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Steady glide trajectory optimization for high lift-to-drag ratio reentry vehicle is a challenge because of weakly damped trajectory
oscillation. This paper aims at providing a steady glide trajectory using numerical optimal method. A new steady glide dynamic
modeling is formulated via extending a trajectory-oscillation suppressing scheme into the three-dimensional reentry dynamics with
a spherical and rotating Earth. This scheme comprehensively considers all factors acting on the flight path angle and suppresses the
trajectory oscillation by regulating the vertical acceleration in negative feedback form and keeping the lateral acceleration invariant.
Then, a study on steady glide trajectory optimization is carried out based on this modeling and pseudospectral method. Two
examples with and without bank reversal are taken to evaluate the performance and applicability of the new method. A comparison
with the traditional method is also provided to demonstrate its superior performance. Finally, the feasibility of the pseudospectral
solution is verified by comparing the optimal trajectory with integral trajectory. The results show that this method not only is capable
of addressing the case which the traditional method cannot solve but also significantly improves the computational efficiency. More

importantly, it provides more stable and safe optimal steady glide trajectory with high precision.

1. Introduction

Entry guidance plays an important role in generating the
steering command to guide the vehicle from its initial condi-
tion to reach the destination safely and accurately. In general,
traditional reentry guidance is divided into two parts. The
first part is the generation of a feasible reference trajectory.
The second part is the tracking of this reference trajectory
[1]. This paper focuses on generating a feasible steady glide
reference trajectory, especially for high lift-to-drag ratio
reentry vehicle, using numerical optimal method. Previous
researches in reentry trajectory optimization are summa-
rized as follows. Scott applied the Legendre Pseudospectral
method into the trajectory optimization of reentry vehicles.
In Josselyn and Ross’s work [2], covector mapping theorem of
Legendre Pseudospectral method was used to verify the first-
order optimality condition arising in the path constraints
trajectory optimization. Rao and Clarke [3] also studied the
problem of reentry trajectory optimization using Legendre
Pseudospectral method. The key features of the optimal tra-
jectory and quality of trajectory obtained from the Legendre

Pseudospectral method were discussed. Jorris and Cobb and
Zhao and Zhou [4, 5] employed the Gauss Pseudospectral
method to optimize the 2D and 3D reentry trajectory for
Common Aero Vehicle (CAV), in which waypoint and no-fly
zone constraints were considered as inner-point constraints
in optimal process. Rahimi et al. [6] applied the particle
swarm optimization into spacecraft reentry optimization.
High-order polynomials were used to approximate the angle
of attack and bank angle in problem formulation. The coeffi-
cients of both polynomials were considered as input variables
in optimal process. It should be noted that, because of not
considering the trajectory-oscillation suppressing scheme,
the optimal trajectories generated from above methods are
naturally oscillatory. In steady glide, the heating rate will not
change sharply and the steady state will greatly release the
burden of control system. Therefore, steady glide trajectory
is the best reference trajectory for the reentry guidance.
Actually, quasi-equilibrium-glide condition (QEGC) is a
well-known “soft” path constraint that makes the trajec-
tory change monotonously. However, complicated reentry
dynamics, especially for high lift-to-drag ratio vehicle, are so



sensitive to the “soft” path constraint that it is very difficult
for numerical optimization method to converge when QEGC
is considered in optimal process. Generally speaking, this
constraint is suitable for the trajectory planning in which one
or two parameters are searched by secant method so as to
generate a feasible trajectory [7-9]. Therefore, steady glide
trajectory optimization for the high lift-to-drag ratio vehicle
is always a challenge for numerical optimization.

The objective of this paper is to investigate the steady
glide dynamic modeling and trajectory optimization for the
high lift-to-drag ratio vehicle. A new steady glide dynamic
modeling is formulated by extending a trajectory-oscillation
suppressing scheme, which is presented by Yu and Chen
in [10], into three-dimensional reentry dynamics. Firstly, a
special fight path angle which is able to keep the vehicle
flying in a steady glide is calculated from the command
angle of attack, command bank angle, and current state.
Then, the trajectory oscillation is suppressed via regulating
the longitudinal acceleration in negative feedback form and
keeping the lateral acceleration invariant. It should be noted
that the negative feedback signal is the deviation between
the special flight path angle and actual flight path angle.
Simulation result shows that this scheme performs well in
suppressing trajectory oscillation and guides the vehicle into
steady glide as soon as possible. Additionally, a study on
steady glide trajectory optimization is investigated based on
this new modeling. The derivatives of command angle of
attack and bank angle are chosen as the control variables.
And the performance index is the weighted squares sum
of those derivatives. The limits on actual angle of attack
and bank angle are considered as the path constraints. In
fact, steady glide trajectory optimization is a typical optimal
control problem whose solutions change rapidly in certain
regions. Therefore, Hp-adaptive Gaussian quadrature collo-
cation method [11], which performs well in dealing with this
kind of problem, is chosen to transfer the optimal control
problem into a standard nonlinear programming problem
and solve it. The notable difference from the Yu’s method
is that the scheme is suitable for the three-dimensional
reentry dynamics. Another notable difference is that the
scheme comprehensively considers all factors (including
the derivatives of reference angle of attack and reference
bank angle) acting on the flight path angle. That makes it
easy to integrate into the motion dynamics by the choice
of those derivatives as the control variables. Two classical
numeric optimal examples (with and without bank reversal)
are taken to evaluate the performance of the steady glide
trajectory optimization. In order to demonstrate the superior
performance in applicability and computational efficiency,
a comparison with the traditional method is also provided.
Furthermore, a comparison between optimal trajectory and
integral trajectory is carried out to verify the feasibility of
the pseudospectral solution. The results show that the new
method not only significantly improves the computational
efficiency of trajectory optimization since using fewer nodes
will achieve a higher accuracy for the steady glide reentry
trajectory but also has an extensive applicability in consider-
ing more final constraints even with the bank reversal. Most
importantly, it is capable of providing more stable and safe
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optimal steady glide trajectory with high precision, which
would be a better choice for tracking guidance.

This paper is organized as follows: entry dynamics
including entry trajectory constraints and vehicle model are
described in Section 2; three-dimensional reentry trajectory-
oscillation suppressing scheme is presented in Section 3;
steady glide dynamic modeling and trajectory optimization
are presented in detail in Section 4.

2. Dynamics and Vehicle Description

2.1. Entry Dynamics. The 3-DOF point mass dynamics of the
reentry vehicle over a spherical, rotating Earth is described as
follows [12]:
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where r is the radial distance from the center of the Earth to
the vehicle. In the latter, i denotes the altitude. The radius of
the Earth is 6378145 m. 0 and ¢ are the longitude and latitude,
respectively. V' is the Earth relative velocity. y is the flight
path angle of the Earth relative velocity. y is the azimuth
angle of the Earth relative velocity. m is the mass of the
vehicle. g = u/r” is the gravity acceleration, where y is Earth’s
gravitational constant. w denotes the Earth self-rotation rate.
The aerodynamic lift L and drag D are given as follows:

1
L= Epvzclsref’
(7)
1
D= EPV Cdsref’

where p = p, exp(—h/H) is the atmospheric density, where
py is the standard atmospheric pressure from the sea level.
S, is the reference area of the vehicle. C; and C;, are lift
and drag coeflicients which are dependent on the vehicle
configuration.
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2.2. Entry Trajectory Constraints. Typical entry trajectory
inequality path constraints for hypersonic vehicle include

k/pV>" < Qs (8)

|Lcosa + Dsina| < np,» 9)
|

EPV < Gmaxs (10)

where (8) is the heating rate at a stagnation point on the
surface of the vehicle. Equation (9) is the aerodynamic accel-
eration in the body-normal direction. Equation (10) is the
dynamic pressure. The heating limit value is Q,,,,, the load
factor limit value is ., and the dynamic pressure limit value
iS gnax- These are dependent on the vehicle configuration and
mission. Those three constraints are considered to be “hard”
constraints that should be enforced strictly.

2.3. Vehicle Description and Model Assumption. Common
Aero Vehicle (CAV) is one of the most representative hyper-
sonic entry vehicles with high lift-to-drag ratio. Relying on
aerodynamic control, this vehicle is able to glide without
power through the atmosphere. There are two types of CAV
in the report of Phillips [13], the low-lift CAV and the high-
lift CAV. The high-lift CAV, namely, CAV-H, is modeled here
to extend the trajectory optimization. The weight of CAV-H
is 907 kg, the area reference is 0.4839 m?, and the maximum
lift-to-drag ratio is about 3.5. In order to make derivation
analysis more intuitive and easier to follow, it is assumed that
the lift and drag coeflicients are only dependent on the angle
of attack. They can be expressed in the form as

Cl = kll(x + k12’ ( )
1

Cd = kdIOCZ + deOC + kd3’

where k;, = 0.04675, k;, = —0.10568, k;, = 0.000508, k5, =
0.004228, and k;; = 0.0161. Moreover, because the angle of
attack having the maximum lift-to-drag ratio is about 10 deg.,
the scope of angle of attack is extended to [5°, 20°]. The scope
of bank angle is limited within [-60°, 60°]. The limiting values
of heating rate, dynamic pressure, and normal load factor are
400 W/cm?, 60 kpa, and 2 g, respectively.

3. Trajectory-Oscillation Suppressing Scheme

The objective of trajectory-oscillation suppressing scheme is
to make the vehicle flying in a steady glide so that the heating
rate will not change sharply, which also will significantly
release the burden of control system. In this section, a
trajectory-oscillation suppressing scheme using the flight
path angle feedback is extended. Firstly, the command angle
of attack and bank angle are used to calculate the special flight
path angle that keeps the two-order derivative of flight path
angle zero. Then, the trajectory oscillation is suppressed via
regulating the longitudinal acceleration in negative feedback
form and keeping the lateral acceleration invariant. The
negative feedback signal is the deviation between the special
flight path angle and actual flight path angle. Simulation

results show that the scheme is capable of guiding the vehicle
into a steady condition in which the command angle of attack
and bank angle can generate enough vertical lift to sustain the
vehicle glide.

3.1. Generic Theory for the Oscillation Suppressing Scheme.
Let us pay attention to (5). While the flight path angle is
small and varies relatively slow, it is assumed that cosy = 1
and siny = y. Therefore, (5) without considering the earth
rotation is formulated as

.1 (Lcoso V2
=g (M (7)) 1

where L = (1/2)pV>C;S,s and g = u/r*. Substitute them into
(12), then, (13) is the derivative of (12) with respect to time.
Consider
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Substitute (1), (4), and the derivative of the atmospheric
density into (14). Then, substitute (14) into (13). The two-order
derivative of flight path angle can be rewritten as
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For reentry vehicle, the Mach number is much larger
than five. Therefore, the aerodynamic coefficients are often
assumed to be not dependent on the Mach number. Then, the
last term in (16) can be neglected.
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Now, consider that the vehicle is in a certain condition
of reentry process; if the command angle of attack and
bank angle are given, the special flight path angle that keeps
the two-order derivative of flight path angle zero can be
formulated as follows:

D*

Ym =

-mV?2 —mg — 2m*V2[r2pC}. S, cos 0 + 2m2 g[rpCp: S, cos 0 — 2m2 g% [V2pC}. S, cOS O

(Cz* cos o — Cj. sin oc'f)

+
VC;. cosa/H + Cj- cos ag/V +2mV [r2pS, ¢ — 2mg[rpVS,e¢ + 2mg?[V3pS,¢

D*

17)

+
—pV2Cp. S, cos 01/2H — pCp S, cos agr/2 — (V2 [r) m + mg — g?rm[V?

D*

+

where superscript * denotes the lift and drag coefficients
dominated by the command angle of attack and bank angle.
The notable difference from Yus work is that the special
fight path angle is derived from the three-dimensional
reentry dynamics and comprehensively considers all factors
including the derivatives of command angle of attack and
bank angle. In the later section, the special flight path
angle is easily calculated in the trajectory optimization when
considering the derivatives of command angle of attack and
bank angle as control variables. Then, trajectory oscillation
is suppressed via regulating the longitudinal acceleration in
negative feedback form and keeping the lateral acceleration
invariant. The flight path angle also tends to the special flight
path angle as soon as possible. Consider

Cy, cosa, = Cy cosoy + K(y = y,),
(18)
Cl2 sino, = Cll sin oy,

where C; is the actual lift coeflicient and C; is the command
lift coefficient dominated by the command angle of attack.
0, is the actual bank angle. o, is the command bank angle.
K is a negative feedback gain; it should be noted that a
better K will perform well in suppressing the trajectory
oscillation. Then, a numerical simulation of entry process
is carried out to evaluate the performance of the proposed
scheme.

3.2. Performance of the Trajectory-Oscillation Suppressing
Scheme. In this section, the proposed scheme is applied
into reentry simulation with constant command angle of
attack and bank angle. The simulation model, aerodynamic
data, and some key parameters are stated in Section 2.3. The
command angle of attack is 10 deg. The command bank angle
is also 10 deg. If the assumptions mentioned in Section 2.3 are

—pVAC}2 S, c0s 0/2Hg — pV?C. S, cOs /2 — mVA[r2g + mV2[r —mg’

held, the actual angle of attack and bank angle suppressing the
trajectory oscillation can be calculated as follows:

G, sing,
0, = arctan >
Cy, cosoy + K (y = y,)
19)
1 (Cj cosoy +K(y=1vm)
(X2 = k_ - klZ .
n cos 0,
The initial states are hy = 60km, 6, = 0deg., ¢, =
Odeg, V, = 7100m/s, y, = Odeg., and v, = 90deg.

All programs run on a personal computer with a 3.3 Ghz
processor and MATLAB 2008b. The solver of integral is ODE-
45. The simulation stops when the altitude reduces to 30 km.
Another worthy note is the negative feedback gain. After
some attempts, it is easy to find that the trajectory oscillation
will be suppressed perfectly when K is —16. Figure 1 shows
the three-dimensional view of reentry trajectories. Note that
the reference trajectory is the integral trajectory using the
constant angle of attack and bank angle. It is obvious that the
vehicle glides through the atmosphere in a great performance.
Moreover, the glide trajectory is similar to the reference
trajectory except that the trajectory oscillation is suppressed.

Figures 2 and 3 show the time histories of angle of attack
and bank angle, respectively. The actual angle of attack and
bank angle change substantially at the beginning of the flight
and converge into the command angle of attack and bank
angle quickly. Therefore, it is easy to conclude that applying
the proposed scheme will guide the vehicle into a special
condition in which the command angle of attack and bank
angle will keep the vehicle steady glide. Another point should
be noted is that the strict mathematical proof of convergence
for this proposed method is absent. The future work will focus
on this point.
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FIGURE 1: Three-dimensional view of trajectory.

4. Steady Glide Dynamic Modeling and
Trajectory Optimization

In this section, the steady glide trajectory optimization is
carried out to find the optimal controls satisfying path and
final constraints. Firstly, a new steady glide dynamic mod-
eling is formulated via integrating the trajectory-oscillation
suppressing scheme into the motion dynamics while the
intrinsic properties remain. Secondly, the steady glide trajec-
tory optimization is formulated based on this new modeling.
The derivatives of command angle of attack and bank angle
used to determine the special flight path angle are considered
as control variables, and a performance index used to provide
the stable controls is selected. Because steady glide trajectory
optimization is a typical control problem whose solutions
change rapidly in certain regions or are discontinuous,
the Hp-adaptive Gaussian quadrature collocation method is
naturally selected to transfer it into a nonlinear programming
problem. Finally, two numeric examples with and without
bank reversal are used to evaluate the performance and
applicability of the new method. In order to demonstrate its
superior performance in computational efficiency, a compar-
ison with the traditional method is also provided. Moreover,
a comparison between the optimal trajectory and integral
trajectory is carried out to further verify the feasibility of the
solution provided by the pseudospectral solver.

4.1. Steady Glide Dynamic Modeling. In previous section,
the trajectory-oscillation suppressing scheme is presented
in Section 3.1. The performance of this scheme is eval-
uated by the simulation in Section 3.2. Now, the steady
glide dynamic modeling is formulated via integrating the
trajectory-oscillation suppressing scheme into the three-
dimensional reentry dynamics in Section 2.1. Consider
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where L, is the actual aerodynamic lift dominated by the
command angle of attack, &;, ¢, are the derivatives of
command angle of attack and bank angle, and «,, 0,, and o,
are defined in previous sections. If &; and ¢, are given, there
exists a specific steady glide trajectory determined by the
steady glide dynamic modeling. Thus, steady glide trajectory
optimization is continued based on this modeling in the
next section so as to find the optimal control satisfying path
and final constraints. Another point that should be noted is
that there is existing analytical solution for the actual angle
of attack and bank angle because of the simplification of
aerodynamic coeflicients. However, if complex aerodynamic
coefficients are considered in the steady glide trajectory
optimization, it only needs to regard the complex function of
aerodynamic coeflicients as the equality constraint in optimal
process.

4.2. Hp-Adaptive Gaussian Quadrature Collocation Method.
Hp-adaptive Gaussian quadrature collocation method is an
efficient tool for solving multiple-phase optimal control
problems using variable-order Gaussian quadrature collo-
cation methods [14, 15]. Because an adaptive mesh refine-
ment scheme [16, 17] is implemented to achieve a specified
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FIGURE 2: Histories of angle of attack and bank angle.

accuracy, this method performs well in solving the OCP
whose solutions change rapidly in certain regions or are
discontinuous. In each mesh interval, the dynamics and
constraints are transferred into a set of nonlinear algebraic
constraints by employing a Legendre-Gauss-Radau quadra-
ture collocation method. Therefore, the continuous-time
optimal control problem is transferred to a large sparse
nonlinear programming problem that is solved using well-
established techniques. This method takes the advantage of
the exponential convergence in regions where the solution is
smooth and places mesh points only near potential disconti-
nuities or in regions where the solution changes rapidly.

Steady glide trajectory optimization problem for high
lift-drag ratio reentry vehicle is a complex constrained
continuous-time optimal control problem. What is more,
there exist several regions where the state and control vari-
ables change rapidly. At the beginning of the reentry, because
the vehicle has no enough control capacity at high altitude,
the altitude decreases rapidly in this phase. When the vehicle
decreases to an appropriate height in which the vehicle has
enough vertical lift to sustain the vehicle glide, the state and
control variables also change rapidly. At the end of flying, it
only takes a short time to steer the vehicle to meet the final
requirements. The state and control variables also change
rapidly. However, the vehicle glides in a steady and smooth
condition for most of the flight duration. Naturally, Hp-
adaptive Gaussian quadrature collocation method is suitable
for solving the steady glide trajectory optimization problem.
The later numerical results also show that Hp-adaptive
Gaussian quadrature collocation method performs well in
various glide trajectory optimizations.

4.3. Numerical Example of Trajectory Optimization without
Bank Reversal. In this subsection, Hp-adaptive Gaussian
quadrature collocation method is applied to solve the steady
glide trajectory optimization problem. Meanwhile, a compar-
ison with the traditional entry trajectory optimization using

the dynamics of motion in (1)~(6) is also provided so as to
further demonstrate the superior performance of the new
method. Some of the simulation parameters are the same as
those mentioned in above sections. For steady glide trajectory
optimization, the motion dynamics are formulated in (18).
In optimization process, the derivatives of command angle
of attack and bank angle are chosen as the control variables,
and the angle of attack and bank angle are considered as
procedure variables. In order to make the trajectory state
and optimal control as smooth and stable as possible, the
performance index is selected as follows:

ty

J= J K6 + Ko7 dt, (21)

to

where K, and K, are control weighting coeflicients. The limits

on actual angle of attack and actual bank angle are considered
as path constraints and presented as follows:

G, sino;
Oin < arctan < Opyavs
i Cy, cosay + K(y = y,) max
(22)
. L C11C05‘71+K(Y—Ym)_k <¢x
min — kl1 cosa, 12 | = “max-

For the traditional trajectory optimization, the control vari-
ables are the derivatives of angle of attack and bank angle,
and the performance index is the weighted square sum
of those derivatives. The initial and final conditions for
both methods are listed in Table 1. It should be noted that
the traditional trajectory optimization will fail to converge
due to considering too many final constraints. So the final
longitude is set to be free. However, the new method is
capable of addressing the problem with all final constraints.
Therefore, the final longitude for such optimization is fixed
at the optimal longitude provided by the traditional method.
Another point that should be noted is that both optimal
results come from the same initial guess.
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FIGURE 3: Numeric results of Steady Glide Trajectory Optimization without Bank Reversal.
TABLE 1: Initial and final conditions for different methods.
Initial condition
0, (deg.) @, (deg.) h, (m) V, (m/s) ¥, (deg.) Y, (deg.)
Traditional method 0 0 70000 6900 0 65
New method 0 0 70000 6900 0 65
Final condition
Gf (deg.) o (deg.) hf (m) vy (m/s) Vs (deg.) v (deg.)
Traditional method — 0 30000 2400 0 —
New method 156.6 0 30000 2400 0 —

In the procedure of optimization, finite difference method
is used to provide the derivatives of nonlinear programming
problem for both optimizations. Because the flight path angle
is so sensitive, it is necessary to set the step of finite difference
method to be a small value. The step is then set at 107°. In

addition, the feasible and optimal tolerances are set at 107%,
respectively.

Numeric results for the case without bank reversal are
presented in Figure 3. As seen from those figures, it is appar-
ent that a perfect steady glide optimal trajectory satisfying all
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TABLE 2: Optimal result by SNOPT.

Mesh iteration Node  Feasible Optimal Maximum relative error for each mesh Time consumption in each iteration Time (sec)
Traditional method
1 41 92E-15 6.8E-9 0.1483900 3717
2 287 34E-15 32E-9 1.8234E -5 88.02 220,04
3 473  23E-15 6.7E-9 5.6194E -7 82.58
4 498 23E-15 7.5E-9 9.3151E -9 14.27
New method
1 41 51E-15 37E-9 0.0193110 1.61
2 209 25E-15 45E-9 0.0015244 24.91 82.06
3 278 22E-15 87E-9 3.9624E -7 41.56
4 285 19E-15 1.0E-9 9.0488E -9 13.98

constraints is provided via the new method, around which
the entry trajectory provided by the traditional method shows
some damped oscillation with a decreasing period. Moreover,
the angle of attack and bank angle provided by the new
method are very smooth and stable except at the beginning
and end of the flight. The angle of attack and bank angle
provided by the traditional method also appear to oscillate
around that provided by the new method. It should be noted
that because the angle of attack, bank angle, and the flight
path angle are plotted over a large time scale (it is from 0
to 4000 sec), they seem to vary very sharply at the end of
flight. In fact, those angles vary very slowly and completely
meet the control requirements. The derivative of flight path
angle is less than 1deg./s. Another significant phenomenon
depicted in Figures 3(h), 3(i), and 3(j) is that the path
constraints generated by the traditional method are much
larger than that provided by the new method due to the
trajectory oscillation. It is obvious that the heating rate for
the traditional method is much larger than the limit (the
maximum is up to 430 W/cmz), but the one for the new
method is within the safe range. The distribution of mesh
nodes for both methods is shown in Figure 4. It is clear that
the initial mesh nodes are the same for both methods. After
several iterations, the mesh nodes for the traditional method
are distributed with a high density, but the ones for the new
method are distributed sparsely.

Table 2 shows the statistics of optimal results by the NLP
solver (SNOPT [18]). It is apparent that it only takes 4 times of
mesh refinement to achieve the required feasible and optimal
tolerances for both methods. However, the number of total
nodes for the traditional method is much more than that for
the new method, which is 498 for the traditional method
but 285 for the new method. Moreover, because the time
consumption will increase exponentially with the increase
in the number of total nodes, the computational efficiency
has been significantly improved for the new method. It only
costs 82.06 sec to finish the optimization for the new method,
which is only one-third of that for traditional method.
Therefore, it is concluded that the new method not only is
capable of solving the problem that the traditional method
cannot solve but also has high computational efficiency
since it will use less nodes to achieve a higher accuracy.
Importantly, it will also provide more stable and safe optimal

4
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FIGURE 4: Distribution of mesh nodes (blue: new method, red:
traditional method).

entry trajectory. It should be noted that it only takes half the
time if “forward-difference” or “back-difference” is used in
optimization. Applying more efficient resources is another
way to reduce the computing time.

4.4. Numerical Example of Trajectory Optimization with Bank
Reversal. Generally speaking, the objective of steady glide
trajectory optimization is to provide reference trajectory for
traditional entry guidance such as linear-quadratic regulator
tracking laws. Those laws focus on tracking only the reference
longitudinal profile. The bank reversal is used to null the
lateral errors. Meanwhile, reentry flight with bank reversal
will significantly increase the trajectory shaping capability
for the vehicle and provide more smooth control commands
except when the bank reversal happened. Therefore, in order
to provide the available reference trajectory, steady glide
trajectory optimization with bank reversal is considered in
this subsection. It is assumed that there is only one bank
reversal during the reentry flight. Therefore, the optimal
control problem is divided into two phases. And the signs
of the bank angles before and after the bank reversal are
opposite. The interior point constraints used to maintain
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TaBLE 3: Different terminal states for various cases.

Cases Longitude (deg.) Latitude (deg.) Velocity (m/s) Flight path angle (deg.)
Case 1 155 0 2400 0

Case 2 165 0 2400 0

Case 3 175 0 2400 0

Case 4 185 0 2400 0

Case 5 195 0 2400 0

TABLE 4: Optimal results by SNOPT.

Mesh iterations Total node Feasible Optimal Maximum relative error for each mesh Time (sec)
7 179 2.6E—-15 7.8E -9 9.5388E — 7 170.77

7 188 2.5E-15 9.2E -8 6.8891E — 7 168.96

7 196 34E - 15 6.1E -8 1.9260E — 7 204.70

4 192 32E-15 6.4E — 8 8.0681E — 7 96.56

5 187 2.6E - 15 8.0E -8 6.5696E — 7 135.68

continuity in the state at the phase boundaries are presented
as

th=t,

r(t) =r(t),

Ot =0(t),

o(t) =9(t),

v(t) =v(t), (23)
y(t) =y(),

y () =y (),

a(t) =a(t),

a(t)=-a(t),

where t denotes the switching time for two phases. The
performance index is stated in (21), and the motion dynamics
are also stated in (20). All simulation environments are the
same as that in Section 4.1. Initial states for glide vehicle are
hy = 70000m, 6, = Odeg., ¢, = 0deg., V;, = 7100 m/s,
Yo = 0deg., and v, = 90 deg. In addition, various cases for
different cross-ranges are done to evaluate the applicability of
the new method. The final longitude, latitude, velocity, and
flight path angle are listed in Table 3.

Numeric results for the cases with bank reversal are pre-
sented in Figure 5. Obviously, the new method is applicable
for the cases with the bank reversal in different cross-ranges.
All trajectories are optimal steady glide trajectories and meet
all constraints. And it is very easy to find the bank reversal
in the time history of bank angle. And another point that
should be noted is that the magnitudes of the bank angle
vary more stably and linearly than that without bank reversal.
The meshes for various cases are placed perfectly in regions
where the state and control change substantially. Additionally,
the maximum heating rate in case 1 reaches the limit. The

statistics for optimal results are presented in Table 4. It has
been seen that the numbers of mesh iterations are 7 for case
1, case 2, and case 3, 4 for case 4, and 5 for case 5. The total
node for various cases is about 190. All tolerances satisfy the
stop criteria that are set at the beginning of optimization.
From the statistics of CPU time, it only takes 2-3min to
successfully finish the steady glide optimization with high
numerical precision.

4.5. Verification of Feasibility for the Pseudospectral Solution.
According to the results obtained above, it is not difficult to
conclude that the proposed scheme not only performs well
in suppressing the trajectory oscillation but also has high
efficiency in three-dimensional steady glide optimization
with and without bank reversal. However, there are three
reasons that an elementary check should be conducted to
validate the solution provided by the pseudospectral method.
First, the feasible tolerance listed in Table 3 is for NLP
[19]. Second, according to the research in [20], Hp-adaptive
Gaussian quadrature collocation method has some deficiency
that it is unable to solve some special simple problems [20].
Third, the solution provided by the pseudospectral method
meets dynamics only at a limited number of nodes. Therefore,
a comparison between the optimal trajectories and integral
trajectories is carried out to verify the feasibility of the
resulting optimal trajectories.

Figure 6 shows the results comparing between the opti-
mal trajectories provided by the pseudospectral solver and
integral trajectories generated by integrating the equations of
motion using the optimal controls presented in Section 4.3
with variable step (the min step size is 0.001 sec and the max
step size is 0.1sec). The comparison includes altitude, flight
path angle, velocity, and ground footprint. It is apparent that
those trajectories are practically the same even though the
flight path angle varies within the range from —0.5 to 0.1 deg.
The statistic on final errors for various integral trajectories
is presented in Table 5. The maximal error for altitude
is 2.5193m, the maximal error for velocity is 0.1714 m/s,
the maximal error for flight path angle is —0.003006 deg.,
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FIGURE 5: Numeric results of Steady Glide Trajectory Optimization with Bank Reversal.
TaBLE 5: Final errors for various integral trajectories.

Cases Altitude (m) Velocity (m/s) Flight path angle (deg.) Longitude (deg.) Latitude (deg.)
Case 1 0.2858 0.1398 —-0.001026 0.002742 0.002329
Case 2 2.5193 0.1714 0.001847 0.002007 0.001763
Case 3 1.3820 0.1538 —-0.001858 0.002772 0.001763
Case 4 2.1876 0.0058 0.001411 0.000452 0.001763
Case 5 -1.1173 0.1686 —0.003006 0.002534 0.001690

the maximal error for longitude is 0.002742 deg., and the
maximal error for latitude is 0.002329 deg. Obviously, the
steady glide trajectory optimal control problem formulated
in this paper can be solved by Hp-adaptive pseudospectral
solver with a very high efficiency. And the solution is of high
precision that it is suitable to be considered as the reference
trajectory for the tracking reentry guidance law.

5. Conclusion

In this paper, a new steady glide dynamic modeling for high
lift-to-drag ratio reentry vehicle is presented via extending
the trajectory-oscillation suppressing scheme into three-
dimensional reentry dynamics. Simulation shows that this
scheme performs well in trajectory-oscillation suppressing.
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Based on this new modeling, a study on steady glide
trajectory optimization with multiple final constraints is

investigated. The derivatives of command angle of attack
and bank angle are chosen as the control variables. And the
weighted square sum of those derivatives is selected as the
performance index so as to achieve the smoothest controls.

Then, bec

ause the steady glide trajectory optimization is

a typical optimal control problem whose solutions change

rapidly in

certain regions or are discontinuous, Hp-adaptive

Gaussian quadrature collocation method is selected to solve
it. Two classical optimization examples (with and without
bank reversal) are conducted to show that the new method
performs well in providing optimal steady glide trajectory
even considering multiple final constraints. A comparison
with the traditional method is done to demonstrate that the

new method significantly improves the computational effi-
ciency since the steady glide trajectory can be discretized with
fewer nodes. And a comparison between optimal trajectory
and integral trajectory is also carried out to verify that the
solution provided by the pseudospectral method is of very
high accuracy.
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