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We investigate the performance of pose measuring systems which determine an object’s pose from measurement of a few fiducial
markers attached to the object. Such systems use point-based, rigid body registration to get the orientation matrix. Uncertainty in
the fiducials’ measurement propagates to the uncertainty of the orientation matrix. This orientation uncertainty then propagates
to points on the object’s surface. This propagation is anisotropic, and the direction along which the uncertainty is the smallest is
determined by the eigenvector associated with the largest eigenvalue of the orientation data’s covariance matrix. This eigenvector
in the coordinate frame defined by the fiducials remains almost fixed for any rotation of the object. However, the remaining two
eigenvectors vary widely and the direction along which the propagated uncertainty is the largest cannot be determined from the
object’s pose. Conditions that result in such a behavior and practical consequences of it are presented.

1. Introduction

The pose of a rigid object is defined by six degrees of
freedom (6DOF): three angles describing the object’s orien-
tation matrix R and three components describing the object’s
position 𝜏 (e.g., center of mass or center of bounding box).
Accounting for the uncertainty of the measured pose is of
great importance in many applications (e.g., propagating
uncertainty along different joints in a robot arm or fusing
measurements frommultiple sensors) and it has been studied
for a long time [1]. The methodology used in these studies is
based on a 4 × 4 homogenous transformation matrix, related
exponential mapping, and Lie algebra [2].

In this paper, our focus is on a different aspect of pose
uncertainty. We are interested in how uncertainty of a single
static measurement of a rigid body pose propagates to any
Point of Interest (POI) associated with the object (e.g., a
point on its surface). When the Computer Aided Design
(CAD) model of an object is known, the location of any
POI can be calculated using 6DOF data acquired by pose
measuring systems [3]. In assembly applications where rigid
parts need to be mated using autonomous robotic systems
[4–8], uncertainty in pose has to be propagated to the POI.

For example, in a peg-in-hole experiment (commonly used
to test a robot’s performance [9–12]), uncertainty in the
hole location directly affects the test outcome [13–17]. Thus,
we acquire repeated measurements of a rigid object’s pose,
obtained in the same experimental conditions, to investigate
the uncertainty of a given POI.

In most practical applications, the six components of
pose are not directly measured but are derived from other
raw measurements. Many pose measuring systems report
6DOF data of an object based on the measurement of the 3D
positions of a few points.These points, also known as fiducial
markers, are rigidly attached to (or around) the measured
object. Some systems may not require the use of markers as
they may be trained to use some characteristic features of
the measured object (e.g., well defined corner points). For
systems which use 3D points, a homogenous transformation{R, 𝜏} is found using point-based rigid body registration and
minimizing the following error function called the Fiducials
Registration Error (FRE)

FRE (R, 𝜏) = √ 1𝐽
𝐽∑
𝑛=1

󵄩󵄩󵄩󵄩RX𝑛 + 𝜏 − Y𝑛
󵄩󵄩󵄩󵄩2, (1)
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where {X}𝐽 is a set of 𝐽 fiducials measured in one coordinate
frame (working frame) and {Y}𝐽 is a set of corresponding
fiducials measured in the second frame (destination frame).
Pose measuring systems track the movement of the working
frame and the transformation {R, 𝜏} defines the object’s
6DOF pose relative to a starting reference frame (coordinate
frame associated with the instrument). Point-based rigid
body registration not only is implemented in pose measuring
systems but is commonly used in many field applications
where 3D points are measured in one frame but have to
be accessed in another frame where they are required.
These points (targets) need to be transformed from the
working frame to the destination frame using the previously
determined transformation {R, 𝜏}.

Noise present in the measurement of the fiducials propa-
gates to the transformation {R, 𝜏}. Such noisy transformation
(when applied to a target) yields random deviation of the
transformed target from its nominal true location r and is
quantified by the Target Registration Error (TRE(r)) defined
as the root mean square of distances between these two
points. The development of a closed form equation for TRE
has been the aim of extensive research formany years [18–22].
The main conclusions from these efforts can be summarized
as follows: (1) TRE(r) depends on the location of target r
relative to the three main axes of the moment of inertia
derived from the spatial configuration of fiducials {X}𝐽;(2) TRE(r) can be expressed as the sum of two components:
one related to uncertainty in position 𝜏 and the second
related to uncertainty in the orientation data R; (3) both
components of TRE(r) depend on themagnitude of the noise
(TRE(r) increases for noisier fiducial measurements); (4) the
orientation component is anisotropic; that is, it depends on
the direction in space while the positional component is
isotropic.

For the class of pose measuring systems which use point-
based registration to track the pose of a rigid object, propa-
gation of orientation uncertainty to a given POI is equivalent
to the propagation of the fiducials’ uncertainty to a target
point and, therefore, should inherit the above-mentioned
characteristics of TRE(r). The anisotropic distribution of the
orientation uncertainty was reported for the pose measuring
system using a stereo camera to track spherical, reflective
markers attached to an object [23]. It was found that the
distribution is bimodal on a unit sphere with the smallest
uncertainty located at poles defined by the eigenvector e3
associated with the largest eigenvalue of the covariance
matrix of the orientation data. It was hypothesized that such
a distribution offers an opportunity for better planning of
robotic operations by ensuring that a given POI is in the
region of small uncertainty. However, to take advantage of
such a strategy, the direction of eigenvector e3 must stay
fixed in the CAD coordinate frame regardless of the object’s
orientation.

In this paper, we expanded the study in [23] to determine
the conditions for which the observed behavior (stability
of e3) holds by acquiring static measurements of several
poses using a different pose measuring system (a large-
scale tracking system iGPS). For each pose, the covariance
matrix of the orientation data was determined. While the

matrices were different for different poses, we found that the
direction of the eigenvector e3 exhibited very small variations
compared to the directions of the other two eigenvectors,
e1 and e2, which showed larger variations. This behavior
was reproduced in computer simulations and, to the best of
our knowledge, it has not been reported in the literature.
Analysis of existing theoretical expressions for TRE(r) in
point-based registration reveals the reason for such unusual
behavior of pose measuring systems which employ point-
based registration to calculate 6DOF data. We found that
misalignment between the directions of the anisotropic noise
of fiducials and the directions of the axes of the moment
of inertia characterizing the configuration of the fiducials is
responsible for the observed phenomenon. It appears that the
direction of e3 is almost independent of the misalignment
whereas the directions of e1 and e2 were dependent on the
misalignment. Furthermore, our study shows that e3 is well
aligned with the eigenvector bmin of the moment of inertia
matrix corresponding to the smallest eigenvalue.

The location of any POI is fixed relative to the locations of
fiducials. Therefore, for the class of pose measuring systems
discussed in this paper, if a vector pointing to a POI is
aligned with bmin, this POI will be in the region of small
propagated uncertainty, regardless of the object’s orientation.
Prior knowledge of such behavior may be useful in robotic
operations when tight tolerances are required. A procedure
for determining the placement of fiducials so that the smallest
uncertainty is propagated to a given POI is introduced.
The optimal placement of fiducials has been studied earlier
for rigid body registration. Two main applied approaches
were (1) use of theoretical models of TRE(r) [24] (some
of them based on isotropic noise [25, 26]); (2) numerical
search for the optimal placement using covariance matrices
of experimental noise, evaluating transformations {R, 𝜏} and
then corresponding to TRE(r) [22, 27]. While these studies
showed implicit directional dependence of TRE(r) and its
reduction, they did not alert practitioners that the uncertainty
of a given POI on the rotated rigid object may depend on
the object’s orientation nor provide clear guidance on how
to ensure that this uncertainty will be close to the smallest
possible value, regardless of object’s orientation. This paper
attempts to provide this missing information.

In the next section, some background information and
relevant equations are reviewed, followed by a brief descrip-
tion of the experimental setup and data postprocessing. This
is followed by a presentation of the results, discussion, and
conclusions.

2. Previous Research

In this section a brief review of the theoretical work relevant
to our experiments is presented. Section 2.1 presents a
brief review of point-based rigid body registration. This is
followed by a discussion of the propagation of noise from
the fiducials used to register two sets of points {X}𝐽 and{Y}J to the registration parameters {R, 𝜏} and then to the
transformed target point; an analytical formula for TRE(r)
based on anisotropic, homogenous Gaussian noise perturb-
ing the fiducials is provided. In Section 2.2, the propagation
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of orientation uncertainty of a 6DOF rigid object to an
individual point on its surface is discussed.

2.1. TRE in Point-Based Rigid Body Registration. Given two
sets of J fiducials {X}𝐽 and {Y}J measured in the working
and destination frames, respectively, the rotation R and
translation 𝜏 which minimize the error function in (1) can
be obtained in the following way. First, the origins of both
frames are moved to the respective centroids Xavg and Yavg,
that is, the locations of fiducials in the translated frames are
X̃𝑛 = X𝑛 − Xavg and Ỹ𝑛 = Y𝑛 − Yavg, 𝑛 = 1, . . . , 𝐽. Then, the
covariance matrix cokXY3×3 is determined as

cokXY = 1𝐽 [X̃1, . . . , X̃𝐽] [Ỹ1, . . . , Ỹ𝐽]𝑇 , (2)

where [⋅ ⋅ ⋅ ]𝑇 is the transposed matrix. The rotation matrix R
can be calculated as in [28]

R = VDU𝑇, (3)

where the matrices U and V are obtained from the Singular
Value Decomposition (SVD) of the covariance matrix

cokXY = USV𝑇,
D = [[[[

1 0 00 1 0
0 0 det (VU𝑇)

]]]]
. (4)

Once the rotation matrix R is determined, the related trans-
lation vector 𝜏 is calculated as

𝜏 = Yavg − RXavg. (5)

This transformation {R, 𝜏} minimizes FRE in (1) in the least-
squares sense, and this procedure is implemented in many
commercial software packages.

However, noise in the measured fiducials {X}𝐽 and {Y}𝐽
affects the registration transformation, and it needs to be
propagated to the target T𝑋 transformed to the destination
frame, namely, RT𝑋 + 𝜏. Intuitively, it is obvious that the
statistical properties of the target error TRE(r) will depend
on the characteristics of the noise perturbing the fiducial
locations as well as on the location of the target relative
to the configuration of the fiducials. Based on the seminal
papers by Sibson [29] and Fitzpatrick et al. [18], most
theoretical studies and supporting computer simulations
split the registration {R, 𝜏} to two transformations: a “big”
deterministic one {R0, 𝜏0} and a small noisy one {ΔR,Δ𝜏},
that is, the two frames are first initially aligned using the
big transformation and the fine tuning is done by the small
rotation and translation. Thus, any point x in the working
frame is transformed to y in the destination frame as

y = ΔR (R0x + 𝜏0) + Δ𝜏. (6)

The rationale behind such an approach was put forward
by Sibson who observed that the distribution of TRE was

completely determined by stochastic noise in the fiducials
and not by the big transformation {R0, 𝜏0}. This observation
is an extension of the well-known property that a variance
of a 3D point perturbed by Gaussian noise is the same in
all coordinate frames related by any translation 𝜏, that is,
xi → xi − 𝜏. As stated in [18], “Neither this reorientation
nor the special positioning of the origin above is necessary to
effect a solution [...], nor for any part of the derivation that
follows. However, they do reduce the complexity considerably,
and they can be easily undone at the end.” The big rotation R0
can be found from SVD of the covariance matrices cokXX
and cokYY of fiducials {X}𝐽 and {𝑌}𝐽 as

R0 = U𝑌U
T
𝑋 (7)

and the big translation 𝜏0 can by calculated by substituting
R = R0 in (5). Since both matrices cokXX and cokYY are
symmetric and have positive diagonal elements, their SVD
decomposition yields

cokXX = U𝑋Λ
2UT
𝑋 (8)

and similarly for cokYY.Matrix Λ2 is diagonal matrix

Λ
2 = [[[[

Λ21 0 0
0 Λ22 0
0 0 Λ23

]]]]
. (9)

Matrix cokXX is closely related to the matrix of the moment
of inertiaM as

M = trace (cokXX) I3×3 − cokXX, (10)

where I3×3 is the identity matrix. Thus, Λ2 defines the
moments of inertia relative to the three major axes, and the
orientation of the axes is determined by matrix U𝑋 in the
working frame and U𝑌 in the destination frame. When a
coordinate system is aligned with the axes of the moment of
inertia (customarily done in theoretical analysis of TRE(r) in
point-based rigid body registration) then matrix M takes a
simple diagonal form

M = [[[[
Λ22 + Λ23 0 0

0 Λ21 + Λ23 0
0 0 Λ21 + Λ22

]]]]
. (11)

It should be stressed that the moment of inertia characterizes
the configuration of the fiducials in space, not the noise
affecting the locations of the fiducials. In general, when the
distance between fiducials is a few orders of magnitude larger
than the noise, the moment of inertia relative to the major
axes remains constant, that is, Λ2𝑋 = Λ2𝑌, and for this reason,
we drop the subscript in Λ2.

While noise does not affect the moment of inertia, it has
a great impact on the Target Registration Error (TRE(r)).
Different forms for estimating TRE(r) were developed for
different characteristics of fiducial noise, starting from the
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simplest isotropic, homogenous, Gaussian noise (the same
for all fiducials) to the most complex, anisotropic, nonho-
mogenous Gaussian with nonzero mean (i.e., nonzero bias).
No closed form solution has yet been developed for the
most complex case. An analytical expression was provided
for Gaussian, zero mean, homogenous, and anisotropic noise
characterized by covariance matrix Ψ; see equation (51) in
[30]. For such noise model, TRE(r) was evaluated from the
variance var(r)

var (r) = trace (Ψ)𝐽 + ‖r‖2 𝛼2 (u) , (12a)

where u is the unit vector pointing towards the target r, that
is, r = ‖r‖u and

𝛼2 (u) = 3∑
𝑖=1

3∑
𝑗 ̸=𝑖

𝑢2𝑗 (Λ2𝑗Ψ𝑖,𝑖 + Λ2𝑖Ψ𝑗,𝑗)(Λ2𝑖 + Λ2𝑗)2
+ 3∑
𝑖=1

3∑
𝑗 ̸=𝑖

3∑
𝑘 ̸=𝑖,𝑘 ̸=𝑗

𝑢𝑗𝑢𝑘Ψ𝑗,𝑘 Λ2𝑖(Λ2𝑖 + Λ2𝑗) (Λ2
𝑘
+ Λ2𝑖)

(12b)

is the variance of the angular error (deviation of the direc-
tional vector u(𝜗, 𝜑) from its nominal, noise free direction)
and u(𝜗, 𝜑) is parametrized by two spherical angles 𝜗 and 𝜑
as

u (𝜗, 𝜑) = [𝑢1, 𝑢2, 𝑢3]
= [cos 𝜗 cos𝜑, cos 𝜗 sin𝜑, sin 𝜗] . (13)

Equation (12a) contains two terms: the first is isotropic and is
related to the uncertainty in translation 𝜏 in (5); the second
term is anisotropic as it depends on angles (𝜗, 𝜑) and is related
to uncertainty in the rotation R in (3). The isotropic term
is inversely proportional to the number of fiducials 𝐽, and
for most target locations which are not very close to the
origin of the coordinate frame, the term related to orientation
uncertainty in R will be dominant.

We note that the orientation of the noise matrix Ψ
(i.e., the coordinate frame formed by its eigenvectors) and
the orientation of the moment of inertia matrix M are
completely unrelated and their relative orientation depends
on the experimental conditions.

2.2. Propagation of Orientation Uncertainty of Rigid Body to a
POI. Let vector U define the location of a POI in the CAD
coordinate frame and let u be a unit vector parallel toU such
that U = 𝑈u. If R𝑗 is the orientation matrix of a rigid object
and t𝑗 its location obtained from the jth measurement, then
U𝑗 is the location of the POI on the rotated object in the
coordinate frame of the pose measuring instrument,

U𝑗 = 𝑈w𝑗 + t𝑗, (14)

where w𝑗 is a unit vector pointing to a rotated POI in the
coordinate frame of the instrument

w𝑗 = R𝑗u (15)

and it can be parametrized by two spherical angles w𝑗(𝜗𝑗, 𝜑𝑗)
as in (13). We are interested in propagating the uncertainty of
R𝑗 to the uncertainty of w𝑗. We assume that

R𝑗 = RavgΔR𝑗, (16)
where Ravg is the averaged orientation obtained from 𝑁
repeated measurements acquired in the same experimental
conditions, ΔR𝑗 is a small random rotation (noise), and 𝑗 =1, . . . , 𝑁. In axis-angle representation (a𝑗, 𝜌𝑗), the smallness of
the rotation is gauged by small values of angle𝜌𝑗 and this leads
to the following expression for ΔR𝑗 in linear approximation

ΔR𝑗 (aj, 𝜌𝑗) ≈ I + [[[[
0 −𝑞𝑧𝑗 𝑞𝑦𝑗𝑞𝑧𝑗 0 −𝑞𝑥𝑗−𝑞𝑦𝑗 𝑞𝑥𝑗 0

]]]]
, (17)

where I3×3 is the identity matrix, a𝑗 is a unit vector defining
the axis of rotation, and

q𝑗 = 𝜌𝑗a𝑗. (18)
A covariance matrix C(q) of the orientation data can be
calculated as

C (q) = 1𝑁 [q1, . . . , q𝑁] [q1, . . . , q𝑁]𝑇 . (19)

Repeated measurements of the orientation matrix R𝑗 in
(15) yield a corresponding set of vectors {w𝑗}which are tightly
distributed around the average directionwavg. If𝜇 denotes the
angle between w𝑗(𝜗𝑗, 𝜑𝑗) and wavg, then its distribution can
be described by the Fisher-Bingham-Kent (FBK) distribution
[31–33] as

𝐺𝜎,𝛽 (𝜇) = 𝜇𝜎−2 exp(−𝜇22𝜎2 )𝐾𝜎,𝛽 (𝜇) , (20)

where 𝜎 is the angular uncertainty and 𝐾𝜎,𝛽 is the Kent
correction to the Fisher distribution

𝐾𝜎,𝛽 (𝜇) = 12𝜋𝜎−2√(1 − 2𝛽𝜎2) (1 + 2𝛽𝜎2)
× ∫2𝜋
0

exp (𝛽𝜇2 cos 2𝜂) 𝑑𝜂. (21)

This correction takes into account the nonzero eccentricity
parameter 𝛽 which describes the shape of the elliptical
contour of a constant probability on the (𝜗, 𝜑) plane (𝐾𝜎,𝛽 →1 for symmetric circle contour when 𝛽 → 0). Larger values
of uncertainty 𝜎 correspond to larger deviations of vector w𝑗
from the mean direction wavg. For pose measuring systems
which use point-based rigid body registration, the angular
uncertainty 𝜎 is equivalent to the angular uncertainty 𝛼 from
(12a) and (12b) when homogenous, anisotropic model of
Gaussian noise characterizes the experimental conditions.
However, the analysis in this subsection and as discussed
here, the angular uncertainty 𝜎 is more general than the
uncertainty 𝛼 discussed in Section 2.1 because it is applicable
to any sequence of noisy rotations ΔR𝑗, no matter what
sensors and raw measurements were used to get the rotation
matrices. Equations (12a) and (12b) are applicable only to the
class of pose measuring systems which utilize point-based
rigid body registration.
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Figure 1: Four configurations (a, b, c, d) of the vector bars used in the experiments to create four different local frames.

3. Data Collection and Processing

3.1. Experimental Setup. A commercially available, large-
scale tracking system (iGPS) was used to collect 6DOF data
[34]. The manufacturer specified positional uncertainty is
250 𝜇m.The systemconsists of a network of eight transmitters
placed outside of the working volume (3m × 3m × 1.8m) to
track vector bars within the work volume. The transmitters
were mounted on 3.05m high steel columns anchored to the
concrete floor. The columns were evenly distributed around
the perimeter of the lab space [15m × 16m × 10m (high)],
and the working volume was in the center of the lab. Two
vector bars were used in the experiment, and each vector bar
contains two detectors which define a vector in space (the
detectors in a vector barwere separated by 101.6mm).The two
vector bars rigidlymounted to an aluminum rail were used to
create a local coordinate frame: in commercial applications, a
rigid object remains fixed in the local frame which is tracked
by the system.

Four different local frames were created and used to
obtain measurements for four configurations of the vector
bars; see Figure 1. Both vector bars were parallel to each
other, and the distance between them was 375.7mm for
configurations (a–c) and 902.2mm for configuration (d).The
line connecting the two bars for configuration (a) is parallel
to that for (b) and similarly for configurations (c) and (d); the
line in (a) and (b) is perpendicular to the line in (c) and (d).
Each local framewas used tomeasureM different static poses
(M = 12, 27, 12, 20 for frames (a–d), respectively), and at each
pose, 𝑁 repeated measurements in the same experimental
conditions were acquired (N ≥ 50,000).

The system outputs 6DOF data (∠𝑋, ∠𝑌, ∠𝑍, 𝑥, 𝑦, 𝑧)
where the first three components are the angles of rotation.
From the three angles, a rotation matrix R is constructed as

R (∠𝑋, ∠𝑌, ∠𝑍) = R𝑋 (∠𝑋)R𝑌 (−∠𝑌)R𝑍 (∠𝑍) , (22)

where R𝑋,𝑌,𝑍 are matrices of the basic rotations around the
axes of a fixed coordinate frame of the tracking system. The
last three components of the 6DOF data are coordinates of
the origin of the local frame defined by the user (a lower
detector in the vector bar labeled as 0 in Figure 1). In addition
to the 6DOF pose of the frame, the Cartesian coordinates of

the four detectors constituting the two vector bars are also
available. They were used as the locations of four fiducials for
point-based rigid body registration in some of the computer
simulations.

3.2. Data Postprocessing. For each mth pose, the averaged
orientation Ravg(𝑚) was calculated from the repeated mea-
surements or computer generated R𝑗, 𝑗 = 1, . . . , 𝑁. There
are different ways of calculating the average rotation matrix,
and in this study, we used the mean rotation in the Euclidean
sense. Specifically, Ravg was found as the orthogonal projec-
tion of a matrix R = 1/𝑁∑𝑁𝑗=1 R𝑗; see equation (3.7) in
[35]. Such a matrix retains the property of a rotation matrix
and the expected properties of means of numbers, namely,
invariance under permutation, biinvariance, and invariance
under transposition. It also minimizes the error function
based on the Frobenius norm; see [35] for details. Once Ravg
was determined, the matrix of small random rotation was
determined as

ΔR𝑗 (a𝑗, 𝜌𝑗) = R𝑇avgR𝑗 (23)

from which the axis a𝑗 and the angle 𝜌𝑗 were extracted. Axis-
angle representation of any rotation matrix has the following
symmetry:

R (a, −𝜌) = R (−a, 𝜌) . (24)

In our calculations, we restricted the angle 𝜌𝑗 to always
be positive and allowed the axis a𝑗 to flip its direction
to maintain the right-handedness of the coordinate frame.
Once (a𝑗, 𝜌𝑗) were known, the covariance matrix of the
orientation data C𝑚(q) was calculated using (18) and (19)
and its eigenvalues {Λ 1,𝑚, Λ 2,𝑚, Λ 3,𝑚} (where Λ 1 < Λ 2 <Λ 3) and corresponding eigenvectors {e1,𝑚, e2,𝑚, e3,𝑚} were
evaluated for 𝑚 = 1, . . . ,𝑀. Note that the inverse of large
rotation R𝑇avg was already applied in (23) and, therefore,
eigenvectors {e1,𝑚, e2,𝑚, e3,𝑚} of the covariance matrix C𝑚(q)
are determined in the CAD coordinate frame. In addition,
the covariance matrix of positional data C𝑚(Y) and its
eigenvectors and eigenvalues were determined where Y is
the positional part of 𝑁 repeated pose measurements in the
instrument frame.
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Histograms of the angular deviations 𝜇𝑗 of the instan-
taneous unit vector w𝑗(𝜗𝑗, 𝜑𝑗) from the corresponding unit
mean vector wavg were created for repeated registrations R𝑗
and selected vectors u as follows from (15). Additionally, 2D
histograms of the spherical angles (𝜗𝑗, 𝜑𝑗) parametrizing the
unit vectors w𝑗 were constructed. For each set of unit vectors{w𝑗}, the corresponding parameters 𝜎 and 𝛽 for the FBK dis-
tribution were determined as in [32]. These parameters were
then used to generate the plot of the theoretical distribution𝐺𝜎,𝛽(𝜇) from (20).This theoretical FBK distribution was then
compared with the histogram of the angles of deviation 𝜇𝑗
obtained from the experimental data.

The evaluation of the angular uncertainty 𝜎 was repeated
many times to get the distribution of 𝜎 on a unit sphere.
For each average mth orientation, a grid of elevation and
azimuth angles (𝜗𝑖, 𝜑𝑙) was created, 𝑖 = 1, . . . , 𝐼, 𝑙 = 1, . . . , 𝐿,
where 𝐼 = 180 and 𝐿 = 360, corresponding to angular
increments of 1∘. For each pair of angles, a unit vector
u𝑖,𝑙(𝜗𝑖, 𝜑𝑙) parametrized as in (13) was defined, and all R𝑗
rotations acquired for themth pose were applied to u𝑖,𝑙 using
(15). From the resulting set of unit vectors w𝑗(𝜗𝑖, 𝜑𝑙), the
corresponding angular uncertainty 𝜎(𝜗𝑖, 𝜑𝑙)was calculated as
in [32].The procedure was repeated for each vector u𝑖,𝑙(𝜗𝑖, 𝜑𝑙)
in the 𝐼 × 𝐿 grid.

To showa link between the propagation of an object’s pose
uncertainty to a POI and the propagation of uncertainty from
fiducials to the target in registration problem, the distribution
of the angular uncertainty 𝛼(𝜗𝑖, 𝜑𝑙) predicted by (12a) and
(12b) was determined using the same 𝐼 × 𝐿 grid of vectors
u𝑖,𝑙(𝜗𝑖, 𝜑𝑙). For each dataset corresponding to Ravg(𝑚), the
average locations of the four fiducials {Y4} were calculated.
Then, the moment of inertia matrix M in (10) was evaluated
and from its SVD decomposition,Λ2 in (9) was obtained and
used in (12a) and (12b). In addition toΛ2, the noise covariance
Ψ is required in (12a) and (12b). Since equation (12a) and (12b)
can handle only homogenous noise, we arbitrary selected the
covariance matrix Ψ of the first fiducial Y1. Once Ψ and
Λ
2 were determined, the angular uncertainty 𝛼(𝜗𝑖, 𝜑𝑙) was

calculated for each vector u(𝜗𝑖, 𝜑𝑙) in the 𝐼 × 𝐿 grid.
As mentioned earlier, the orientation of matrix M is

unrelated to the orientation of matrix Ψ. In (12a) and (12b),
this is reflected by the fact that the coordinate frame can
be rotated so that M is diagonal (only Λ2 is used in the
equation) while noiseΨ is not (see off-diagonal elementsΨ𝑗,𝑘
in the triple summation in (12a) and (12b)). To investigate the
effect of relative misalignment between the two matrices, we
performed SVD decomposition of the noise matrix

Ψ = U𝜓Ψ0U
𝑇
𝜓 (25)

and then replaced the original matrix with the rotated one

Ψ (𝜔) = ΩΨ0Ω𝑇, (26)

where rotationmatrixΩ(a, 𝜔) is determined by arbitrary axis
a and angle of rotation 𝜔. For 𝜔 = 0, Ω = I, Ψ = Ψ0, and
both matrices M and Ψ are perfectly aligned. Larger angle𝜔 corresponds to larger misalignment betweenM andΨ. For
each𝜔, the correspondingΨ(𝜔) is used in (12a) and (12b) and
the distribution of 𝛼(𝜗𝑖, 𝜑𝑙) is recalculated.

4. Results

Figure 2 shows the elements of the covariance matrices
C𝑚(q) calculated using (19) for each average orientation
Ravg(𝑚), m ≤ M = 27 for vector bars in configuration
(b). Figure 3 shows the spatial orientation of eigenvectors{e1,𝑚, e2,𝑚, e3,𝑚} corresponding to the ordered eigenvalues{Λ 1,𝑚, Λ 2,𝑚, Λ 3,𝑚} of C𝑚(q) for configurations (a) and (b).
Both graphs in Figure 3 are displayed from the same view
angles. Eigenvectors corresponding to the largest eigenvalueΛ 3 are shown as thick solid lines. Similar distributions of the
eigenvectors were obtained for data acquired for vector bars
in configurations (c) and (d) and in computer simulations
with arbitrary configurations of vector bars.

The anisotropy of noise perturbing the locations of
fiducials was checked by evaluating the ratio of eigenvaluesΛ 3,𝑚/Λ 1,𝑚 of the covariance matrices of positional data
C𝑚(Y) for all datasets and the median value was equal to 3.27.

The distributions of the angular uncertainty 𝜎 are shown
in Figure 4 together with the directions of the corresponding
eigenvectors {e1,𝑚, e2,𝑚, e3,𝑚} of covariance matrix C𝑚(q) for𝑚 = 1 and𝑚 = 2 (elements of C𝑚(q) are plotted in Figure 2).
Histograms of the deviation angles 𝜇 and the associated FBK
distributions 𝐺𝜎,𝛽(𝜇) given by (20) are shown in Figure 5
for the same noisy orientation data used to create the plot
in Figure 4(b). The angular uncertainty 𝜎 and eccentricity 𝛽
were determined for the directions aligned with eigenvector
e1 corresponding to𝜎max and eigenvector e3 corresponding to𝜎min in Figure 4(b). The values of 𝜎 were (0.37, 0.21) [mrad]
and (2.86, 4.96) [mrad−2] for 𝛽.

Figure 6 displays histograms of angles (𝜗𝑗, 𝜑𝑗)parametriz-
ing unit vectors w𝑗(𝜗𝑗, 𝜑𝑗) in (15) for noisy rotations R𝑗
used to create plots in Figures 4(b) and 5. Average vector
wavg(𝜗avg, 𝜑avg) is aligned with the direction where 𝜎max or𝜎min are located in Figure 4(b), Δ𝜗𝑗 = 𝜗𝑗 − 𝜗avg and Δ𝜑𝑗 =𝜑𝑗 − 𝜑avg.

Finally, the plots in Figure 7 show examples of the
distribution of angular uncertainty 𝛼(𝜗, 𝜑) calculated using
(12b) for increasing misalignment angle 𝜔 between the
moment of inertia matrix M and the noise matrix Ψ. The
plots were created for Λ2 = 104 × diag([7.55, 1.02, 3.06])
[mm2], diagonal noisematrix (variances) in (26)Ψ0 = 10−3×
diag([1.6, 2.2, 3.5]) [mm2], and the axis of rotationΩ(a, 𝜔) in
(26) is set arbitrary to a = [0.0384, 0.7319, 0.6804].
5. Discussion

The average orientations Ravg(𝑚) were acquired so that they
differ substantially from each other. As expected, such wide
variations in the poses result in large variations of the cor-
responding covariance matrices C𝑚(q). The three variances
of the orientation data (diagonal elements of C𝑚(q)) and the
three covariance coefficients (off-diagonal elements) shown
in Figure 2 depend on the orientation Ravg(𝑚). The graphs
in Figure 2 present data for vector bars in configuration
(b), but similar variability in the elements of the covariance
matrices C𝑚(q) was also observed for data acquired for
configurations (a), (c), and (d). Despite this variability, the
eigenvector e3,𝑚 which corresponds to the largest eigenvalue
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Figure 2: Elements of the covariance matrix C𝑚(q) for orientations Ravg(𝑚), 𝑚 ≤ 𝑀 = 27. Left column, plots (a–c): variances of the
orientation data q (diagonal elements of covariance matrix); right column, plots (d–f): covariance coefficients of the orientation data q.

Λ 3,𝑚 of the covariance matrix C𝑚(q) exhibits surprisingly
weak dependence on the actual mth orientation for data
acquired for a given configuration of vector bars; see solid
lines in Figures 3(a) and 3(b). This is in striking contrast to
the remaining two eigenvectors (marked with dashed and
dotted lines). Note that eigenvectors e3,𝑚 are closely aligned
with the direction of the eigenvector bmin corresponding to
the smallest eigenvalue of the inertia matrixM given by (10).

The theoretical FBK distribution 𝐺𝜎,𝛽(𝜇) as defined by
(20) agrees very well with the experimental histogram of
deviation angles 𝜇 as seen in Figure 5. Further evidence
supporting this agreement can be seen in Figure 6. Kent
postulated (see (1.6) in [32]) that the relation 𝛽𝜎2 → 𝑐
(where 0 ≤ 𝑐 < 1/2) holds for small noise. Indeed, the
larger uncertainty 𝜎 and matching smaller eccentricity 𝛽 in
Figure 6(a) should be compared with the smaller 𝜎 and larger
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Figure 3: Spatial distribution of the three eigenvectors {e1,𝑚, e2,𝑚, e3,𝑚} corresponding to the three eigenvalues {Λ 1,𝑚, Λ 2,𝑚, Λ 3,𝑚} of the
covariance matrixC𝑚(q) for orientationRavg(𝑚),𝑚 ≤ 𝑀: (a)M = 12, vector bars in configuration (a); (b)M = 27, vector bars in configuration
(b). Both graphs are from the same view direction and the axes are unitless. Dotted lines denote eigenvectors e1,𝑚 associated with the smallest
eigenvalue Λ 1,𝑚 while solid lines are used to plot eigenvectors e3,𝑚 associated with the largest eigenvalue Λ 3,𝑚. The thick dark gray line
indicates the direction of eigenvector bmin of moment of inertia matrixM for corresponding configuration of vector bars.
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Figure 6: Histogram of angles (𝜗𝑗, 𝜑𝑗) parametrizing unit vectorsw(𝜗𝑗, 𝜑𝑗) plotted in a log scale, where −inf indicates empty bins.The average
unit vector wavg(𝜗avg, 𝜑avg) is aligned with the direction associated with (a) eigenvalue Λ 1 from Figure 4(b) (related distribution 𝐺𝜎,𝛽 shown
in Figure 5(a)); (b) eigenvalue Λ 3 from Figure 4(b) (related distribution 𝐺𝜎,𝛽 shown in Figure 5(b)).

𝛽 in Figure 6(b). Recall that smaller eccentricity 𝛽 describes
a more rounded distribution. The difference between the
distributions shown in Figures 6(a) and 6(b) will impact
assembly tasks in manufacturing when tight tolerances are
required.

The theoretical equations (12a) and (12b) derived for
target registration error TRE(r) for point-based, rigid body
registration are useful in explaining the propagation of pose
uncertainty to a given POI (i.e., a target point). The target
point remains fixed relative to the fiducials, that is, the target
point relative to the major axes of the moment of inertia is
fixed and independent of any imposed rotation of the object.
However, when anisotropic noise affects the measurement
of the fiducials, different “big” rotations disregarded in
Sibson’s analysis of isotropic noise [29] will cause different
orientations of the noise matrix relative to the fiducials. This
will cause the angular uncertainty 𝛼(𝜗, 𝜑) to be dependent on

these rotations (note off-diagonal elements of noise matrixΨ𝑗,𝑘 in (12b) are affected by increasing misalignment angle𝜔 in (26)), and the consequences of such dependence could
be seen in Figure 7. The rotation of the gray axes in Figure 7
follows the pattern observed in the experiment; see Figure 3.
Note in Figure 7 that the eigenvector bmin of matrix M
corresponding to its smallest eigenvalue 𝜆1 is well aligned
with the direction defined by the two poles where 𝛼 = 𝛼min,
similarly to poles defined by 𝜎min and e3 in Figures 4 and 3.
Exact matching between the theoretical 𝛼 provided in (12a)
and (12b) and experimental uncertainty 𝜎 is not expected
since equation (12a) and (12b) was derived for anisotropic,
homogenous noise (the same for all fiducials) while noise in
experiment was anisotropic and nonhomogenous.

The surprising stability of eigenvector e3, pointing to 𝜎min
in theCAD frame and the close alignment of e3 andbmin, have
a very useful implication.Thedirection ofbmin depends solely
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Figure 7: Distribution of uncertainty 𝛼 in [mrad] for increasing misalignment angle 𝜔 in [rad]: (a) 𝜔 = 0.087; (b) 𝜔 = 0.785; (c) 𝜔 = 1.571;
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on the selection of the fiducials, implying that the direction of
e3 also depends on the selection of fiducials’ locations. Thus,
if the location of a given POI associated with a rigid object
is critical, it would be beneficial to place fiducials around an
object in such a way that the axis of the smallest moment of
inertia is parallel to the vector pointing towards this POI in
the CAD frame. The principle for finding such configuration
of fiducials is outlined in Appendix.

6. Conclusions

Many pose measuring systems derive pose from the mea-
surement of fiducial markers attached to an object. The

uncertainty of the fiducials’ locations propagates to the
uncertainty of the object’s orientation which, in turn, prop-
agates in an anisotropic way to individual points on the
object’s surface. The angular distribution of the orientation
uncertainty propagated to a POI depends generally on the
object’s orientation. However, the orientation uncertainty in
the regions close to the poles defined by the eigenvector
corresponding to the smallest eigenvalue of the moment
of inertia matrix of fiducials is almost independent of the
object’s orientation. These regions are also characterized
by the smallest propagated orientation uncertainty. Thus,
strategic placement of fiducials around an object ensures that
the orientation uncertainty propagated to a given POI is the
smallest, regardless of the object’s orientation.



Mathematical Problems in Engineering 11

P

x

y

z

O

d

bＧＣＨ FJ+2

FJ+1



Figure 8:Optimal placement of fiducials for a given Point of Interest
P. Gray diamonds indicate an initial configuration of 𝐽 fiducials,
bmin shows the direction of the principal axis corresponding to the
smallest moment of inertia for the initial configuration, and two
extra fiducials F𝐽+1 and F𝐽+2 are placed on line OP at a distance 𝑑
on each side of center O. For sufficiently large 𝑑, the principal axis
bmin of the new configuration for 𝐽+2 fiducials will be closely aligned
withOP line.

Appendix

The problem of finding optimal locations of fiducials for
a given POI does not have a unique solution. In practical
applications, the geometry of the rotated object and type of
markers tracked by the instrument may impose additional
constraints on possible fiducial locations.The general strategy
for optimal placement is schematically shown in Figure 8
where gray diamonds depict an arbitrary configuration of J
fiducials in the CAD frame.

In this general configuration, the principal axis of the
smallest moment of inertia is denoted by bmin, P is the
location of a POI, and 𝜒 is the angle between bmin and P.
We assume that the centroid O of 𝐽 fiducials is located at the
origin of the CAD frame; if not, the origin needs to be moved
to coincidewithOprior to determining lineOP. To alignbmin
with lineOP, two extra fiducials F𝐽+1 and F𝐽+2 are added and
placed on line OP at a distance 𝑑 on each side of center O.
The added pair of fiducials does not change the location of
centroidO and does not contribute to the moment of inertia
about lineOP. However, with increasing 𝑑, the two moments
of inertia of the 𝐽+2 points about the two axes perpendicular
to OP will increase. Thus, for a sufficiently large value of 𝑑,
the moment of inertia about lineOP will be the smallest and
then bmin, that is, the principal axis of the smallest moment of
inertia evaluated for 𝐽 + 2 points, will be closely aligned with
line OP. This close alignment should cause the orientation
uncertainty propagated to a given POI to be close to the
minimum value.

To illustrate this procedure, numerical simulations were
performed. Six different randomly selected configurations of𝐽 points (4 ≤ 𝐽 ≤ 7) scattered within a cube of length
700mm were used. For each configuration, the covariance
matrix cokXX from (8) was determined and used to calculate
the moment of inertia matrix M from (10) and its principal
axes and the corresponding moments of inertia. Eigenvector
corresponding to the smallest eigenvalue was determined as
bmin, and the initial distance 𝑑init, defined as the square root
of the largest eigenvalue of M, was calculated using (11) for
the initial configuration of J points

𝑑init = √Λ22 + Λ23. (A.1)

Then, the covariance matrix of one of a positional data was
chosen as a representative characteristic of noise affecting
locations of fiducials and its version Ψ in the rotated frame
aligned with eigenvectors of M matrix was evaluated. Then,
the nondiagonal noise matrix Ψ and the three eigenvalues[Λ21, Λ22, Λ23] of cokXX were substituted in (12b) to get the
extreme values of the theoretical orientation uncertainty 𝛼,
that is, 𝛼max(umax) and 𝛼min(umin). Finally, a Point of Interest
P was selected. In the worst-case scenario, line OP was
aligned with umax, that is, P had the largest uncertainty, and
the misalignment angle 𝜒 between bmin and OP was close to
90∘; in the general case, an arbitrary point Pwas selected, and
the corresponding angle 𝜒 was less than 90∘. Then, a pair of
pointsF𝐽+1 andF𝐽+2was added and the distance𝑑 varied from
zero to 3𝑑init. For each 𝑑, the moment of inertia matrix M
was determined using all 𝐽 + 2 points, and the corresponding
eigenvector bmin(𝑑), angle 𝜒(𝑑), and the smallest theoretical
uncertainty 𝛼min(𝑑) were evaluated.

Figure 9 shows representative graphs from the six sim-
ulations. Parameter 𝑔(𝑑), displayed in Figure 9(b), is the
normalized uncertainty defined as

𝑔 (𝑑) = [𝛼min (𝑑) − 𝛼min (0)][𝛼max (0) − 𝛼min (0)] . (A.2)

For the worst-case selection of POI P, 𝑔(0) = 1, while for a
generic location of P, 0 < 𝑔(0) < 1. Negative values of 𝑔(𝑑)
indicate that the smallest propagated uncertainty 𝛼min for the
optimal configuration of 𝐽+2 fiducials (which contains a pair
of added fiducials separated by the distance 2𝑑) is smaller
than the smallest uncertainty𝛼min for the initial configuration
of 𝐽 fiducials. The uncertainty of the location of P (including
both positional and rotational uncertainty propagated from
the 6DOF pose) was calculated using (12a), and to suppress
the trivial dependence of variance on length of P, a constant‖P‖ = 350mm was used in all six simulations.

As seen in Figures 9(b) and 9(c), the required distance𝑑 should be close to 𝑑init. If the two extra fiducials cannot
be placed at the distance 𝑑init from O due to geometrical
constrains, then the general procedure outlined above needs
to be modified; for example, two pairs of fiducials (F𝐽+1, F𝐽+2
and F𝐽+3, F𝐽+4) could be placed on lineOP at equal distances𝑑1,3 < 𝑑init and 𝑑2,4 < 𝑑init.
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Figure 9: Results from computer simulations. Six random configurations of fiducials, lines (1–3) correspond to the worst-case selection of
Point of InterestP: (a) angle𝜒; (b) normalized uncertainty𝑔 evaluated in (A.2); (c) standard deviation ofP evaluated as square root of variance
calculated in (12a).
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