
Applied Bionics and Biomechanics 9 (2012) 367–374
DOI 10.3233/ABB-120073
IOS Press

367

Mobile sensing and simultaneously node
localization in wireless sensor networks
for human motion tracking
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Abstract. This paper exploits optimal position of the mobile sensor to improve the target tracking performance of wireless
sensor networks and simultaneously localize both of the static sensor nodes and mobile sensor nodes when tracking the human
motion. In our approach, mobile sensors collaborate with static sensors and move optimally to achieve the required detection
performance. The accuracy of final tracking result is then improved as the measurements of mobile sensors have higher signal-
to-noise ratios after the movement. Specifically, we can simultaneously localize the mobile sensor and static sensors position
when localizing the human’s position based on augmented extended Kalman filters (EKF). In the algorithm, we develop a sensor
movement optimization algorithm that achieves near-optimal system tracking performance. We also presented an sensor nodes
management scheme in order to deduce the computation complexity when localizing the static sensor nodes. The effectiveness
of our approach is validated by extensive simulations using the simulations.
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1. Introduction

Human motion tracking in wireless sensor networks
is receiving increasing attention from researchers of
different fields of study nowadays [1–3]. The inter-
est is motivated by a wide range of applications, such
as wireless healthcare, wireless surveillance, human-
computer interaction, and so on. In wireless human
motion tracking problem, the mobile sensors and static
sensors are often applied in one wireless sensor net-
work. In many cases, the sensor nodes’ location are
unknown in the applications [4, 5]. Because the node
localization is a fundamental problem in sensor net-
works for both the application layers as well as for
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the underlying routing infrastructure [5], it is often
useful to know the locations of the constituent nodes
with high accuracy. For application-specific sensor net-
works, we argue that it makes sense to treat localization
as an online distributed problem and integrate it with
the application [7, 8]. Our approach exploits additional
information gathered by the network during the course
of running a human motion tracking application to
significantly improve localization performance.

There have been a number of recent efforts to
develop localization algorithms for wireless sensor
networks, most of which are based on using static ref-
erence beacons, signal-strength estimation or acoustic
ranging [6, 9, 10]. Common characteristics in these
efforts have been (i) a view of localization as a one-
step process to be performed at deployment time and
(ii) the separation of localization from the application
tasks being performed. The application we consider in
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this paper is the single-target problem to solve: know
the current robot location, current human target esti-
mation, and the maximal distance the robot can move
omni-directionally, to find the next robot location such
that the trace of the target estimation at that location
can be minimal. At the same time, how to localize the
mobile sensor nodes and static sensor nodes on-line.

Our contributions are threefold: 1) We motivate and
propose a novel approach that allows one or more
mobile robots to perform node localization in a WSN,
eliminating the processing constraints of small devices.
Mobility can also be exploited to reduce localization
errors and the number of static reference location bea-
cons required to uniquely localize a sensor network. 2)
We develop a novel Augmented Extended Kalman Fil-
ter (AEKF)-based state estimation algorithm for node
localization in WSNs. Localization based on range
measurements is solved by treating it as online esti-
mation in a nonlinear dynamic system. Our model
incorporates significant uncertainty and measurement
errors and is computationally efficient and robust by
using the sensor node management scheme proposed
in Section 4. 3) Our algorithm is an on-line distributed
localization and tracking approach compared to the
existing recent work.

2. Mobile sensing with extended Kalman filter

Human motion tracking is receiving increasing
attention from researchers of different fields of study
nowadays. The interest is motivated by a wide range of
applications, such as wireless healthcare, surveillance,
human-computer interaction, and so on. A complete
model of human consists of both the movements and
the shape of the body. Many of the available systems
consider the two modelling processes as separate even
if they are very close. In our study, the movement of the
body is the target. In this section, we proposed how to
find the optimal position for the mobile sensor (mobile
robot) that can help to obtain the best estimation results
when the mobile sensor is tracking a moving target.

We consider the problem of tracking a single human
target. Consider the following constant velocity motion
model which is used in this paper:

X(k + 1) = FkX(k) + wk (1)

with

X(k) =
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where X(k + 1) is the state of the target at the k-th
time step which happens at tk, x(k), y(k) are x and y

coordinates of the target at time step k, xv(k), yv(k) are
the velocities of the target along x and y directions at
time step k, �tk is the time interval between the time
step k and time step k + 1 which is fixed. w(k) is the
Gaussian white acceleration noise with zero mean and
covariance matrix Qk.

Qk = q
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(2)

Assume the robot can move to take measurement at
each time step. The observation model at location
Xs(k) = (xs(k), ys(k)) at time step k is

zXs(k)(k) = hk(X(k), Xs(k)) + v(k) (3)

where v(k) is the Gaussian white measurement noise of
the sensor with zero mean and varianceR. For example,
for robot with ranging sensor, the measurement model
is

hk(X(k), Xs(k))=
√

(x(k) − xs(k))2 + (y(k) − ys(k))2

(4)

EKF operates in the following way [12]: Given the
estimate X̂(k + 1|k) of X(k), the predicted state X̂(k +
1 | k) is calculated as

X̂(k + 1|k) = FkX̂(k|k) (5)

with the prediction error covariance

P(k + 1|k) = FkP(k|k)FT
k + GkQGT

k (6)

The predicted measurement for the new robot location
at location Xs(k + 1) is

ẑ(k + 1|k) = h(X̂(k + 1|k), Xs(k + 1)) (7)

Then the innovation, i.e., the difference between the
measurement and the predicted measurement, is given
by
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Fig. 1. Target tracking and robot (mobile sensor node) estimation.

γ(k + 1) = zs(k+1)(k + 1) − �
z(k + 1|k) (8)

with the covariance

S(k + 1) = Hk + 1P(k + 1|k)HT
k+1 + R(k + 1) (9)

where H(k + 1) is the Jacobian matrix of the obser-
vation function hk with respect to the predicted state
X̂(k + 1 | k). The EKF gain is given by

K(k + 1) = P(k + 1|k)Hk+1(x̂(k + 1|k),

xs(k + 1))S−1(k + 1) (10)

and the state will be updated as

X̂(k + 1|k + 1) = �
x(k + 1|k) + K(k + 1)γ(k + 1)

(11)

with the error covariance matrix

P(k + 1|k + 1) = P(k + 1|k) − K(k + 1)

S(k + 1)KT (k + 1) (12)

Or equivalently using the information filter, we have

P(k + 1|k + 1)= (P(k + 1|k)−1 + HT
k + 1(X̂(k + 1|k),

Xs(k + 1))R(k + 1)

Hk + 1(X̂(k + 1|k),

Xs(k + 1)))−1 (13)

For ranging sensor,

Hk + 1(X̂(k + 1|k), Xs(k + 1))
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which is a nonlinear function of new robot loca-
tion Xs(k + 1) = (xs(k + 1), ys(k + 1)). As shown in
Fig. 1, the mobile sensing problem is to find the
best Xs(k + 1) according to the following optimiza-
tion problem (suppose to based on the trace of the
covariance matrix):

Min trace (P(k + 1|k + 1) (15)

under the constraints ‖ Xs(k + 1) − Xs(k) ‖≤ L

where L is the maximal moving distance of the robot.
See Fig. 1.

It’s a constrained optimization problem and can be
solved by some nonlinear optimization approach. Here
we will apply downhill simplex method.

Min Trace(P(K + 1|K + 1))

+λ(L− ‖ Xs(k + 1) − Xs(k) ‖) (16)

2.1. The optimization algorithm–downhill simplex

To solve equation (16), we have to use nonlinear
optimization algorithm. The downhill simplex met-
hod or amoeba method is a commonly used nonlinear
optimization algorithm. It is due to Nelder & Mead
(1965) and is a numerical method for minimizing an
objective function in a many-dimensional space [11].

The method uses the concept of a simplex, which is
a polytype of N + 1 vertices in N dimensions; a line
segment on a line, a triangle on a plane, a tetrahedron
in three-dimensional space and so forth.

Like all general purpose multidimensional optimiza-
tion algorithms, Nelder-Mead occasionally gets stuck
in a rut. The standard approach to handle this is to
restart the algorithm with a new simplex starting at
the current best value. This can be extended in a sim-
ilar way to simulated annealing to escape small local
minima.

Many variations exist depending on the actual nature
of problem being solved. The most common, perhaps,
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is to use a constant size small simplex that climbs local
gradients to local maxima. Visualize a small triangle on
an elevation map flip flopping its way up a hill to a local
peak. This, however, tends to perform poorly against
the method described in this paper because it makes
small, unnecessary steps in areas of little interest.

The NM algorithm details are as follows [11]:
Assume the objective function that will be maxi-

mized is f (x) and x is the variable.

1. order according to the values at the vertices:

f (x1) ≤ f (x2) ≤ f (x3) ≤ . . . ≤ f (xn + 1) (17)

2. compute a reflection:

xr = xo + α(xo − xn + 1) (18)

xo is the center of gravity of all points except xn + 1.
If

f (x1) < f (xr) < f (xn) (19)

then we compute a new simplex with xr and by reject-
ing xn + 1. Go to step 1.

3. expansion: If

f (xr) < f (x1) (20)

then calculate

xe = ρxr + (1 − ρ)(xo (21)

If f (xe) < f (xr) (22)

compute new simplex with xe and go to Step 1. Else
compute new simplex with xr and go to Step 1.

4. contraction: If f (xn) ≤ f (xr) let xc=xn + 1 +
γ(xo − xn + 1), if f (xc) < f (xr)

compute new simplex with xc. Go to Step 1. Else go
to Step 5.

5. shrink step: Compute the n vertices evaluations:

xi = x1 + σ(xi − x1) (23)

for all i ∈ 2, . . . , n + 1 go to Step 1.
It is noted that α, ρ, γ and σ are respectively the

reflection, the expansion, the contraction and the shrink
coefficient. Standard value are α = 1, ρ = 2, γ = 0.5
and σ = 0.5.

For the reflection, since xn + 1 is the vertex with
the higher associated value along the vertices, we can
expect to find a lower value at the reflection of xn + 1 in
the opposite face formed by all vertices point xi except
xn + 1.

For the expansion, if the reflection point xr is the
new minimum along the vertices we can expect to find
interesting values along the direction from xo to xr.

Concerning the contraction: If f (xr) > f (xn), we
can expect that a better value will be inside the simplex
formed by all the vertices xi.

3. Simultaneously Static Sensor Nodes
Localization (SSSNL)

In this paper, we will not only decide the optimal
position of the mobile sensor/robot at each time step
when we track the target, but also we want to simultane-
ously localize the static sensor nodes and mobile nodes.
In order to do this, we use the Augmented Extended
Kalman Filter (AEKF) to simultaneously localize the
static sensor nodes and mobile sensor nodes when we
track the target. Assume the position of the ith static
sensor node is denoted by pi. The system state equation
for the ith static sensor node is

pi(k + 1) = pi(k)

The static sensor nodes are assumed to be stationary all
the time and the number of static sensor nodes in the
environment is assumed to be N. Thus the augmented
state equation of the mobile sensor (we assume there
are only one mobile sensor in the environment) and all
static sensor nodes are expressed as follows:

x(k + 1) = f(x(k), u(k)) + v(k) (24)

where x(k) =

⎡
⎢⎢⎢⎢⎣

xv(k)

p1(k)
...

pN (k)

⎤
⎥⎥⎥⎥⎦

, and xv(k) is the mobile sen-

sor node position; f(x(k), u(k)) =

⎡
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,
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The static sensor nodes and mobile sensor can get
observations of the relative positions between static
sensor nodes and the mobile sensor. The observation
model of the ith static sensor node is expressed as
follows:

zi(k) = Hi(xv(k), pi(k)) + wi(k) (25)

where wi(k) is a white noise with zero mean and vari-
ance σr. The observation function Hi(·, ·) gives the
relationship between the sensor measurement and the
system state variable when observing the ith static sen-
sor node. We apply the EKF for the state estimation of
the mobile sensor and static sensor node. Given the
estimate x̂(k | k) of x(k) and control input u(k), the
predicted state x̂(k + 1 | k) using (24) is given by

x̂(k + 1 | k) = f(x̂(k | k), u(k)). (26)

The prediction error covariance is approximately given
by:

P(k + 1 | k) = F(k)P(k | k)FT (k) + Q(k) (27)

where F(k) is the transition matrix of Equation (24)
after the linearization. P(k | k) is the prior error covari-
ance estimation at time k. Q(k) is the covariance of the
white noise v(k), i.e. Q(k) = diag{Qv(k), 0, · · · , 0}.

In view of (25), the predicted measurement is simply

ẑi(k + 1) = Hi(x̂v(k + 1 | k), p̂i(k + 1 | k)) (28)

where x̂v(k + 1 | k) and p̂i(k + 1 | k) are the elements
of x̂(k + 1 | k) which is calculated from Equation (26).
Then, the difference between the measurement and the
predicted observation, namely the innovation, is given
by

νi(k + 1) = zi(k + 1) − ẑi(k + 1). (29)

Thus, the covariance of the innovation is:

si(k + 1) = ∇Hi(k + 1)P(k + 1 | k)∇Hi(k + 1)T

+ σ2
r (30)

where ∇Hi(k + 1) is the Jacobian matrix of the obser-
vation function with respect to the predicted system
state x̂(k + 1 | k). Because each observation is only a
function of the sensor node being observed, the matrix
is a sparse matrix of the form:

∇Hi(k + 1) = [∇vHi(k + 1) 0

. . . 0 ∇iHi(k + 1) 0 . . .] (31)

where ∇vHi(k + 1) and ∇iHi(k + 1) are the Jacobians
of the observation function with respect to the mobile
sensor states and the ith static sensor node states,
respectively. The EKF gain is given by

Ki(k + 1) = P(k + 1 | k)∇Hi(k + 1)T s−1
i (k + 1).

(32)

At time k + 1, we use new matched observations one
by one in the current sensor information (that means the
sensor readings that the mobile sensor node received
from the static sensors close to it) to update the estimate
using the following equations:

x̂−
1 = x̂(k + 1 | k), (33)

P̂−
1 = P̂(k + 1 | k), (34)

x̂+
i = x̂−

i + Ki(k + 1)νi(k + 1), (35)

P̂+
i = P̂−

i − Ki(k + 1)si(k + 1)KT
i (k + 1), (36)

x̂−
i+1 = x̂+

i (i = 1, · · · , n), (37)

P̂−
i+1 = P̂+

i (i = 1, · · · , n), (38)

x̂(k + 1 | k + 1) = x̂+
n , (39)

P(k + 1 | k + 1) = P̂+
n (40)

where i means the ith observation from static sensor
node i andn is the number of static sensor nodes that the
mobile sensor can hear from in the current time step;
x̂−

i is the system state estimate before update using the
ith observation and x̂+

i is the estimate after the update
by observation i. P̂−

i and P̂+
i are the corresponding

state covariance matrices, respectively.

4. Sensor nodes localization management
scheme

If the static sensor nodes’ location estimation is to
be built incrementally as information is gathered from
sensors, there is typically a need for a sensor node
localization management process in order to prevent
the heavy computational burden when the system state
matrix is augmented. This process has the function of
managing the information present in the knowledge
base and possibly aiding the sensing process. Given the
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fact that computational resources are limited, an infor-
mation management technique that reduces the stored
data without sacrificing much information is required.
To improve the applicability of a spatial description
to a larger variety of scenarios, it should present the
ability to iteratively adapt its geometry to application-
specific requirements. The sensor node management
process can be divided into three aspects for SSSNL
in dynamic environments as follows:

1. Adding Observed Sensor Nodes. When a sensor
node observed in the current scan cannot be matched
to the existing sensor node list, a new sensor node is
initialized.

2. Removing redundant sensor nodes. If all static
sensor nodes are included for updating the state, the
computational requirement will be high. Thus, redun-
dant sensor nodes that have not been observed for a
long time interval should be removed.

3. Removing unstable sensor nodes. sensor nodes
become unstable or obsolete if they move or become
permanently occluded. For example, sensor nodes
might be stationary for a long period of time, and
can be considered suitable sensor nodes for SSSNL.
But if they move, they are unstable sensor nodes
and should be removed from the sensor management
scheme. Another case is that structural changes may
occur in the environment–such as some static sensor
nodes removed. Other cases, such as, an object might
be placed in front of a sensor node, occluding it from
view. For whatever reason, some sensor nodes may
cease to exist and no longer provide useful informa-
tion. These unstable sensor nodes should be deleted
from the sensor management scheme.

After data association, if a sensor node cannot be
matched to any existing sensor node in the map, it is
considered as a new sensor node. The sensor node ini-
tialization is activated. Otherwise, this observation is
used for the system update.

After a specified time interval, we shall check if
this sensor node is still matched by any new com-
ing observations during this period. If it is matched by
none of the observations sensed from external sensors
within the specified interval, this sensor node should be
removed from the sensor node listing. Otherwise, this
sensor node will still be kept in our system variables.

5. Simulation results

This section will present the simulation results. In
the first simulation, we apply the mobile robot as the
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Fig. 2. Tracking results comparison with/without mobile sen-
sor/robot.

mobile sensor node and 8 static sensor nodes are also
employed for the target tracking. We compared the
tracking results in Fig. 2 when a mobile sensor node is
used. We can see that the mobile sensor improved the
tracking accuracy. In this simulation, the static sensor
locations are assumed to be known, only the mobile
sensor’s optimal position (where the mobile sensor
should be at each time step) is estimated using the
proposed algorithm in Section 2. Figure 3 shows the
optimal position estimation for the mobile robot at each
time step. Figure 4 shows the corresponding covari-
ance trace value at each step. In the second simulation,
we focus on the simultaneous sensor nodes localiza-
tion and target tracking, see Fig. 5. Figure 6 shows the
mobile robot position estimation covariance and the
95% confidence bounds. From the simulations, we can
see that our method can simultaneously localize sen-
sor nodes and target at the same time. This advantage
is very novel compared to the other methods such as
EKF based sensor node localization.

6. Conclusions

This paper presented an on-line approach that can
estimate the sensor nodes location and simultane-
ously localize the mobile sensor nodes together with
the target. The key idea in our scheme is to con-
trol the mobile robot to an optimal position for the
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Fig. 3. The optimal position estimation for the mobile robot at each
time step.
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best target tracking results and to use the mobile
robot to simultaneously perform location estimation
for the sensor nodes it passes based on the range infor-
mation of the radio messages received from them.
Thus, we eliminate the processing constraints of static
sensor nodes and the need for static reference bea-
cons. Our mathematical contribution is the use of
an augmented extended Kalman filter (AEKF) based
state estimator to solve the localization. Compared
to the standard extended Kalman filter, AEKF can
simultaneously localize the mobile sensor and static
sensors together with the target and it is also more
robust.

Fig. 5. Simultaneous sensor nodes localization.
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