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Complex fluctuations within physiological signals can be used to evaluate the health of the human body. This study recruited four
groups of subjects: young healthy subjects (Group 1, 𝑛 = 32), healthy upper middle-aged subjects (Group 2, 𝑛 = 36), subjects with
well-controlled type 2 diabetes (Group 3, 𝑛 = 31), and subjects with poorly controlled type 2 diabetes (Group 4, 𝑛 = 24). Data
acquisition for each participant lasted 30 minutes. We obtained data related to consecutive time series with R-R interval (RRI) and
pulse transit time (PTT). Using multiscale cross-approximate entropy (MCE), we quantified the complexity between the two series
and thereby differentiated the influence of age and diabetes on the complexity of physiological signals. This study used MCE in the
quantification of complexity between RRI and PTT time series. We observed changes in the influences of age and disease on the
coupling effects between the heart and blood vessels in the cardiovascular system, which reduced the complexity between RRI and
PTT series.

1. Introduction

Multiple temporal and spatial scales produce complex fluctu-
ations within the output signals of physiological systems [1].
In recent studies on translational medicine [1–5], researchers
have found that implicit information within the complex
fluctuations of physiological signals can be used to evaluate
health conditions.

Many recent studies [2, 3] have employed nonlinear
dynamical analysis to quantify the complexity of physiolog-
ical signals in the cardiovascular system. Costa et al. [2]
were the first to propose multiscale entropy (MSE) as an
approach to analyze the R-R interval (RRI) series of healthy
individuals and discovered that the RRI series of young
individuals were more complex than that of elderly people.
Wu et al. [3] adopted the same method in an examination of
pulse wave velocity (PWV) and found that the complexity of

these series decreased with aging and/or the progression of
diabetes. In addition to time and space, “coupling behavior”
in the physiological system also affects the complexity of
individual physiological signals, such as RRI or PWV [6].
Drinnan et al. [7] indicated that pulse transit time (PTT)
is influenced by RRI and other cardiovascular variables
and used cross-correlation functions to quantify the phase
relationship between the two time series signals in the
cardiovascular system. They established that there was a
strong correlation betweenPTT andRRI variations in healthy
subjects. However, Pincus [8] claimed that cross-approximate
entropy (Co ApEn) is more effective than cross-correlation
functions in the evaluation of complexity between the two
series.

Despite the fact that Co ApEn has been widely applied
to evaluate the complexity between two time series [9–
12], single-scale entropy values are not necessarily able to
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identify the dynamic complexity of physiological signals.
Therefore, this study was an attempt to use a multiscale
Co ApEn (MCE) [13] to quantify the complexity between
the synchronous time series of cardiac functions and the
degree of atherosclerosis.We assumed that complexity would
exist in RRI and PTT series of the cardiovascular system
due to the mutual interaction between the heart and blood
vessels. Moreover, we assumed that complexity reduces with
aging and the influence of disease. We used MCE to develop
an index for the quantification of complexity between the
two time series capable of distinguishing between healthy
individuals and those with diabetes.

2. Methods

2.1. Study Design. This study evaluated the influences of age
and diabetes on RRI and PTT. Considering that RRI and PTT
are nonlinear, cardiovascular variables, we tested the applica-
bility of MCE in the study subjects and investigated whether
this dynamic parameter could provide further information
related to the clinical control of diabetes.

2.2. Subject Populations and Experiment Procedure. Between
July 2009 and March 2012, four groups of subjects were
recruited for this study: young healthy subjects (Group 1, age
range: 18–40, 𝑛 = 32), healthy upper middle-aged subjects
(Group 2, age range: 41–80, 𝑛 = 36), subjects with well-
controlled type 2 diabetes (Group 3, age range: 41–80, 𝑛 =

31, 6.5% ≦ glycosylated hemoglobin (HbA1c) < 8%), and
subjects with poorly controlled type 2 diabetes (Group 4, age
range: 41–80, 𝑛 = 24, HbA1c ≧ 8%) [3]. The other 22 subjects
were excluded due to incomplete or unstable waveform data
acquisition. All diabetic subjects were recruited from the
HualienHospital DiabeticOutpatient Clinic; healthy controls
were recruited from a health examination program at the
same hospital. None of the healthy subjects had personal
or family history of cardiovascular disease. Type 2 diabetes
was diagnosed as either fasting sugar higher than 126mg/dL
or HbA1c ≧ 6.5%. All diabetic subjects had been receiving
regular treatment and follow-up care in the clinic for more
than two years. Regarding the use of medications, there was
no significant difference in the type (i.e., antihypertensive,
lipid-lowering, and hypoglycemic medications), dosage, and
frequency among the well-controlled and poorly controlled
diabetic subjects.This studywas approved by the Institutional
Review Board (IRB) of Hualien Hospital and National Dong
Hwa University. All subjects refrained from caffeinated bev-
erages and theophylline-containing medications for 8 hours
prior to each hospital visit. Each subject gave informed
consent, completed questionnaires on demographic data and
medical history, and underwent blood sampling prior to data
acquisition. Blood pressure was obtained once from the left
arm of supine subjects using an automated oscillometric
device (BP3AG1,Microlife, Taiwan) with a cuff of appropriate
size, followed by the acquisition of waveform data from
the second toe using a six-channel ECG-PWV [14, 15] as
previously described.

2.3. Data Collection and Calculation of RRI and PTT Series.
All subjects were permitted to rest in a supine position in a
quiet, temperature-controlled room at 25 ± 1∘C for 5 minutes
prior to subsequent 30-minute measurements. Again, a good
reproducibility of six-channel ECG-PWV system [14, 15]
was used for waveform measurement from the second toe.
Infrared sensors were simultaneously applied to points of ref-
erence for the acquisition of data. Electrocardiogram (ECG)
measurementswere obtained using the conventionalmethod.
After being processed through an analog-to-digital converter
(USB-6009 DAQ, National Instruments, Austin, TX USA) at
a sampling frequency of 500Hz, the digitized signals were
stored on a computer. Because of its conspicuousness, the R
wave in Lead II was selected as a reference point: the time
interval between the R-wave peak of the jth cardiac cycle to
the footpoint of the toe pulse from the left foot was defined as
PTT(j); the time difference between the two continues peak
of ECG R wave was defined as RRI(i), as shown as Figure 1.

Using ECG and photoplethysmography (PPG), we
obtained the RRI series {RRI(𝑖)} = {RRI(1),RRI(2), . . . ,
RRI(1000)} and PTT series {PTT(𝑗)} = {PTT(1),PTT(2), . . . ,
PTT(1000)} from each subject. All series were retrieved from
1000 consecutive, stable ECG tracings and PPG toe pulse
signals synchronous with the cardiac cycle [14].

Due to a trend within physiological signals [6, 16],
nonzeromeansmay be included; therefore, we used empirical
mode decomposition (EMD) [17] to deconstruct the {RRI(𝑖)}
and {PTT(𝑗)} series, thereby eliminating the trend from
the original series. We then normalized the {RRI(𝑖)} and
{PTT(𝑗)} series, as shown in (1). In these equations, SD

𝑥
and

SD
𝑦
represent the standard deviations of series {RRI(𝑖)} and

{PTT(𝑗)}, respectively. Complexity analysis was performed
on the normalized results, {RRI(𝑖)} and {PTT(𝑗)}. Consider

{RRI (𝑖)} =

{RRI (𝑖)}
SD
𝑥

,

{PTT (𝑗)} =

{PTT (𝑗)}

SD
𝑦

.

(1)

2.4. Multiscale Cross-Approximate Entropy (MCE) Using Nor-
malized RRI and PTT Series Together. Previous studies [1–3,
18] have employed MSE to overcome comparison difficulties
at a scale factor of 1, when physiological complexity is
reduced due to age or disease. However, other research [7]
has indicated a strong relationship between variations in PTT
series and RRI series; therefore, we used MCE to investigate
the interactions between PTT and RRI.

2.4.1. Coarse-Grained Process and Cross-Approximate Entropy
(Co ApEn). MSE involves the use of a scale factor 𝜏 (𝜏 =

1, 2, 3, . . . , 𝑛), which is selected according to a 1D series of
consecutive cycles. This factor enables the application of
a coarse-graining process capable of deriving a new series
prior to the calculation of entropy in each new individ-
ual series [1–3, 18]. Using this approach, we performed
coarse-graining on the normalized 1D consecutive cycles of
the {RRI(𝑖)} and {PTT(𝑗)} series based on scale factor 𝜏,
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Figure 1: 1000 consecutive data points from ECG signals and PPG signals: PTT(j) refers to the time interval between the R-wave peak of the
jth cardiac cycle to the footpoint of the toe pulse from the left foot.

thereby obtaining the series {RRI(𝜏)} and {PTT(𝜏)} as shown
in (2). We then calculated entropy as follows:

RRI(𝑢)(𝜏) = 1

𝜏

𝑢𝜏

∑

𝑖=(𝑢−1)𝜏+1

RRI (𝑖) , 1 ≤ 𝑢 ≤

1000

𝜏

,

PTT(𝑢)(𝜏) = 1

𝜏

𝑢𝜏

∑

𝑗=(𝑢−1)𝜏+1

PTT (𝑗) , 1 ≤ 𝑢 ≤

1000

𝜏

.

(2)

Previous studies [19, 20] have used Co ApEn, an
improved analysis method of approximate entropy, to ana-
lyze two synchronous physiological time series, define their
relationship, and calculate the complexity within that rela-
tionship [8, 21]. This method utilizes the dynamic changes
between the two series to evaluate the physiological system.
Similarities between changes in the two series can be used
to observe the regulatory mechanisms in the physiological
system. However, many studies [8, 19–21] presented their
results at a scale factor of 1. To obtain a deeper understanding
of the complexity of the physiological system, we utilized
coarse-grained {RRI(𝜏)} and {PTT(𝜏)} series to calculate the
Co ApEn at each scale, using (7). We refer to this approach
as multiscale cross-approximate entropy (MCE). The details
of the algorithm are as follows [22].

(1) For given𝑚, for two sets of𝑚-vectors,

x (𝑖) ≡ [RRI(𝜏) (𝑖) RRI(𝜏) (𝑖 + 1) ⋅ ⋅ ⋅ RRI(𝜏) (𝑖 + 𝑚 − 1)] ,

𝑖 = 1, 𝑁 − 𝑚 + 1,

y (𝑗)

≡ [PTT(𝜏) (𝑗) PTT(𝜏) (𝑗 + 1) ⋅ ⋅ ⋅ PTT(𝜏) (𝑗 + 𝑚 − 1)] ,

𝑗 = 1, 𝑁 − 𝑚 + 1.

(3)

(2) Define the distance between the vectors x(𝑖), y(𝑗)
as the maximum absolute difference between their
corresponding elements, as follows:

𝑑 [x (𝑖) ,y (𝑗)]

=

𝑚max
𝑘=1

[






RRI(𝜏) (𝑖 + 𝑘 − 1) − PTT(𝜏) (𝑗 + 𝑘 − 1)






] .

(4)

(3) With the given x(𝑖), find the value of 𝑑[x(𝑖),y(𝑗)]
(where 𝑗 = 1 to𝑁 –𝑚 + 1) that is smaller than or equal
to r and the ratio of this number to the total number
of𝑚-vectors (𝑁 –𝑚 + 1). That is,

let𝑁𝑚RRI(𝜏)PTT(𝜏)(𝑖) = the number of y(𝑗) satisfy-
ing the requirement 𝑑[x(𝑖),y(𝑗)] ≦ 𝑟, then

𝐶
𝑚

RRI(𝜏)PTT(𝜏) (𝑖) =
𝑁
𝑚

RRI(𝜏)PTT(𝜏) (𝑖)

𝑁 − 𝑚 + 1

. (5)

C𝑚RRI(𝜏)PTT(𝜏)(𝑖) measures the frequency of the
m-point PTT(𝜏) pattern being similar (within a
tolerance of ±𝑟) to the 𝑚-point RRI(𝜏) pattern
formed by x(𝑖).

(4) Average the logarithm of 𝐶
𝑚

RRI(𝜏)PTT(𝜏)(𝑖) over 𝑖 to
obtain 𝜙

𝑚

RRI(𝜏)PTT(𝜏)(𝑟), as follows:

𝜙
𝑚

RRI(𝜏)PTT(𝜏) (𝑟) =
1

𝑁 − 𝑚 + 1

𝑁−𝑚+1

∑

𝑖=1

ln𝐶𝑚RRI(𝜏)PTT(𝜏) (𝑖) . (6)

(5) Increase 𝑚 by 1, and repeat steps 1∼ 4 to obtain
𝐶
𝑚+1

RRI(𝜏)PTT(𝜏)(𝑖), 𝜙
𝑚+1

RRI(𝜏)PTT(𝜏)(𝑟).
(6) Finally, take Co ApEnRRI(𝜏)PTT(𝜏)(𝑚, 𝑟) = lim

𝑁→∞

[𝜙
𝑚

RRI(𝜏)PTT(𝜏)(𝑟) − 𝜙
𝑚+1

RRI(𝜏)PTT(𝜏)(𝑟)] and for 𝑁-point
data, the estimate is

Co ApEnRRI(𝜏)PTT(𝜏) (𝑚, 𝑟,𝑁) = 𝜙
𝑚

RRI(𝜏)PTT(𝜏) (𝑟)

− 𝜙
𝑚+1

RRI(𝜏)PTT(𝜏) (𝑟) ,
(7)
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where 𝑚 represents the chosen vector dimension, 𝑟
represents a tolerance range, and𝑁 is the data length.
To ensure efficiency and accuracy of calculation, the
parameters of this study were set at 𝑚 = 3, 𝑟 = 0.15,
and𝑁 = 1000.

2.4.2. RRI and PTT-Based Multiscale Cross-Approximate
Entropy Index (MCEI) for Small and Large Scales. The values
of Co ApEnRRI(𝜏)PTT(𝜏)(𝜏)were obtained from a range of scale
factors between 1 and 20 using theMCEdata analysismethod.
The values of Co ApEnRRI(𝜏)PTT(𝜏)(𝜏) between scale factors
1 and 5 were defined as small scale; those between scale
factors 6 and 20 were defined as large scale [23]. The sum
of MCE between scale factors 1 and 5 was MCEISS in (8),
while the sum of MCE between scale factors 6 and 20 was
MCEILS in (9). Defining and calculating these two indices of
multiscale cross-approximate entropy enables the assessment
and quantification of complexity in RRI and PTT between
different scale factors. Consider

MCEISS =
5

∑

𝜏=1

Co ApEnRRI(𝜏)PTT(𝜏) (𝜏) , (8)

MCEILS =
20

∑

𝜏=6

Co ApEnRRI(𝜏)PTT(𝜏) (𝜏) . (9)

2.5. Multiscale Entropy Index (MEI) Using RRI or PTT Only.
Sample entropy (𝑆

𝐸
) was used to quantify the complexity of

RRI or PTT series in twenty scales. The values of 𝑆
𝐸
between

scale factors 1 and 5were defined as small scale, whereas those
between scale factors 6 and 20 were defined as large scale.The
sum of MSE in small scale was defined as MEISS, while the
sum of MSE in large scale was MEILS [3].

2.6. Statistical Analysis. Average values were expressed as
mean ± SD. Significant differences in anthropometric, hemo-
dynamic, and computational parameters (i.e., RRI, PTT,
MCEISS, and MCEILS) between different groups were deter-
mined using an independent sample 𝑡-test. Statistical Package
for the Social Science (SPSS, version 14.0 for Windows) was
used for all statistical analysis. A 𝑃 value less than 0.05 was
considered statistically significant.

3. Results

3.1. Comparison of Basic Demographic and Cardiovascular
Parameters in Different Groups. Table 1 presents the basic
demographic parameters of Group 1 and Group 2, showing
no significant difference in major demographic parameters
except for age, HbA1c levels, and body height. Significant
differences were observed in body mass index (BMI), waist
circumference, systolic blood pressure (SBP), pulse pressure
(PP), HbA1c levels, and fasting blood sugar level between
Group 2 and Group 3 (Group 3 > Group 2). In addition,
significant differences were also observed in HbA1c levels,
triglycerides, and fasting blood sugar level between Group 3
and Group 4.

3.2. MCEI
𝐿𝑆

as Parameters Indicative of Age and Diabetic
Control. There were no significant differences in the val-
ues of 𝑆

𝐸
(RRI) and 𝑆

𝐸
(PTT) at any scale (Figure 2), or

in MEISS(RRI), MEILS(RRI), MEISS(PTT), and MEILS(PTT)
among the 4 groups (Table 1).

Figure 3 summarizes the results of the MCE analysis
for the values of RRI and PTT time series over 1000
identical cardiac cycles obtained from the four groups of
participants. At a scale factor of 1 (𝜏 = 1), the magnitudes
of Co ApEnRRI(1)PTT(1)(1) ranked as follows: Group 1/Group
3/Group 4/Group 2. The value of Co ApEnRRI(𝜏)PTT(𝜏)(𝜏)
began dropping in all groups at a scale factor of 2 (𝜏 = 2).

Beginning at a scale factor of 3 (𝜏 = 3), the reduction in
Co ApEnRRI(𝜏)PTT(𝜏)(𝜏) in Group 1 slowed. However, in the
other groups, the values continued decreasing rapidly. Begin-
ning at a scale factor of 5 (𝜏 = 5), the Co ApEnRRI(𝜏)PTT(𝜏)(𝜏)
of Group 2 achieved stability with only minor fluctuations.
The decline in Co ApEnRRI(𝜏)PTT(𝜏)(𝜏) in Group 4 remained
greater than that in Group 3.When plotted against large scale
factors (i.e., 6–20), the magnitudes of Co ApEnRRI(𝜏)PTT(𝜏)(𝜏)
ranked as follows: Group 1, Group 2, Group 3, and Group 4.

MCEISS only presented a significant difference between
Groups 1 and 2 (10.18 ± 0.52 versus 9.42 ± 0.70, 𝑃 < 0.01).The
differences among Groups 2, 3, and 4 did not reach statistical
significance. In comparison, MCEILS presented significant
differences among all four of the groups (Group 1 versus
Group 2: 28.30 ± 1.26 versus 25.96 ± 1.99, 𝑃 < 0.01; Group
2 versus Group 3: 25.96 ± 1.99 versus 23.14 ± 1.85, 𝑃 < 0.01;
Group 3 versus Group 4: 23.14 ± 1.85 versus 20.13 ± 1.73,
𝑃 < 0.01) (Table 1).

4. Discussion

Since Pincus and Singer’s study [19], Co ApEn has generally
been used to reveal similarities between two synchronous,
consecutive variables within a single network. This approach
has also been used to research the complexity of physio-
logical signals [12, 19]; however, the influence of multiple
temporal and spatial scales creates complexity. Thus, this
study employed multiscale Co ApEn (MCE) to evaluate the
complexity between the cardiac function-related parameter,
RRI, and the atherosclerosis-related parameter, PTT, in the
cardiovascular systems of various subject groups.

Previous studies [1, 2, 18] have also indicated that physio-
logical signals are generally nonlinear and exist in nonstation-
ary states. The use of MSE to quantify complexity within the
times series of a single type of physiological signal (i.e., RRI
or PWV) demonstrated that the complexity of physiological
signals decreases with aging [2] or with the influence of
diabetes [3]. In this study, although we used MSE to quantify
complexity of RRI or PTT series, there were no significant
differences in MEISS(RRI), MEILS(RRI), MEISS(PTT), and
MEILS(PTT) between well-controlled and poor-controlled
diabetic subjects. Therefore, the influence of the degree of
glycemic control on complexity of physiological signalsmight
not be evaluated efficiently according to the use ofMSE when
analyzing single time series (i.e., RRI or PTT).

Drinnan et al.’s study [7] stated that cardiovascular
variables such as RRI and PTT are regulated by complex
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Table 1: Comparisons of demographic, anthropometric, and serum biochemical parameters, MCEISS, and MCEILS among different subject
populations.

Parameters Group 1 Group 2 Group 3 Group 4
Age, year 26.56 ± 9.60 58.19 ± 8.29

∗∗

62.74 ± 0.55 60.58 ± 7.68

Body height, cm 169.38 ± 7.92 162.83 ± 6.85
∗∗

161.56 ± 8.97 161.17 ± 7.28

Body weight, kg 66.38 ± 12.21 65.22 ± 11.55 69.40 ± 11.37 73.75 ± 14.86

BMI, kg/m2
23.02 ± 3.27 24.55 ± 3.90 26.52 ± 3.21

†

28.42 ± 5.47

Waist circumference, cm 81.20 ± 11.09 82.94 ± 11.00 93.33 ± 9.37
††

97.46 ± 3.77

SBP, mmHg 116.50 ± 12.89 115.67 ± 14.12 128.32 ± 16.08
††

128.46 ± 16.36

DBP, mmHg 71.44 ± 6.70 74.75 ± 9.93 75.58 ± 9.63 78.21 ± 9.89

PP, mmHg 42.97 ± 0.96 40.92 ± 9.29 52.74 ± 14.34
††

50.25 ± 13.12

HbA1c, % 5.43 ± 0.32 5.84 ± 0.34
∗∗

6.74 ± 0.62
††

9.36 ± 1.59
‡‡

Triglyceride, mg/dL 88.88 ± 62.54 114.06 ± 88.15 120.87 ± 47.74 168.04 ± 98.43
‡

Fasting blood sugar, mg/dL 93.13 ± 6.96 97.78 ± 14.69 127.27 ± 24.75
††

183.96 ± 58.66
‡‡

MEISS(RRI) 9.31 ± 0.54 8.54 ± 0.78 8.00 ± 1.08
†

7.64 ± 0.81

MEILS(RRI) 27.11 ± 2.16 26.38 ± 2.07 25.59 ± 2.89 25.45 ± 3.25

MEISS(PTT) 9.97 ± 0.38 9.90 ± 0.40 9.85 ± 0.56 9.50 ± 1.41

MEILS(PTT) 26.73 ± 2.40 23.86 ± 3.71
∗∗

21.65 ± 2.55
†

21.06 ± 4.92

MCEISS 10.18 ± 0.52 9.42 ± 0.70
∗∗

9.41 ± 0.62 9.25 ± 0.39

MCEILS 28.30 ± 1.26 25.96 ± 1.99
∗∗

23.14 ± 1.85
††

20.13 ± 1.73
‡‡

Group 1: healthy young subjects, Group 2: healthy uppermiddle-aged subjects, Group 3: type 2 diabetic well-controlled patients, Group 4: type 2 diabetic poorly
controlled patients. Values are expressed as mean ± SD. BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; PP: pulse pressure;
HbA1c: glycosylated hemoglobin; MEISS(RRI): R-R interval-based multiscale entropy index with small scale; MEILS(RRI): R-R interval-based multiscale
entropy index with large scale; MEISS(PTT): pulse transit time-based multiscale entropy index with small scale; MEILS(PTT): pulse transit time-based
multiscale entropy index with large scale; MCEISS: multiscale Co ApEnRRI(𝜏)PTT(𝜏) (𝜏) index with small scale; MCEILS: multiscale Co ApEnRRI(𝜏)PTT(𝜏) (𝜏)
index with large scale.
†

𝑃 < 0.05 Group 2 versus Group 3, ‡𝑃 < 0.05 Group 3 versus Group 4. ∗∗𝑃 < 0.01 Group 1 versus Group 2, ††𝑃 < 0.01 Group 2 versus Group 3, and ‡‡𝑃 <
0.01 Group 3 versus Group 4.
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Figure 2:Multiscale entropy (MSE) analysis of (a) RRI and (b) PTT time series showing changes in sample entropy, 𝑆
𝐸

, among the four groups
of study subjects for different scale factors. Symbols represent the mean values of entropy for each group, and bars represent the standard
error (given by SE = SD/√𝑛, where 𝑛 is the number of subjects).
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Figure 3: Co ApEnRRI(𝜏)PTT(𝜏) (𝜏) curve of the four groups was cal-
culated using the MCE calculation (𝜏 = 1∼20) on 1000 consecutive
RRI and PTT times series. Symbols represent the mean values of
entropy for each group, and bars represent the standard error (given
by SE = SD/√𝑛, where n is the number of subjects).

physiological systems and that a strong relationship exists
between variations in PTT and those in RRI. We there-
fore employed the Co ApEn integrated with preprocessing
coarse-graining to calculate MCEI values as well as the
complexity between the synchronous time series RRI and
PTT. Figure 3 shows that at small-scale factors (from 1 to 5),
it is difficult to determine the influence of age, diabetes, or
glycemic control based on the complexity between the time
series RRI and PTT using Co ApEnRRI(𝜏)PTT(𝜏)(𝜏). Similarly,
MCEISS indicates only that aging reduces the complexity
between the two time series. This finding is similar to that
of previous studies [3]. As the scale factor increased (from
6 to 20), Co ApEnRRI(𝜏)PTT(𝜏)(𝜏) began revealing significant
differences between the four study groups (Figure 3). Table 1
shows that the MCEILS values of the young healthy subjects
were the highest, whereas subjects with poorly controlled
type 2 diabetes were the lowest. This may be due to the fact
that the coupling effect between the heart and the blood
vessels in the cardiovascular system varies according to age
and the influence of disease [24, 25]. In other words, the
complexity between the time series RRI and PTT decreases
due to age and disease.

Although the MCEILS can be used to quantify the com-
plexity of RRI and PTT and have been shown to effectively
identify significant difference among study groups, limita-
tions still exist. First, a lengthy process of data acquisition and
considerable calculation and off-line processing is needed.
MCE analysis involves a 30-minutemeasurement, as opposed
to the relatively shorter duration measurement of only RRI
and PTT, making the process tiring for participants. The
nature of analysis postmeasurement further prevented sub-
jects from receiving their MCEI test results immediately.
Second, the medications that the diabetic patients used such
as hypoglycemic, antihyperlipidemic, and antihypertensive
drugs may also affect autonomic nervous activity. These
effects, however, were difficult to assess. The potential effect

ofmedications, therefore, was not considered in the statistical
analysis of this study.

5. Conclusions

This study integrates cross-approximate entropy with multi-
ple scales to analyze the complexity between two synchronous
physiological signals (RRI and PTT) in the cardiovascular
system. According to our results, MCEILS clearly reveals
a reduction in the complexity of two physiological signals
caused by aging and diabetes.
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