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We prove a general result on Ulam’s type stability of the functional equation 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦), in the class of functions
mapping a commutative group into a commutative group. As a consequence, we deduce from it some hyperstability outcomes.
Moreover, we also show how to use that result to improve some earlier stability estimations given by Isaac and Rassias.

1. Introduction

The issue of stability of functional equations has been a very
popular subject of investigations for the last nearly fifty years
(see, e.g., [1–8]). Its main motivation was given by Ulam (cf.
[9–11]) in 1940 in his talk at the University of Wisconsin. For
instance, we can introduce the following definition, which
somehow describes the main ideas of such stability notion
for equations in two variables (R

+
stands for the set of

nonnegative reals).

Definition 1. Let 𝐴 be a nonempty set, (𝑋, 𝑑) be a metric
space, C ⊂ R𝐴

2

+
be nonempty, T be an operator mapping

C into R𝐴
+
, and F

1
,F
2
be operators mapping nonempty

D ⊂ 𝑋𝐴 into𝑋𝐴
2

. We say that the equation

F
1
𝜑 (𝑥, 𝑦) = F

2
𝜑 (𝑥, 𝑦) (1)

isT-stable provided for every 𝜀 ∈ C and 𝜑
0
∈ D with

𝑑 (F
1
𝜑
0
(𝑥, 𝑦) ,F

2
𝜑
0
(𝑥, 𝑦)) ≤ 𝜀 (𝑥, 𝑦) 𝑥, 𝑦 ∈ 𝐴, (2)

there exists a solution 𝜑 ∈ D of (1) such that

𝑑 (𝜑 (𝑥) , 𝜑
0
(𝑥)) ≤ T𝜀 (𝑥) 𝑥 ∈ 𝐴. (3)

(As usual,𝐶𝐷 denotes the family of all functionsmapping
a set𝐷 ̸= 0 into a set 𝐶 ̸= 0.) Roughly speaking,T-stability of

(1)means that every approximate (in the sense of (2)) solution
to (1) is always close (in the sense of (3)) to an exact solution
to (1). The next theorem is an example of the most classical
results.

Theorem 2. Let 𝐸
1
and 𝐸

2
be two normed spaces and let 𝑐 ≥

0 and 𝑝 ̸= 1 be fixed real numbers. Let 𝑓 : 𝐸
1

→ 𝐸
2
be an

operator such that
󵄩󵄩󵄩󵄩𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)

󵄩󵄩󵄩󵄩

≤ 𝑐 (‖𝑥‖
𝑝 +

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
𝑝

) 𝑥, 𝑦 ∈ 𝐸
1
\ {0} .

(4)

If 𝑝 ≥ 0 and 𝐸
2
is complete, then there is a unique operator

𝑇 : 𝐸
1
→ 𝐸
2
that is additive (i.e., 𝑇(𝑥 + 𝑦) = 𝑇(𝑥) + 𝑇(𝑦) for

𝑥, 𝑦 ∈ 𝐸
1
) and such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑇 (𝑥)
󵄩󵄩󵄩󵄩 ≤

𝑐‖𝑥‖𝑝

󵄨󵄨󵄨󵄨2
𝑝−1 − 1

󵄨󵄨󵄨󵄨
𝑥 ∈ 𝐸

1
\ {0} . (5)

If 𝑝 < 0, then 𝑓 is additive.

It has been motivated by Rassias (see [12–14]) and is
composed of the outcomes in [15–17]. Note that Theorem 2
with 𝑝 = 0 yields the result of Hyers [9] and it is known (see
[17]; cf. also [18, 19]) that for 𝑝 = 1 an analogous result is not
valid. Moreover, it has been shown in [20] that estimation (5)
is optimum for 𝑝 ≥ 0 in the general case.
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The second statement of Theorem 2, for 𝑝 < 0, can
be described as the 𝜑-hyperstability of the additive Cauchy
equation for𝜑(𝑥, 𝑦) ≡ 𝑐(‖𝑥‖𝑝+‖𝑦‖𝑝) (for further information
on hyperstability see, e.g., [1, 16, 21, 22]; some other recent
results can be found in [23–25]). It seems to be of interest that
such result does not remain valid if we restrict the domain
of 𝑓 to a subsemigroup of the group (𝐸

1
, +). The subsequent

remark shows this.

Remark 3. Let 𝑝 < 0, 𝑎 ≥ 0, 𝐼 = (𝑎,∞), and 𝑓, 𝑇 : 𝐼 → R be
given by 𝑇(𝑥) = 0 and 𝑓(𝑥) = 𝑥𝑝 for 𝑥 ∈ 𝐼. Then clearly

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑇 (𝑥)
󵄨󵄨󵄨󵄨 = 𝑥𝑝 𝑥 ∈ 𝐼. (6)

Moreover,
󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝑥𝑝 + 𝑦𝑝 𝑥, 𝑦 ∈ 𝐼. (7)

In fact, suppose, for instance, that 𝑥 ≤ 𝑦. Then (𝑥 + 𝑦)𝑝 ≤
(2𝑥)𝑝 = 2𝑝𝑥𝑝 ≤ 𝑥𝑝 ≤ 𝑥𝑝 + 𝑦𝑝, whence |𝑓(𝑥 + 𝑦) − 𝑓(𝑥) −
𝑓(𝑦)| = 𝑥𝑝 + 𝑦𝑝 − (𝑥 + 𝑦)𝑝 ≤ 𝑥𝑝 + 𝑦𝑝.

In this paper we prove a quite general result that allows us
to generalize and extendTheorem 2 in various directions.

2. An Auxiliary Result

In the proof of the main theorem in this paper, we use the
following fixed point result that can be easily derived from
[26, Theorem 2] (cf. [27, Theorem 1] and [28]). For a survey
on applications of the fixed point methods for similar issues,
see [29].

Theorem 4. Assume that 𝑍 is a nonempty set, (𝑌, 𝑑) is a
complete metric space, 𝑓

1
, 𝑓
2
: 𝑍 → 𝑍, T : 𝑌𝑍 → 𝑌𝑍 is

an operator satisfying the inequality

𝑑 (T𝜉 (𝑥) ,T𝜇 (𝑥)) ≤ 𝑑 (𝜉 (𝑓
1
(𝑥)) , 𝜇 (𝑓

1
(𝑥)))

+ 𝑑 (𝜉 (𝑓
2
(𝑥)) , 𝜇 (𝑓

2
(𝑥))) ,

𝜉, 𝜇 ∈ 𝑌𝑍, 𝑥 ∈ 𝑍,

(8)

and Λ : R𝑍
+

→ R𝑍
+
is an operator defined by

Λ𝛿 (𝑥) := 𝛿 (𝑓
1
(𝑥)) + 𝛿 (𝑓

2
(𝑥)) 𝛿 ∈ R

𝑍

+
, 𝑥 ∈ 𝑍. (9)

Suppose that there exist functions 𝜀 : 𝑍 → R
+
and 𝜑 : 𝑍 →

𝑌 such that
𝑑 (T𝜑 (𝑥) , 𝜑 (𝑥)) ≤ 𝜀 (𝑥) ,

𝜀∗ (𝑥) :=
∞

∑
𝑛=0

(Λ𝑛𝜀) (𝑥) < ∞ 𝑥 ∈ 𝑍,
(10)

whereΛ𝑛 denotes the 𝑛th iterate ofΛ (i.e.,Λ0𝛿 = 𝛿 for 𝛿 ∈ R
+

𝑍

andΛ𝑛 := ΛIΛ𝑛−1 for 𝑛 ∈ N).Then there exists a unique fixed
point 𝜓 ofT with

𝑑 (𝜑 (𝑥) , 𝜓 (𝑥)) ≤ 𝜀∗ (𝑥) 𝑥 ∈ 𝑍. (11)

Moreover,

𝜓 (𝑥) := lim
𝑛→∞

(T𝑛𝜑) (𝑥) 𝑥 ∈ 𝑍. (12)

3. The Main Theorem

Given a group (𝑋, +), we denote by 𝐴𝑢𝑡 𝑋 the family of all
automorphisms of 𝑋. Moreover, for each 𝑢 ∈ 𝑋𝑋 we write
𝑢𝑥 := 𝑢(𝑥) for 𝑥 ∈ 𝑋 and we define 𝑢󸀠 ∈ 𝑋𝑋 by 𝑢󸀠𝑥 := 𝑥−𝑢𝑥.

The next theorem is the main result of this paper.

Theorem5. Let (𝑋, +) and (𝐸, +) be commutative groups, 𝑑 be
a complete metric in 𝐸 that is invariant (i.e., 𝑑(𝑥 + 𝑧, 𝑦 + 𝑧) =

𝑑(𝑥, 𝑦) for 𝑥, 𝑦, 𝑧 ∈ 𝑋),𝐻 : (𝑋 \ {0})2 → R
+
, and

𝑙 (𝑋)

:= {𝑢 ∈ 𝐴𝑢𝑡 𝑋 : 𝑢󸀠 ∈ 𝐴𝑢𝑡 𝑋, 𝜆 (𝑢󸀠) + 𝜆 (𝑢) < 1} ̸= 0,

(13)

where

𝜆 (𝑢) := inf {𝑡 ∈ R
+
: 𝐻 (𝑢𝑥, 𝑢𝑦)

≤ 𝑡𝐻 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝑋 \ {0}}
(14)

for 𝑢 ∈ 𝐴𝑢𝑡 𝑋. Assume that𝑓 : 𝑋 → 𝐸 satisfies the inequality

𝑑 (𝑓 (𝑥 + 𝑦) , 𝑓 (𝑥) + 𝑓 (𝑦)) ≤ 𝐻 (𝑥, 𝑦) 𝑥, 𝑦 ∈ 𝑋 \ {0} .
(15)

Then, for each nonemptyU ⊂ 𝑙(𝑋) such that

𝑢IV = V I 𝑢 𝑢, V ∈ U, (16)

there exists a unique additive 𝑇 : 𝑋 → 𝐸 fulfilling the
inequality

𝑑 (𝑓 (𝑥) , 𝑇 (𝑥)) ≤ 𝐻U (𝑥) 𝑥 ∈ 𝑋 \ {0} , (17)

where

𝐻U (𝑥) := inf {
𝐻(𝑢󸀠𝑥, 𝑢𝑥)

1 − 𝜆 (𝑢) − 𝜆 (𝑢󸀠)
: 𝑢 ∈ U} 𝑥 ∈ 𝑋 \ {0} .

(18)

Proof. LetU ⊂ 𝑙(𝑋) be nonempty and let (16) be valid. Write
𝑋
0

:= 𝑋 \ {0}. Note that (15), with 𝑥 replaced by 𝑢󸀠𝑥 and
𝑦 = 𝑢𝑥, gives

𝑑 (𝑓 (𝑥) , 𝑓 (𝑢󸀠𝑥) + 𝑓 (𝑢𝑥))

≤ 𝐻(𝑢󸀠𝑥, 𝑢𝑥) 𝑥 ∈ 𝑋
0
, 𝑢 ∈ U.

(19)

Given 𝑢 ∈ U, we define operatorsT
𝑢
: 𝐸𝑋0 → 𝐸𝑋0 and

Λ
𝑢
: R
𝑋
0

+
→ R
𝑋
0

+
by

T
𝑢
𝜉 (𝑥) := 𝜉 (𝑢󸀠𝑥) + 𝜉 (𝑢𝑥) 𝑥 ∈ 𝑋

0
, 𝜉 ∈ 𝐸𝑋0 , 𝑢 ∈ U,

(20)

Λ
𝑢
𝛿 (𝑥) := 𝛿 (𝑢󸀠𝑥) + 𝛿 (𝑢𝑥) 𝑥 ∈ 𝑋

0
, 𝛿 ∈ R

𝑋
0

+
, 𝑢 ∈ U.

(21)
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It is easily seen that, for each 𝑢 ∈ U, Λ := Λ
𝑢
has form (9)

with 𝑍 := 𝑋
0
, 𝑓
1
(𝑥) = 𝑢󸀠𝑥, and 𝑓

2
(𝑥) = 𝑢𝑥. Moreover, (19)

can be written in the following way

𝑑 (𝑓 (𝑥) ,T
𝑢
𝑓 (𝑥)) ≤ 𝐻(𝑢󸀠𝑥, 𝑢𝑥)

=: 𝜀
𝑢
(𝑥) 𝑥 ∈ 𝑋

0
, 𝑢 ∈ U.

(22)

(Here and in the sequel, the restriction of 𝑓 to the set 𝑋
0

is also denoted by 𝑓; we believe that this will not cause any
confusion.) And

𝑑 (T
𝑢
𝜉 (𝑥) ,T

𝑢
𝜇 (𝑥))

= 𝑑 (𝜉 (𝑢󸀠𝑥) + 𝜉 (𝑢𝑥) , 𝜇 (𝑢󸀠𝑥) + 𝜇 (𝑢𝑥))

≤ 𝑑 (𝜉 (𝑢󸀠𝑥) , 𝜇 (𝑢󸀠𝑥)) + 𝑑 (𝜉 (𝑢𝑥) , 𝜇 (𝑢𝑥))

(23)

for every 𝜉, 𝜇 ∈ 𝐸𝑋0 , 𝑥 ∈ 𝑋
0
, and 𝑢 ∈ U. Consequently,

for each 𝑢 ∈ U, also (8) is valid with 𝑍 := 𝑋
0
, 𝑌 := 𝐸, and

T := T
𝑢
.

Note that, in view of the definition of 𝜆(𝑢),

𝐻(𝑢𝑥, 𝑢𝑦) ≤ 𝜆 (𝑢)𝐻 (𝑥, 𝑦) 𝑢 ∈ U, 𝑥, 𝑦 ∈ 𝑋
0
. (24)

So, it is easy to show by induction on 𝑛 that

Λ𝑛
𝑢
𝜀
𝑢
(𝑥) ≤ (𝜆 (𝑢󸀠) + 𝜆 (𝑢))

𝑛

𝐻(𝑢󸀠𝑥, 𝑢𝑥) , (25)

for 𝑥 ∈ 𝑋
0
, 𝑛 ∈ N

0
(nonnegative integers), and 𝑢 ∈ U. Hence,

𝜀∗
𝑢
(𝑥) : =

∞

∑
𝑛=0

(Λ𝑛
𝑢
𝜀
𝑢
) (𝑥)

≤ 𝐻 (𝑢󸀠𝑥, 𝑢𝑥)
∞

∑
𝑛=0

(𝜆 (𝑢󸀠) + 𝜆 (𝑢))
𝑛

=
𝐻(𝑢󸀠𝑥, 𝑢𝑥)

1 − 𝜆 (𝑢) − 𝜆 (𝑢󸀠)
𝑥 ∈ 𝑋

0
, 𝑢 ∈ U.

(26)

Now, we can useTheorem 4 with 𝑍 = 𝑋
0
, 𝑌 = 𝐸, 𝜀 := 𝜀

𝑢
, and

𝜑 = 𝑓. According to it, the limit

𝑇󸀠
𝑢
(𝑥) := lim

𝑛→∞

(T𝑛
𝑢
𝑓) (𝑥) (27)

exists for each 𝑥 ∈ 𝑋
0
and 𝑢 ∈ U,

𝑑 (𝑓 (𝑥) , 𝑇
𝑢
(𝑥)) ≤

𝐻 (𝑢󸀠𝑥, 𝑢𝑥)

1 − 𝜆 (𝑢) − 𝜆 (𝑢󸀠)
𝑥 ∈ 𝑋

0
, 𝑢 ∈ U,

(28)

and the function 𝑇
𝑢
: 𝑋 → 𝐸 defined by

𝑇
𝑢
(0) = 0, 𝑇

𝑢
(𝑥) := 𝑇󸀠

𝑢
(𝑥) 𝑥 ∈ 𝑋

0
(29)

is a solution of the equation

𝑇 (𝑥) = 𝑇 (𝑢󸀠𝑥) + 𝑇 (𝑢𝑥) , (30)

because 𝑇󸀠
𝑢
is a fixed point ofT

𝑢
.

Now we show that

𝑑 (T𝑛
𝑢
𝑓 (𝑥 + 𝑦) ,T𝑛

𝑢
𝑓 (𝑥) +T

𝑛

𝑢
𝑓 (𝑦))

≤ (𝜆 (𝑢󸀠) + 𝜆 (𝑢))
𝑛

𝐻(𝑥, 𝑦)
(31)

for every 𝑥, 𝑦 ∈ 𝑋
0
, 𝑥 + 𝑦 ̸= 0, 𝑛 ∈ N

0
, and 𝑢 ∈ U.

Since the case 𝑛 = 0 is just (15), take 𝑘 ∈ N
0
and assume

that (31) holds for 𝑛 = 𝑘 and every 𝑥, 𝑦 ∈ 𝑋
0
, 𝑥 + 𝑦 ̸= 0, and

𝑢 ∈ U. Then, by (24),

𝑑 (T𝑘+1
𝑢

𝑓 (𝑥 + 𝑦) ,T𝑘+1
𝑢

𝑓 (𝑥) +T
𝑘+1

𝑢
𝑓 (𝑦))

= 𝑑 (T𝑘
𝑢
𝑓 (𝑢󸀠 (𝑥 + 𝑦)) +T

𝑘

𝑢
𝑓 (𝑢 (𝑥 + 𝑦)) ,

T
𝑘

𝑢
𝑓 (𝑢󸀠𝑥) +T

𝑘

𝑢
𝑓 (𝑢𝑥) +T

𝑘

𝑢
𝑓 (𝑢󸀠𝑦)

+T𝑘
𝑢
𝑓 (𝑢𝑦) )

≤ 𝑑 (T𝑘
𝑢
𝑓 (𝑢󸀠𝑥 + 𝑢󸀠𝑦) ,T𝑘

𝑢
𝑓 (𝑢󸀠𝑥) +T

𝑘

𝑢
𝑓 (𝑢󸀠𝑦))

+ 𝑑 (T𝑘
𝑢
𝑓 (𝑢𝑥 + 𝑢𝑦) ,T𝑘

𝑢
𝑓 (𝑢𝑥) +T

𝑘

𝑢
𝑓 (𝑢𝑦))

≤ (𝜆 (𝑢󸀠) + 𝜆 (𝑢))
𝑘

𝐻(𝑢󸀠𝑥, 𝑢󸀠𝑦)

+ (𝜆 (𝑢󸀠) + 𝜆 (𝑢))
𝑘

𝐻(𝑢𝑥, 𝑢𝑦)

≤ (𝜆 (𝑢󸀠) + 𝜆 (𝑢))
𝑘+1

𝐻(𝑥, 𝑦)

𝑥, 𝑦 ∈ 𝑋
0
, 𝑥 + 𝑦 ̸= 0, 𝑢 ∈ U.

(32)

Thus, by induction, we have shown that (31) holds for every
𝑥, 𝑦 ∈ 𝑋

0
, 𝑥 + 𝑦 ̸= 0, 𝑛 ∈ N

0
, and 𝑢 ∈ U. Letting 𝑛 → ∞ in

(31), we obtain the equality

𝑇
𝑢
(𝑥 + 𝑦) = 𝑇

𝑢
(𝑥) + 𝑇

𝑢
(𝑦)

𝑥, 𝑦 ∈ 𝑋
0
, 𝑥 + 𝑦 ̸= 0, 𝑢 ∈ U.

(33)

From this we can deduce that 𝑇
𝑢
is additive for each 𝑢 ∈

U. The reasoning is very simple, but for the convenience of
readers we present it here.

In view of (33), it is only enough to consider the situation
𝑦 = −𝑥. So take 𝑢 ∈ U and 𝑥 ∈ 𝑋

0
(the case 𝑥 = 0 is trivial).

Then, by (33),

𝑇
𝑢
(𝑥) = 𝑇

𝑢
(𝑥 + 𝑥 − 𝑥)

= 𝑇
𝑢
(2𝑥) + 𝑇

𝑢
(−𝑥)

= 2𝑇
𝑢
(𝑥) + 𝑇

𝑢
(−𝑥) ,

(34)

which yields𝑇
𝑢
(𝑥)+𝑇

𝑢
(−𝑥) = 0 and consequently𝑇

𝑢
(𝑥−𝑥) =

𝑇
𝑢
(0) = 0 = 𝑇

𝑢
(𝑥) + 𝑇

𝑢
(−𝑥).

Next, we prove that each additive 𝑇 : 𝑋 → 𝑌 satisfying
the inequality

𝑑 (𝑓 (𝑥) , 𝑇 (𝑥)) ≤ 𝐿𝐻(V𝑥, V󸀠𝑥) 𝑥 ∈ 𝑋
0
, (35)



4 The Scientific World Journal

with some 𝐿 > 0 and V ∈ U, is equal to 𝑇
𝑤
for each 𝑤 ∈ U.

To this end fix V, 𝑤 ∈ U, 𝐿 > 0, and an additive 𝑇 : 𝑋 → 𝑌
satisfying (35). Note that, by (28) and (35), there is 𝐿

0
> 0

such that
𝑑 (𝑇 (𝑥) , 𝑇

𝑤
(𝑥)) ≤ 𝑑 (𝑇 (𝑥) , 𝑓 (𝑥)) + 𝑑 (𝑓 (𝑥) , 𝑇

𝑤
(𝑥))

≤ 𝐿
0
(𝐻 (V󸀠𝑥, V𝑥) + 𝐻(𝑤󸀠𝑥, 𝑤𝑥))

×
∞

∑
𝑛=0

(𝜆 (𝑤󸀠) + 𝜆 (𝑤))
𝑛

(36)

for 𝑥 ∈ 𝑋
0
. Observe yet that 𝑇 and 𝑇

𝑤
are solutions to (30)

for all 𝑢 ∈ U, because they are additive.
We show that, for each 𝑗 ∈ N

0
,

𝑑 (𝑇 (𝑥) , 𝑇
𝑤
(𝑥))

≤ 𝐿
0
(𝐻 (V󸀠𝑥, V𝑥) + 𝐻(𝑤󸀠𝑥, 𝑤𝑥))

×
∞

∑
𝑛=𝑗

(𝜆 (𝑤󸀠) + 𝜆 (𝑤))
𝑛

𝑥 ∈ 𝑋
0
.

(37)

The case 𝑗 = 0 is exactly (36). So fix 𝑙 ∈ N
0
and assume that

(37) holds for 𝑗 = 𝑙. Then, in view of (24),

𝑑 (𝑇 (𝑥) , 𝑇
𝑤
(𝑥))

= 𝑑 (𝑇 (𝑤𝑥) + 𝑇 (𝑤󸀠𝑥) , 𝑇
𝑤
(𝑤𝑥) + 𝑇

𝑤
(𝑤󸀠𝑥))

≤ 𝑑 (𝑇 (𝑤𝑥) , 𝑇
𝑤
(𝑤𝑥)) + 𝑑 (𝑇 (𝑤󸀠𝑥) , 𝑇

𝑤
(𝑤󸀠𝑥))

≤ 𝐿
0
(𝐻 (V󸀠𝑤𝑥, V𝑤𝑥) + 𝐻(𝑤󸀠𝑤𝑥,𝑤𝑤𝑥))

×
∞

∑
𝑛=𝑗

(𝜆 (𝑤󸀠) + 𝜆 (𝑤))
𝑛

+ 𝐿
0
(𝐻 (V󸀠𝑤󸀠𝑥, V𝑤󸀠𝑥) + 𝐻(𝑤󸀠𝑤󸀠𝑥, 𝑤𝑤󸀠𝑥))

×
∞

∑
𝑛=𝑗

(𝜆 (𝑤󸀠) + 𝜆 (𝑤))
𝑛

≤ 𝐿
0
(𝐻 (V󸀠𝑥, V𝑥) + 𝐻(𝑤󸀠𝑥, 𝑤𝑥)) (𝜆 (𝑤) + 𝜆 (𝑤󸀠))

×
∞

∑
𝑛=𝑗

(𝜆 (𝑤󸀠) + 𝜆 (𝑤))
𝑛

= 𝐿
0
(𝐻 (V󸀠𝑥, V𝑥) + 𝐻(𝑤󸀠𝑥, 𝑤𝑥))

×
∞

∑
𝑛=𝑙+1

(𝜆 (𝑤󸀠) + 𝜆 (𝑤))
𝑛

𝑥 ∈ 𝑋
0
.

(38)

Thus we have shown (37). Now, letting 𝑗 → ∞ in (37), we
get

𝑇 (𝑥) = 𝑇
𝑤
(𝑥) 𝑥 ∈ 𝑋

0
. (39)

Since 𝑇 and 𝑇
𝑤
are additive, we have 𝑇 = 𝑇

𝑤
.

In this way, we also have proved that 𝑇
𝑢

= 𝑇
𝑤
for each

𝑢 ∈ U (on account of (28)), which yields

𝑑 (𝑓 (𝑥) , 𝑇
𝑤
(𝑥)) ≤

𝐻 (𝑢󸀠𝑥, 𝑢𝑥)

1 − 𝜆 (𝑢󸀠) − 𝜆 (𝑢)
𝑥 ∈ 𝑋

0
, 𝑢 ∈ U.

(40)

This implies (17) with 𝑇 := 𝑇
𝑤
; clearly, equality (39) means

the uniqueness of 𝑇, as well.
Thus we have completed the proof of Theorem 5.

4. Some Consequences

Theorem 5 yields the subsequent corollary.

Corollary 6. Let 𝑋, 𝐻, 𝐸, and 𝑑 be as in Theorem 5. Suppose
that there exists a nonemptyU ⊂ 𝑙(𝑋) such that (16) holds and

inf
𝑢∈U

𝐻(𝑢󸀠𝑥, 𝑢𝑥) = 0 𝑥 ∈ 𝑋 \ {0} ,

sup
𝑢∈U

𝜆 (𝑢󸀠) + 𝜆 (𝑢) < 1.
(41)

Then every 𝑓 : 𝑋 → 𝐸 satisfying (15) is additive.

Proof. Suppose that 𝑓 : 𝑋 → 𝐸 satisfies (15). Then, by
Theorem 5, there exists an additive 𝑇 : 𝑋 → 𝐸 such that
(17) holds. Since, in view of (41), 𝐻U(𝑥) = 0 for 𝑥 ∈ 𝑋 \ {0},
this means that 𝑓(𝑥) = 𝑇(𝑥) for 𝑥 ∈ 𝑋 \ {0}, whence

𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) 𝑥, 𝑦 ∈ 𝑋 \ {0} , 𝑥 + 𝑦 ̸= 0,
(42)

which implies that 𝑓 is additive (see the proof of (34)).

The next corollary corresponds to the results on the
inhomogeneous Cauchy equation (44) in [30–35].

Corollary 7. Let 𝑋, 𝐻, 𝐸, and 𝑑 be as in Theorem 5 and 𝐹 :
𝑋2 → 𝐸. Suppose that

𝑑 (𝐹 (𝑥, 𝑦) , 0) ≤ 𝐻 (𝑥, 𝑦) 𝑥, 𝑦 ∈ 𝑋, (43)

𝐹(𝑥
0
, 𝑦
0
) ̸= 0 for some 𝑥

0
, 𝑦
0

∈ 𝑋 \ {0}, and there exists a
nonempty U ⊂ 𝑙(𝑋) such that (16) and (41) hold. Then the
inhomogeneous Cauchy equation

𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) + 𝐹 (𝑥, 𝑦) (44)

has no solutions in the class of functions 𝑓 : 𝑋 → 𝐸.

Proof. Suppose that 𝑓 : 𝑋 → 𝐸 is a solution to (44). Then

𝑑 (𝑓 (𝑥 + 𝑦) , 𝑓 (𝑥) + 𝑓 (𝑦))

= 𝑑 (𝑓 (𝑥) + 𝑓 (𝑦) + 𝐹 (𝑥, 𝑦) , 𝑓 (𝑥) + 𝑓 (𝑦))

= 𝑑 (𝐹 (𝑥, 𝑦) , 0) ≤ 𝐻 (𝑥, 𝑦) 𝑥, 𝑦 ∈ 𝑋 \ {0} .

(45)

Consequently, by Corollary 6, 𝑓 is additive, whence
𝐹(𝑥
0
, 𝑦
0
) = 𝑓(𝑥

0
+ 𝑦
0
) − 𝑓(𝑥

0
) − 𝑓(𝑦

0
) = 0, which is a

contradiction.



The Scientific World Journal 5

Remark 8. We have excluded 𝑥 = 0 and 𝑦 = 0 from the
domain of𝐻, inTheorem 5, because of the reason which can
be easily deduced from the subsequent natural example.

In the rest of this paper, we assume that 𝐸
1
and 𝐸 are

normed spaces, 𝑋 is a subgroup of the group (𝐸
1
, +), with

𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖, and𝐻 : (𝑋 \ {0})2 → R
+
. For each 𝑛 ∈ Z

define 𝜇
𝑛
: 𝑋 → 𝑋 by 𝜇

𝑛
𝑥 := 𝑛𝑥 for 𝑥 ∈ 𝑋. Let 𝐻 be given

by

𝐻(𝑥, 𝑦) = 𝑐‖𝑥‖
𝑝 + 𝑑

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
𝑞

𝑥, 𝑦 ∈ 𝑋 \ {0} (46)

with some real 𝑝 < 0, 𝑞 < 0, 𝑐 ≥ 0, and 𝑑 ≥ 0. Then

𝐻(𝜇
𝑛
𝑥, 𝜇
𝑘
𝑦) = 𝐻 (𝑛𝑥, 𝑘𝑦)

= 𝑐‖𝑛𝑥‖
𝑝 + 𝑑

󵄩󵄩󵄩󵄩𝑘𝑦
󵄩󵄩󵄩󵄩
𝑞

= 𝑐|𝑛|
𝑝

‖𝑥‖
𝑝 + 𝑑 |𝑘|

𝑞󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
𝑞

≤ (|𝑛|
𝑝 + |𝑘|

𝑞) (𝑐‖𝑥‖
𝑝 + 𝑑

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
𝑞

)

= (|𝑛|
𝑝 + |𝑘|

𝑞)𝐻 (𝑥, 𝑦)

(47)

for every 𝑥, 𝑦 ∈ 𝑋 \ {0}, 𝑘, 𝑛 ∈ Z, and 𝑘𝑛 ̸= 0. Hence,

lim
𝑛→∞

𝐻(𝜇
𝑛
𝑥, 𝜇󸀠
𝑛
𝑦)

≤ lim
𝑛→∞

(𝑛𝑝 + (𝑛 − 1)
𝑞)𝐻 (𝑥, 𝑦)

= 0 𝑥, 𝑦 ∈ 𝑋

(48)

and there is𝑀 > 1 such that

𝜆 (𝜇
𝑛
) + 𝜆 (𝜇󸀠

𝑛
) = 𝑛𝑝 + (𝑛 − 1)

𝑞 <
1

2
𝑛 ∈ N, 𝑛 > 𝑀. (49)

So, it is easily seen that conditions (41) are fulfilled with

U := {𝜇
𝑛
∈ 𝐴𝑢𝑡 𝑋 : 𝑛 ∈ N, 𝑛 > 𝑀} (50)

and therefore (by Corollary 6) every 𝑓 : 𝑋 → 𝐸 satisfying
(15), with𝐻 given by (46) is additive.

Clearly, the above reasoning also works (after an easy
modification) when the function 𝐻 : (𝑋 \ {0})2 → R

+
has

the following a bit more involved form

𝐻(𝑥, 𝑦) = 𝑐
󵄩󵄩󵄩󵄩𝜂 (𝑥)

󵄩󵄩󵄩󵄩
𝑝

+ 𝑑
󵄩󵄩󵄩󵄩𝜒 (𝑦)

󵄩󵄩󵄩󵄩
𝑞

𝑥, 𝑦 ∈ 𝑋 \ {0} , (51)

with some real 𝑝 < 0, 𝑞 < 0, 𝑐 ≥ 0, and 𝑑 ≥ 0 and additive
injections 𝜂, 𝜒 : 𝑋 → 𝐸

1
(or 𝜂, 𝜒 : 𝑋 → 𝐸). So, we have

the following corollary corresponding to the hyperstability
results in [16, 21, 24] (see also [1, 22, 23, 25]).

Corollary 9. Let 𝐻 be given by (51) with some real 𝑝 < 0,
𝑞 < 0, 𝑐 ≥ 0, and 𝑑 ≥ 0 and some additive injections 𝜂, 𝜒 :
𝑋 → 𝐸

1
(𝜂, 𝜒 : 𝑋 → 𝐸, resp.). Then every 𝑓 : 𝑋 → 𝐸

satisfying (15) is additive.

We also get an analogous conclusion when𝐻 is given by

𝐻(𝑥, 𝑦) = 𝑐
󵄩󵄩󵄩󵄩𝜂 (𝑥)

󵄩󵄩󵄩󵄩
𝑝󵄩󵄩󵄩󵄩𝜒 (𝑦)

󵄩󵄩󵄩󵄩
𝑞

𝑥, 𝑦 ∈ 𝑋 \ {0} , (52)

with some real 𝑐 > 0 and 𝑝, 𝑞 ∈ R such that 𝑝 + 𝑞 < 0 and
some additive injections 𝜂, 𝜒 : 𝑋 → 𝐸

1
(or 𝜂, 𝜒 : 𝑋 → 𝐸),

because

𝐻(𝑛𝑥, 𝑘𝑦) = 𝑐
󵄩󵄩󵄩󵄩𝜂 (𝑛𝑥)

󵄩󵄩󵄩󵄩
𝑝󵄩󵄩󵄩󵄩𝜒 (𝑘𝑦)

󵄩󵄩󵄩󵄩
𝑞

= 𝑐|𝑛|
𝑝󵄩󵄩󵄩󵄩𝜂 (𝑥)

󵄩󵄩󵄩󵄩
𝑝

|𝑘|
𝑞󵄩󵄩󵄩󵄩𝜒 (𝑦)

󵄩󵄩󵄩󵄩
𝑞

(53)

for every 𝑥, 𝑦 ∈ 𝑋 \ {0}, 𝑘, 𝑛 ∈ Z, and 𝑘𝑛 ̸= 0. So we have the
following hyperstability result, as well (it generalizes to some
extend the main outcome in [36]).

Corollary 10. Let 𝐻 be given by (52) with some 𝑝, 𝑞 ∈ R,
𝑝 + 𝑞 < 0, 𝑐 ≥ 0, and some additive injections 𝜂, 𝜒 : 𝑋 → 𝐸

1

(𝜂, 𝜒 : 𝑋 → 𝐸, resp.). Then every 𝑓 : 𝑋 → 𝐸 satisfying (15)
is additive.

It is easily seen that another example of the function 𝐻
satisfying (41) is given by

𝐻(𝑥, 𝑦) = (𝑐
󵄩󵄩󵄩󵄩𝜂 (𝑥)

󵄩󵄩󵄩󵄩
𝑝

+ 𝑑
󵄩󵄩󵄩󵄩𝜒 (𝑦)

󵄩󵄩󵄩󵄩
𝑞

)
𝑟

, 𝑥, 𝑦 ∈ 𝑋 \ {0} ,

(54)

with some real 𝑝 > 0, 𝑞 > 0, 𝑟 < 0, 𝑐 ≥ 0, 𝑑 ≥ 0, 𝑐 + 𝑑 > 0
and some additive injections 𝜂, 𝜒 : 𝑋 → 𝐸

1
(𝜂, 𝜒 : 𝑋 → 𝐸,

resp.), because

𝐻(𝑛𝑥, 𝑘𝑦) = (𝑐|𝑛|𝑝 ‖ 𝜂(𝑥)‖𝑝 + 𝑑 |𝑘|𝑞 ‖ 𝜒(𝑦)‖𝑞)
𝑟

≤ (min{|𝑛|𝑝, |𝑘|𝑞})𝑟(𝑐 ‖ 𝜂 (𝑥) ‖
𝑝 + 𝑑 ‖ 𝜒 (𝑦) ‖𝑞)

𝑟

= (min{|𝑛|𝑝, |𝑘|𝑞})𝑟𝐻(𝑥, 𝑦)

(55)

for every 𝑥, 𝑦 ∈ 𝑋 \ {0}, 𝑘, 𝑛 ∈ Z, and 𝑘𝑛 ̸= 0. So, we have yet
the following.

Corollary 11. Let 𝐻 be given by (54) with some real 𝑝 > 0,
𝑞 > 0, 𝑟 < 0, 𝑐 ≥ 0, 𝑑 ≥ 0, 𝑐 + 𝑑 > 0 and some additive
injections 𝜂, 𝜒 : 𝑋 → 𝐸

1
(𝜂, 𝜒 : 𝑋 → 𝐸, resp.). Then every

𝑓 : 𝑋 → 𝐸 satisfying (15) is additive.

We finish the paper with an example of corollary that
generalizes some results in [37] and improves the estimations
obtained there.

Corollary 12. Let 𝑋 be divisible by 2 and let 𝐻 be given by
(51) with some real numbers 1 < 𝑝 < 𝑞, 𝑐 ≥ 0, and 𝑑 ≥ 0
and some additive injections 𝜂, 𝜒 : 𝑋 → 𝐸

1
(𝜂, 𝜒 : 𝑋 → 𝐸,

resp.). Then, for every 𝑓 : 𝑋 → 𝐸 satisfying (15), there exists
an additive mapping 𝑇 : 𝑋 → 𝐸 such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑇 (𝑥)
󵄩󵄩󵄩󵄩 ≤

𝑐
󵄩󵄩󵄩󵄩𝜂 (𝑥)

󵄩󵄩󵄩󵄩
𝑝

+ 2𝑝−𝑞𝑑
󵄩󵄩󵄩󵄩𝜒 (𝑦)

󵄩󵄩󵄩󵄩
𝑞

2𝑝 − 2
, 𝑥 ∈ 𝑋.

(56)
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Proof. Let 𝑓 : 𝑋 → 𝐸 satisfy (15) and 𝑢
0
: 𝑋 → 𝑋 be given

by

𝑢
0
(𝑥) =

1

2
𝑥 𝑥 ∈ 𝑋. (57)

Then 𝑢
0
= 𝑢󸀠
0
and 𝜆(𝑢

0
) ≤ 2−𝑝. Consequently, by Theorem 5

with U = {𝑢
0
}, there is a unique additive 𝑇 : 𝑋 → 𝐸 such

that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑇 (𝑥)
󵄩󵄩󵄩󵄩 ≤

𝑐
󵄩󵄩󵄩󵄩𝜂 (𝑢
0
𝑥)

󵄩󵄩󵄩󵄩
𝑝

+ 𝑑
󵄩󵄩󵄩󵄩󵄩𝜒 (𝑢󸀠
0
𝑦)

󵄩󵄩󵄩󵄩󵄩
𝑞

1 − 2𝜆 (𝑢
0
)

≤
2−𝑝𝑐

󵄩󵄩󵄩󵄩𝜂 (𝑥)
󵄩󵄩󵄩󵄩
𝑝

+ 2−𝑞 𝑑
󵄩󵄩󵄩󵄩𝜒 (𝑦)

󵄩󵄩󵄩󵄩
𝑞

1 − 21−𝑝

=
𝑐
󵄩󵄩󵄩󵄩𝜂 (𝑥)

󵄩󵄩󵄩󵄩
𝑝

+ 2𝑝−𝑞𝑑
󵄩󵄩󵄩󵄩𝜒 (𝑦)

󵄩󵄩󵄩󵄩
𝑞

2𝑝 − 2
𝑥 ∈ 𝑋.

(58)
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[35] A. Járai, G. Maksa, and Z. Páles, “On Cauchy-differences that
are also quasisums,” Publicationes Mathematicae, vol. 65, no. 3-
4, pp. 381–398, 2004.

[36] J. Brzdęk, “A hyperstability result for the Cauchy equation,”
Bulletin of the Australian Mathematical Society, vol. 89, no. 1,
2014.

[37] G. Isac andTh.M. Rassias, “Functional inequalities for approx-
imately additive mappings,” in Stability of Mappings of Hyers-
Ulam Type, T. M. Rassias and J. Tabor, Eds., pp. 117–125,
Hadronic Press, Palm Harbour, Fla, USA, 1994.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


