . . . , 𝑥

𝑛
) = [Ṽ

𝑛
(𝑖, 𝑗, 𝑥)]

𝑛×𝑛
, then

Ṽ
𝑛
(𝑖, 𝑗, 𝑥) =

𝐴
𝑛
(𝑗, 𝑖, 𝑥)

det𝑉
𝑛
(𝑥)

. (31)

From (29)–(31), we can get

Ṽ
𝑛
(𝑖, 𝑗, 𝑥) =

1

𝑥
𝑛
− 𝑥
𝑖

[(𝑥
𝑛
− 𝑥) Ṽ

𝑛−1
(𝑖, 𝑗, 𝑥)

− Ṽ
𝑛−1

(𝑖, 𝑗 − 1, 𝑥)] , 1 ≤ 𝑖 ≤ 𝑛 − 1, 1 ≤ 𝑗 ≤ 𝑛,

Ṽ
𝑛
(𝑛, 𝑗, 𝑥) = 𝑝

𝑛
[(𝑥
𝑛−1

− 𝑥) Ṽ
𝑛−1

(𝑛 − 1, 𝑗, 𝑥)

− Ṽ
𝑛−1

(𝑛 − 1, 𝑗 − 1, 𝑥)] , 1 ≤ 𝑗 ≤ 𝑛.

(32)

And set Ṽ
𝑛
(𝑖, 𝑗, 𝑥) = 0 when 𝑖 ≤ 0, 𝑖 ≤ 0, 𝑗 ≤ 0, 𝑖 > 𝑛, and

𝑗 > 𝑛.

Let 𝑥 = 0 in (32); the recursion formula of elements
of Vandermonde inverse matrix 𝑉

−1

𝑛
(0, 𝑥
1
, . . . , 𝑥

𝑛
) = (Ṽ

𝑛
(𝑖,

𝑗, 0))
𝑛×𝑛

can be obtained.
For simplicity, denote Ṽ

𝑛
(𝑖, 𝑗, 0) = Ṽ

𝑛
(𝑖, 𝑗). Because 𝑥 =

0, all elements do not contain 𝑥, so we denote 𝑛-order
Vandermonde matrix composed of 𝑥

1
, . . . , 𝑥

𝑛
as

𝑉
−1

𝑛
(𝑥
1
, . . . , 𝑥

𝑛
) = (V

𝑛
(𝑖, 𝑗))

𝑛×𝑛

= [(−1)
𝑖+1 Ṽ
𝑛
(𝑖, 𝑗)]

𝑛×𝑛
.

(33)

Thus, each element of Vandermonde inverse matrix can be
determined by the following recursive formula:
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Ṽ
𝑛
(𝑖, 𝑗) =

{
{
{

{
{
{

{

1

𝑥
𝑛
− 𝑥
𝑖

[𝑥
𝑛
Ṽ
𝑛−1

(𝑖, 𝑗) − Ṽ
𝑛−1

(𝑖, 𝑗 − 1)] , 1 ≤ 𝑖 ≤ 𝑛 − 1, 1 ≤ 𝑗 ≤ 𝑛,

𝑝
𝑛
[𝑥
𝑛−1

Ṽ
𝑛−1

(𝑛 − 1, 𝑗) − Ṽ
𝑛−1

(𝑛 − 1, 𝑗 − 1)] , 1 ≤ 𝑗 ≤ 𝑛,

(34)

where 𝑝
𝑛

= ∏
1≤𝑘≤𝑛−2

(𝑥
𝑛−1

− 𝑥
𝑘
)/∏
1≤𝑘≤𝑛−1

(𝑥
𝑛
− 𝑥
𝑘
) and set

Ṽ
𝑛
(𝑖, 𝑗) = 0 when 𝑖 ≤ 0, 𝑖 ≤ 0, 𝑗 ≤ 0, 𝑖 > 𝑛, and 𝑗 > 𝑛.

When 𝑛 = 1, ∏
1≤𝑘≤𝑛−1

(𝑥
𝑛
− 𝑥
𝑘
) = 1 and ∏

1≤𝑘≤𝑛−2
(𝑥
𝑛
−

𝑥
𝑘
) = 1.
When 𝑛 = 2, ∏

1≤𝑘≤𝑛−2
(𝑥
𝑛
− 𝑥
𝑘
) = 1.

4. Application Case and Simulation

We will take the 3-order Vandermonde inverse matrix as an
example to illustrate the recursive steps of (34) in detail.

Let

𝑉
3
(𝑥
1
, 𝑥
2
, 𝑥
3
) = (

1 1 1

𝑥
1

𝑥
2

𝑥
3

𝑥
2

1
𝑥
2

2
𝑥
2

3

). (35)

From (34), we have

𝑉
−1

3
(𝑥
1
, 𝑥
2
, 𝑥
3
) = (V

3
(𝑖, 𝑗))

3×3

= [(−1)
𝑖+1 Ṽ
3
(𝑖, 𝑗)]

3×3
.

(36)

Taking Ṽ
1
(1, 1) = 1 and 𝑝

1
= 1 as the initial values to

calculate each element of [Ṽ
3
(𝑖, 𝑗)]
3×3

, then we can get

Ṽ
3
(1, 1) =

1

𝑥
3
− 𝑥
1

[𝑥
3
Ṽ
2
(1, 1) − Ṽ

2
(1, 0)] . (37)

Since Ṽ
2
(1, 0) = 0 (𝑗 = 0 ≤ 0), then

Ṽ
3
(1, 1) =

𝑥
3

𝑥
3
− 𝑥
1

Ṽ
2
(1, 1) . (38)

From (34) again, we can get

Ṽ
2
(1, 1) =

1

𝑥
2
− 𝑥
1

[𝑥
2
Ṽ
1
(1, 1) − Ṽ

1
(1, 0)] . (39)

Since Ṽ
1
(1, 0) = 0 (𝑗 = 0 ≤ 0), then

Ṽ
2
(1, 1) =

𝑥
2

𝑥
2
− 𝑥
1

Ṽ
1
(1, 1) . (40)

Substituting Ṽ
1
(1, 1) = 1 to (40), we have

Ṽ
3
(1, 1) =

𝑥
3

𝑥
3
− 𝑥
1

Ṽ
2
(1, 1) =

𝑥
2

𝑥
2
− 𝑥
1

⋅

𝑥
3

𝑥
3
− 𝑥
1

=

𝑥
2
𝑥
3

(𝑥
2
− 𝑥
1
) (𝑥
3
− 𝑥
1
)

.

(41)

As 𝑖 = 1 in Ṽ
3
(1, 1), so from (36), this leads to

V
3
(1, 1) = (−1)

1+1 Ṽ
3
(1, 1) =

𝑥
2
𝑥
3

(𝑥
2
− 𝑥
1
) (𝑥
3
− 𝑥
1
)

. (42)

Meanwhile, we can also obtain

V
2
(1, 1) = (−1)

1+1 Ṽ
2
(1, 1) =

𝑥
2

𝑥
2
− 𝑥
1

. (43)

For Ṽ
3
(2, 3), there is

Ṽ
3
(2, 3) =

1

𝑥
3
− 𝑥
2

[𝑥
3
Ṽ
2
(2, 3) − Ṽ

2
(2, 2)] . (44)

As 𝑗 = 3 > 𝑛 = 2 in Ṽ
2
(2, 3), so Ṽ

2
(2, 3) = 0, and from (35),

we can obtain

Ṽ
3
(2, 3) = −

1

𝑥
3
− 𝑥
2

Ṽ
2
(2, 2)

= −

1

𝑥
3
− 𝑥
2

𝑝
2
[𝑥
1
Ṽ
1
(1, 2) − Ṽ

1
(1, 1)] .

(45)

As 𝑗 = 2 > 𝑛 = 1 in Ṽ
1
(1, 2), so Ṽ

1
(1, 2) = 0 and Ṽ

1
(1, 1) = 1

and

𝑝
2
=

∏
1≤𝑘≤0

(𝑥
1
− 𝑥
𝑘
)

∏
1≤𝑘≤1

(𝑥
2
− 𝑥
𝑘
)

=

1

𝑥
2
− 𝑥
1

. (46)

From (45) and (36), 𝑖 = 2; then we can get V
3
(2, 3); that is,

V
3
(2, 3) = (−1)

2+1 Ṽ
3
(2, 3) = (−1)

2+1 −1

𝑥
3
− 𝑥
2

−1

𝑥
2
− 𝑥
1

= −

1

(𝑥
1
− 𝑥
2
) (𝑥
2
− 𝑥
3
)

.

(47)

Meanwhile, we can also get

V
2
(2, 2) = (−1)

2+1 Ṽ
2
(2, 2) = (−1)

2+1
[−𝑝
2
Ṽ
1
(1, 1)]

= 𝑝
2
=

1

𝑥
2
− 𝑥
1

.

(48)

The other elements of Ṽ
3
(𝑖, 𝑗), 1 ≤ 𝑖, 𝑗 ≤ 3, can be obtained

by a similar process. Finally, we can get
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Table 1: The total time spent on symbolic Vandermonde inverse matrix.

𝑛 3 4 5 6 7 8 9 10
MMA 0.0156 0.1248 0.8268 2.4648 38.5164 282.36 2549.04 26001
Equation (2) 0.0624 0.1092 0.2184 0.4212 0.7800 1.4508 2.8236 5.6940
Equation (34) 0.1560 0.3120 0.9360 2.4960 6.2400 15.4440 36.0360 82.3681

Table 2: The total time spent on numerical Vandermonde inverse matrix.

𝑛 3 4 5 6 7 8 9 10
MMA 0 0 0 0.0156 0.0156 0.0312 0.0468 0.0468
Equation (2) 0.0468 0.0936 0.1560 0.2652 0.4992 0.9204 1.7784 2.6364
Equation (34) 0.0624 0.2340 0.6552 1.7628 4.3836 10.6392 24.4920 55.8481

(Ṽ
3
(𝑖, 𝑗))

3×3
=

(

(

(

(

(

𝑥
2
𝑥
3

(𝑥
1
− 𝑥
2
) (𝑥
1
− 𝑥
3
)

−

𝑥
2
+ 𝑥
3

(𝑥
1
− 𝑥
2
) (𝑥
1
− 𝑥
3
)

1

(𝑥
1
− 𝑥
2
) (𝑥
1
− 𝑥
3
)

𝑥
1
𝑥
3

(𝑥
1
− 𝑥
2
) (𝑥
2
− 𝑥
3
)

−

𝑥
1
+ 𝑥
3

(𝑥
1
− 𝑥
2
) (𝑥
2
− 𝑥
3
)

1

(𝑥
1
− 𝑥
2
) (𝑥
2
− 𝑥
3
)

𝑥
1
𝑥
2

(𝑥
3
− 𝑥
1
) (𝑥
3
− 𝑥
2
)

−

𝑥
1
+ 𝑥
2

(𝑥
3
− 𝑥
1
) (𝑥
3
− 𝑥
2
)

1

(𝑥
3
− 𝑥
1
) (𝑥
3
− 𝑥
2
)

)

)

)

)

)

. (49)

Meanwhile, we can get

(Ṽ
2
(𝑖, 𝑗))

2×2
= (

𝑥
2

𝑥
2
− 𝑥
1

1

𝑥
1
− 𝑥
2

𝑥
1

𝑥
2
− 𝑥
1

1

𝑥
1
− 𝑥
2

). (50)

So, the 3-order Vandermonde inverse matrix of (35) is

𝑉
−1

2
(𝑥
1
, 𝑥
2
, 𝑥
3
) = ((−1)

𝑖+1 Ṽ
3
(𝑖, 𝑗, 0))

3×3
=

(

(

(

(

(

𝑥
2
𝑥
3

(𝑥
1
− 𝑥
2
) (𝑥
1
− 𝑥
3
)

−

𝑥
2
+ 𝑥
3

(𝑥
1
− 𝑥
2
) (𝑥
1
− 𝑥
3
)

1

(𝑥
1
− 𝑥
2
) (𝑥
1
− 𝑥
3
)

−

𝑥
1
𝑥
3

(𝑥
1
− 𝑥
2
) (𝑥
2
− 𝑥
3
)

𝑥
1
+ 𝑥
3

(𝑥
1
− 𝑥
2
) (𝑥
2
− 𝑥
3
)

−

1

(𝑥
1
− 𝑥
2
) (𝑥
2
− 𝑥
3
)

𝑥
1
𝑥
2

(𝑥
3
− 𝑥
1
) (𝑥
3
− 𝑥
2
)

−

𝑥
1
+ 𝑥
2

(𝑥
3
− 𝑥
1
) (𝑥
3
− 𝑥
2
)

1

(𝑥
3
− 𝑥
1
) (𝑥
3
− 𝑥
2
)

)

)

)

)

)

(51)

and the 2-order Vandermonde inverse matrix is
(V
2
(𝑖, 𝑗))

2×2
= ((−1)

𝑖+1 V
2
(𝑖, 𝑗))

2×2

= (

𝑥
2

𝑥
2
− 𝑥
1

1

𝑥
1
− 𝑥
2

𝑥
1

𝑥
1
− 𝑥
2

1

𝑥
2
− 𝑥
1

).

(52)

We choose different order Vandermonde matrices to
compare the computing time spent on calculating their
inverse matrices in mathematical software Mathematica 10.
We divide the calculations into two types: symbolic inverse

matrix and numerical inverse matrix. For the limitation of
computing time, we take only the order as 𝑛 = 3, . . . , 10

and the total time of each calculation is the time spent by
doing 100 repeated calculations; its unit is second. When we
calculate the numericalVandermonde inversematrix, we take
𝑥
𝑖
= 𝑖 (𝑖 = 1, . . . , 𝑛). We obtain the results as Tables 1 and 2.
In Tables 1 and 2, 𝑛 is the order of Vandermonde inverse

matrix. MMA denotes the time which Mathematica spends
on calculation by using its inner function “Inverse[ ]” to
calculate the inverse matrix. Equations (2) and (34) denote
the times which Mathematica spends on calculations by (2)
and (34) separately.
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Remark 1. Here we only take Mathematica as the execution
environment, mainly because Mathematica has the superior-
ity of symbolic computation compared with other types of
commonly used mathematical software. For example, when
we calculate the 6-order symbolic Vandermonde inverse
matrix by the inner functions of Mathematica, Maple, and
MATLAB, the computing times are 0.187, 0.281, and 22.013
seconds separately.

5. Conclusion and Prospect

From Table 1, we can see that the total time spent by Math-
ematica on calculating the symbolic Vandermonde inverse
matrix by using inner function “Inverse[ ]” is far more than
that by (2) and (34). With the increase of dimensions, the
time grows dramatically. For the 10-order matrix, it almost
spends nearly 7 hours. From Table 2, we can see that the
total time spent by Mathematica (0 in Table 2 means that
the total time is less than 0.001 seconds) on calculating
the numerical Vandermonde inverse matrix by using inner
function “Inverse[ ]” is far less than that by (2) and (34). For
numerical inverse matrix, Mathematica’s inner function has
greater advantage than (2) and (34), and the time spent by
(2) is less than that by (34). This is because our algorithms
are not optimized in terms of numerical calculation. We do
these calculations only by a few functions written by us in
Mathematica. Therefore, the total computing times are much
more. But for symbolic inverse matrix, (2) and (34) are better
than Mathematica inner function.

In this paper we use the different methods from [2–
5] to deduce (2) based on Wronskian function matrix and
propose a recursive algorithm for Vandermonde inverse
matrix.Theprocess has a certain universality and some values
for calculating inverse matrices of other special matrices.
From Tables 1 and 2, we can see that two methods in this
paper are more efficient than Mathematica inner function
for symbolic Vandermonde inverse matrix. For numerical
Vandermonde inverse matrix, how to optimize and design
the effective algorithms to carry out our methods will be our
future research.
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