
Research Article
A New Approach on Helices in Pseudo-Riemannian Manifolds

Evren ZJplar,1 Yusuf YaylJ,2 and Esmail Gök2

1 Department of Mathematics, Faculty of Science, ÇankırıKaratekin University, 18000 Çankırı, Turkey
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A proper curve 𝛼 in the 𝑛-dimensional pseudo-Riemannian manifold (𝑀, 𝑔) is called a 𝑉
𝑛
-slant helix if the function 𝑔(𝑉

𝑛
, 𝑋) is a

nonzero constant along 𝛼, where𝑋 is a parallel vector field along 𝛼 and 𝑉
𝑛
is 𝑛th Frenet frame. In this work, we study such curves

and give important characterizations about them.

1. Introduction

Curves theory is an essential structure in the differential
geometry works. Helix is one of the most spectacular curves
because of its helical structure in nature and science. Helices
are used in the field of imitation of kinematic motion or
the shape of DNA and carbon nanotubes. Moreover, the
helical structure can be seen in fractal geometry, especially
in hyperhelices [1, 2].

Furthermore, “helices share common origins in the
geometries of the platonic solids, with inherent hierarchical
potential that is typical of biological structures. The helices
provide an energy-efficient solution to close-packing in
molecular biology, a common motif in protein construc-
tion, and a readily observable pattern at many size levels
throughout the body. The helices are described in a variety
of anatomical structures, suggesting their importance to
structural biology and manual therapy” [3].

A curve of constant slope or general helix in Euclidean
3-space 𝐸3 is defined by the property that its tangent vector
fieldmakes a constant angle with a fixed straight line (the axis
of general helix). A classical result stated by Lancret in 1802
and first proved by de Saint Venant in 1845 [4, 5] as follows: A
necessary and sufficient condition for a curve to be a general
helix is that the ratio of the first curvature to the second
curvature should be constant ;that is, 𝜅/𝜏 is constant along the
curve, where 𝜅 and 𝜏 denote the first and second curvatures
of the curve, respectively. In [6], Özdamar and Hacisalihoğlu
defined harmonic curvature functions 𝐻

𝑖
(1 ≤ 𝑖 ≤ 𝑛 − 2)

of a curve 𝛼 and generalized helices in 𝐸3 to those in
𝑛-dimensional Euclidean space 𝐸𝑛. Moreover, they gave a
characterization for the inclined curves in 𝐸𝑛:

“A curve is an inclined curve

if and only if
𝑛

∑

𝑖=1

𝐻
2

𝑖
= constant.”

(1)

Harmonic curvature functions have important role in
characterizations of general helices in higher dimensions,
because the notion of a general helix can be generalized to
higher dimension in different ways. However, these ways are
not easy to show which curves are general helices and finding
the axis of a general helix is complicated in higher dimension.
Thanks to harmonic curvature functions, we can easily obtain
the axis of such curves. Moreover, this way is confirmed in 3-
dimensional spaces.

Izumiya and Takeuchi defined a new kind of helix (slant
helix) and they gave a characterization of slant helices in
Euclidean 3-space 𝐸3 [7]. In 2008, Önder et al. defined a new
kind of slant helix in Euclidean 4-space 𝐸4 which is called
𝐵
2
-slant helix and they gave some characterizations of these

slant helices in Euclidean 4-space 𝐸4 [8]. And then in 2009
Gök et al. generalized 𝐵

2
-slant helix in 𝐸4 to 𝐸𝑛, 𝑛 > 3, called

𝑉
𝑛
-slant helix in Euclidean and Minkowski 𝑛-space [9, 10].

Lots of authors in their papers have investigated inclined
curves and slant helices using the harmonic curvature func-
tions in Euclidean and Minkowski 𝑛-space [11–15]. But,
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Şenol et al. [16] see for the first time that the characterization
of inclined curves and slant helices in (1) is true only for
the case necessity but not true for the case sufficiency in
Euclidean 𝑛-space. Then, they consider the precharacteriza-
tions about inclined curves and slant helices and restructure
them with the necessary and sufficient condition [16].

Similar to the work in [16], in this work, we define 𝑉
𝑛
-

slant helix and give characterizations about the helix with
necessary and sufficient condition in 𝑛-dimensional pseudo-
Riemannian manifolds for the first time.

2. Preliminaries

In this section, we give some basic definitions from differen-
tial geometry.

Definition 1. A metric tensor 𝑔 on a smooth manifold𝑀 is a
symmetric nondegenerate (0, 2) tensor field on𝑀.

In other words, 𝑔(𝑋, 𝑌) = 𝑔(𝑌,𝑋) for all 𝑋,𝑌 ∈ 𝑇𝑀

(tangent bundle) and at each point 𝑝 of𝑀 if 𝑔(𝑋
𝑝
, 𝑌
𝑝
) = 0

for all 𝑌
𝑝
∈ 𝑇
𝑝
(𝑀); then 𝑋

𝑝
= 0 (nondegenerate), where

𝑇
𝑝
(𝑀) is the tangent space of 𝑀 at the point 𝑝 and 𝑔 :

𝑇
𝑝
(𝑀) × 𝑇

𝑝
(𝑀) → R [17].

Definition 2. A pseudo-Riemannian manifold (or semi-
Riemannian manifold) is a smooth manifold 𝑀 furnished
with a metric tensor 𝑔. That is, a pseudo-Riemannian mani-
fold is an ordered pair (𝑀, 𝑔) [17].

Definition 3. One will recall the notion of a proper curve of
order 𝑛 in 𝑛 -dimensional pseudo-Riemannian manifold𝑀
with the metric tensor 𝑔. Let 𝛼 : 𝐼 → 𝑀 be a nonnull curve
in 𝑀 parametrized by the arc length 𝑠, where 𝐼 is an open
interval of the real lineR. One denotes the tangent vector field
of 𝛼 by 𝑉

1
. One assumes that 𝛼 satisfies the following Frenet

formula:

∇
𝑉
1

𝑉
1
= 𝑘
1
𝑉
2
,

∇
𝑉
1

𝑉
𝑖
= − 𝜀

𝑖−2
𝜀
𝑖−1
𝑘
𝑖−1
𝑉
𝑖−1
+ 𝑘
𝑖
𝑉
𝑖+1
, 1 < 𝑖 < 𝑛,

∇
𝑉
1

𝑉
𝑛
= − 𝜀

𝑛−2
𝜀
𝑛−1
𝑘
𝑛−1
𝑉
𝑛−1
,

(2)

where

𝑘
1
=

󵄩
󵄩
󵄩
󵄩
󵄩
∇
𝑉
1

𝑉
1

󵄩
󵄩
󵄩
󵄩
󵄩
> 0,

𝑘
𝑖
=

󵄩
󵄩
󵄩
󵄩
󵄩
∇
𝑉
1

𝑉
𝑖
+ 𝜀
𝑖−2
𝜀
𝑖−1
𝑘
𝑖−1
𝑉
𝑖−1

󵄩
󵄩
󵄩
󵄩
󵄩
> 0, 2 ≤ 𝑖 ≤ 𝑛 − 1,

𝜀
𝑗−1
= 𝑔 (𝑉

𝑗
, 𝑉
𝑗
) (= ±1) , 1 ≤ 𝑗 ≤ 𝑛, on 𝐼,

(3)

and ∇ is Levi-Civita connection of𝑀.
One calls such a curve a proper curve of order 𝑛, 𝑘

𝑖
(1 ≤

𝑖 ≤ 𝑛 − 1) its 𝑖th curvature, and 𝑉
1
, . . . , 𝑉

𝑛
its Frenet Frame

field.
Moreover, let one recall that ‖𝑋‖ = √|𝑔(𝑋,𝑋)| for 𝑋 ∈

𝑇𝑀, where 𝑇𝑀 is the tangent bundle of𝑀 [18].

3. 𝑉
𝑛
-Slant Helices and Their Harmonic

Curvature Functions

In this section, we give definition of a𝑉
𝑛
-slant helix curve in a

𝑛-dimensional pseudo-Riemannian manifold. Furthermore,
we give characterizations by using harmonic curvatures for
𝑉
𝑛
-slant helices.

Definition 4. Let𝑀 be a 𝑛-dimensional pseudo-Riemannian
manifold and let 𝛼(𝑠) be a proper curve of order 𝑛 (nonnull)
with the curvatures 𝑘

𝑖
(𝑖 = 1, . . . , 𝑛−1) in𝑀.Then, harmonic

curvature functions of 𝛼 are defined by

𝐻
∗

𝑖
: 𝐼 ⊂ R 󳨀→ R (4)

along 𝛼 in𝑀, where

𝐻
∗

0
= 0,

𝐻
∗

1
= 𝜀
𝑛−3
𝜀
𝑛−2

𝑘
𝑛−1

𝑘
𝑛−2

,

𝐻
∗

𝑖
= (𝑘
𝑛−𝑖
𝐻
∗

𝑖−2
− ∇
𝑉
1

𝐻
∗

𝑖−1
)

𝜀
𝑛−(𝑖+2)

𝜀
𝑛−(𝑖+1)

𝑘
𝑛−(𝑖+1)

, 2 ≤ 𝑖 ≤ 𝑛 − 2.

(5)

Note that ∇
𝑉
1

𝐻
∗

𝑖−1
= 𝑉
1
(𝐻
∗

𝑖−1
) = 𝐻

∗󸀠

𝑖−1
.

Definition 5. Let (𝑀, 𝑔) be a 𝑛-dimensional pseudo-
Riemannian manifold and let 𝛼(𝑠) be a proper curve of
order 𝑛 (nonnull). One calls 𝛼 as a 𝑉

𝑛
-slant helix in𝑀 if the

function

𝑔 (𝑉
𝑛
, 𝑋) (6)

is a nonzero constant along 𝛼 and 𝑋 is a parallel vector field
along 𝛼 in𝑀; that is, ∇

𝑉
1

𝑋 = 0. Here, 𝑉
𝑛
is 𝑛th Frenet frame

field and𝑋 ∈ 𝑇𝑀. Also,𝑋 is called the axis of 𝛼.

Lemma6. Let (𝑀, 𝑔) be a 𝑛-dimensional pseudo-Riemannian
manifold and let 𝛼(𝑠) be a proper curve of order 𝑛 (nonnull).
Let one assume that 𝐻∗

𝑛−2
̸= 0 for 𝑖 = 𝑛 − 2. Then, 𝜀

𝑛−3
𝐻
∗2

1
+

𝜀
𝑛−4
𝐻
∗2

2
+ ⋅ ⋅ ⋅ + 𝜀

0
𝐻
∗2

𝑛−2
is nonzero constant if and only if

𝑉
1
(𝐻
∗

𝑛−2
) = 𝐻

∗󸀠

𝑛−2
= 𝑘
1
𝐻
∗

𝑛−3
, where 𝑉

1
and {𝐻∗

1
, . . . , 𝐻

∗

𝑛−2
} are

the unit tangent vector field and the harmonic curvatures of 𝛼,
respectively.

Proof. First, we assume that 𝜀
𝑛−3
𝐻
∗2

1
+ 𝜀
𝑛−4
𝐻
∗2

2
+ ⋅ ⋅ ⋅ + 𝜀

0
𝐻
∗2

𝑛−2

is nonzero constant. Consider the following functions given
in Definition 4:

𝐻
∗

𝑖
= (𝑘
𝑛−𝑖
𝐻
∗

𝑖−2
− 𝐻
∗󸀠

𝑖−1
)

𝜀
𝑛−(𝑖+2)

𝜀
𝑛−(𝑖+1)

𝑘
𝑛−(𝑖+1)

(7)

for 3 ≤ 𝑖 ≤ 𝑛 − 2. So, from the equality, we can write

𝑘
𝑛−(𝑖+1)

𝐻
∗

𝑖
= 𝜀
𝑛−(𝑖+2)

𝜀
𝑛−(𝑖+1)

(𝑘
𝑛−𝑖
𝐻
∗

𝑖−2
− 𝐻
∗󸀠

𝑖−1
) . (8)

Hence, in (8), if we take 𝑖 + 1 instead of 𝑖, we get

𝜀
𝑛−(𝑖+3)

𝜀
𝑛−(𝑖+2)

𝐻
∗󸀠

𝑖
= 𝜀
𝑛−(𝑖+3)

𝜀
𝑛−(𝑖+2)

𝑘
𝑛−(𝑖+1)

𝐻
∗

𝑖−1

− 𝑘
𝑛−(𝑖+2)

𝐻
∗

𝑖+1
, 2 ≤ 𝑖 ≤ 𝑛 − 3

(9)
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together with

𝐻
∗󸀠

1
= −

1

𝜀
𝑛−4
𝜀
𝑛−3

𝑘
𝑛−3
𝐻
∗

2
(10)

or

𝐻
∗󸀠

1
= −𝜀
𝑛−4
𝜀
𝑛−3
𝑘
𝑛−3
𝐻
∗

2
. (11)

On the other hand, since 𝜀
𝑛−3
𝐻
∗2

1
+ 𝜀
𝑛−4
𝐻
∗2

2
+ ⋅ ⋅ ⋅ + 𝜀

0
𝐻
∗2

𝑛−2
is

constant, we have

𝜀
𝑛−3
𝐻
∗

1
𝐻
∗󸀠

1
+ 𝜀
𝑛−4
𝐻
∗

2
𝐻
∗󸀠

2
+ ⋅ ⋅ ⋅ + 𝜀

0
𝐻
∗

𝑛−2
𝐻
∗󸀠

𝑛−2
= 0 (12)

and so

𝜀
0
𝐻
∗

𝑛−2
𝐻
∗󸀠

𝑛−2
= −𝜀
𝑛−3
𝐻
∗

1
𝐻
∗󸀠

1

− 𝜀
𝑛−4
𝐻
∗

2
𝐻
∗󸀠

2
− ⋅ ⋅ ⋅ − 𝜀

1
𝐻
∗

𝑛−3
𝐻
∗󸀠

𝑛−3
.

(13)

By using (9) and (11), we obtain

𝐻
∗

1
𝐻
∗󸀠

1
= −𝜀
𝑛−4
𝜀
𝑛−3
𝑘
𝑛−3
𝐻
∗

1
𝐻
∗

2
, (14)

𝜀
𝑛−(𝑖+3)

𝜀
𝑛−(𝑖+2)

𝐻
∗

𝑖
𝐻
∗󸀠

𝑖
= 𝜀
𝑛−(𝑖+3)

𝜀
𝑛−(𝑖+2)

𝑘
𝑛−(𝑖+1)

𝐻
∗

𝑖−1
𝐻
∗

𝑖

− 𝑘
𝑛−(𝑖+2)

𝐻
∗

𝑖
𝐻
∗

𝑖+1
, 2 ≤ 𝑖 ≤ 𝑛 − 3.

(15)

Therefore, by using (13), (14), and (15), an algebraic calculus
shows that

𝜀
0
𝐻
∗

𝑛−2
𝐻
∗󸀠

𝑛−2
= 𝜀
0
𝑘
1
𝐻
∗

𝑛−3
𝐻
∗

𝑛−2
(16)

or

𝐻
∗

𝑛−2
𝐻
∗󸀠

𝑛−2
= 𝑘
1
𝐻
∗

𝑛−3
𝐻
∗

𝑛−2
. (17)

Since𝐻∗
𝑛−2

̸= 0, we get the relation

𝐻
∗󸀠

𝑛−2
= 𝑘
1
𝐻
∗

𝑛−3
. (18)

Conversely, we assume that

𝐻
∗󸀠

𝑛−2
= 𝑘
1
𝐻
∗

𝑛−3
. (19)

By using (19) and𝐻∗
𝑛−2

̸= 0, we can write

𝐻
∗

𝑛−2
𝐻
∗󸀠

𝑛−2
= 𝑘
1
𝐻
∗

𝑛−2
𝐻
∗

𝑛−3
. (20)

From (15), we have the following equation system:

for 𝑖 = 𝑛 − 3, 𝜀
1
𝐻
∗

𝑛−3
𝐻
∗󸀠

𝑛−3
= 𝜀
1
𝑘
2
𝐻
∗

𝑛−4
𝐻
∗

𝑛−3

− 𝜀
0
𝑘
1
𝐻
∗

𝑛−3
𝐻
∗

𝑛−2
,

for 𝑖 = 𝑛 − 4, 𝜀
2
𝐻
∗

𝑛−4
𝐻
∗󸀠

𝑛−4
= 𝜀
2
𝑘
3
𝐻
∗

𝑛−5
𝐻
∗

𝑛−4

− 𝜀
1
𝑘
2
𝐻
∗

𝑛−4
𝐻
∗

𝑛−3
,

for 𝑖 = 𝑛 − 5, 𝜀
3
𝐻
∗

𝑛−5
𝐻
∗󸀠

𝑛−5
= 𝜀
3
𝑘
4
𝐻
∗

𝑛−6
𝐻
∗

𝑛−5

− 𝜀
2
𝑘
3
𝐻
∗

𝑛−5
𝐻
∗

𝑛−4
,

...

for 𝑖 = 2, 𝜀
𝑛−4
𝐻
∗

2
𝐻
∗󸀠

2
= 𝜀
𝑛−4
𝑘
𝑛−3
𝐻
∗

1
𝐻
∗

2
− 𝜀
𝑛−5
𝑘
𝑛−4
𝐻
∗

2
𝐻
∗

3
.

(21)

Moreover, from (14) and (20), we obtain

𝜀
𝑛−3
𝐻
∗

1
𝐻
∗󸀠

1
= −𝜀
𝑛−4
𝑘
𝑛−3
𝐻
∗

1
𝐻
∗

2
,

𝜀
0
𝐻
∗

𝑛−2
𝐻
∗󸀠

𝑛−2
= 𝜀
0
𝑘
1
𝐻
∗

𝑛−2
𝐻
∗

𝑛−3
.

(22)

So, by using the above equation system and considering (22),
an algebraic calculus shows that

𝜀
𝑛−3
𝐻
∗

1
𝐻
∗󸀠

1
+ 𝜀
𝑛−4
𝐻
∗

2
𝐻
∗󸀠

2
+ ⋅ ⋅ ⋅ + 𝜀

0
𝐻
∗

𝑛−2
𝐻
∗󸀠

𝑛−2
= 0. (23)

And, by integrating (23), we can easily say that

𝜀
𝑛−3
𝐻
∗2

1
+ 𝜀
𝑛−4
𝐻
∗2

2
+ ⋅ ⋅ ⋅ + 𝜀

0
𝐻
∗2

𝑛−2
(24)

is a nonzero constant. This completes the proof.

Proposition 7. Let (𝑀, 𝑔) be a 𝑛-dimensional pseudo-
Riemannian manifold and let 𝛼(𝑠) be a proper curve of order 𝑛
(nonnull). If 𝛼 is 𝑉

𝑛
-slant helix in𝑀, then we have

𝑔 (𝑉
𝑛−(𝑖+1)

, 𝑋) = 𝐻
∗

𝑖
𝑔 (𝑉
𝑛
, 𝑋) , 𝑖 = 0, 1, . . . , 𝑛 − 2, (25)

where 𝑋 is the axis of 𝛼. Here, {𝑉
1
, 𝑉
2
, . . . , 𝑉

𝑛
} denote the

Frenet frame of𝛼 and {𝐻∗
1
, 𝐻
∗

2
, . . . , 𝐻

∗

𝑛−2
} denote the harmonic

curvature functions of the curve 𝛼.

Proof. We will use the induction method. Let 𝑖 = 1. Since 𝑋
is the axis of the 𝑉

𝑛
-slant helix 𝛼, we get

𝑋 = 𝜆
1
𝑉
1
+ ⋅ ⋅ ⋅ + 𝜆

𝑛
𝑉
𝑛
. (26)

From the definition of 𝑉
𝑛
-slant helix, we have

𝑔 (𝑉
𝑛
, 𝑋) = 𝜆

𝑛
𝜀
𝑛−1
= constant. (27)

A differentiation in (27) and the Frenet formulas gives us

𝑔 (𝑉
𝑛−1
, 𝑋) = 0. (28)

Again, differentiation in (28) and the Frenet formulas give

𝑔 (∇
𝑉
1

𝑉
𝑛−1
, 𝑋) = 0,

−𝜀
𝑛−3
𝜀
𝑛−2
𝑘
𝑛−2
𝑔 (𝑉
𝑛−2
, 𝑋) + 𝑘

𝑛−1
𝑔 (𝑉
𝑛
, 𝑋) = 0,

𝑔 (𝑉
𝑛−2
, 𝑋) = 𝜀

𝑛−3
𝜀
𝑛−2

𝑘
𝑛−1

𝑘
𝑛−2

𝑔 (𝑉
𝑛
, 𝑋) ,

𝑔 (𝑉
𝑛−2
, 𝑋) = 𝐻

∗

1
𝑔 (𝑉
𝑛
, 𝑋) ,

(29)

respectively. Hence, it is shown that (25) is true for 𝑖 = 1.
We now assume that (25) is true for the first 𝑖 − 1. Then,

we have

𝑔 (𝑉
𝑛−𝑖
, 𝑋) = 𝐻

∗

𝑖−1
𝑔 (𝑉
𝑛
, 𝑋) . (30)

A differentiation in (30) and the Frenet formulas give us that

− 𝜀
𝑛−𝑖−2

𝜀
𝑛−𝑖−1

𝑘
𝑛−𝑖−1

𝑔 (𝑉
𝑛−𝑖−1

, 𝑋) + 𝑘
𝑛−𝑖
𝑔 (𝑉
𝑛−𝑖+1

, 𝑋)

= ∇
𝑉
1

𝐻
∗

𝑖−1
𝑔 (𝑉
𝑛
, 𝑋) .

(31)
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Since we have the induction hypothesis, 𝑔(𝑉
𝑛−𝑖+1

, 𝑋) =

𝐻
∗

𝑖−2
𝑔(𝑉
𝑛
, 𝑋), we get

(𝑘
𝑛−𝑖
𝐻
∗

𝑖−2
− ∇
𝑉
1

𝐻
∗

𝑖−1
)

𝜀
𝑛−(𝑖+2)

𝜀
𝑛−(𝑖+1)

𝑘
𝑛−(𝑖+1)

𝑔 (𝑉
𝑛
, 𝑋)

= 𝑔 (𝑉
𝑛−(𝑖+1)

, 𝑋) ,

(32)

which gives

𝑔 (𝑉
𝑛−(𝑖+1)

, 𝑋) = 𝐻
∗

𝑖
𝑔 (𝑉
𝑛
, 𝑋) . (33)

Theorem 8. Let (𝑀, 𝑔) be a 𝑛-dimensional pseudo-
Riemannian manifold and let 𝛼(𝑠) be a proper curve of
order 𝑛 (nonnull). Then, 𝛼 is a 𝑉

𝑛
-slant helix in𝑀 if and only

if it satisfies that

𝑛−2

∑

𝑖=1

𝜀
𝑛−(𝑖+2)

𝐻
∗2

𝑖
(34)

is equal to nonzero constant and𝐻∗
𝑛−2

̸= 0.

Proof. Suppose 𝛼 to be a 𝑉
𝑛
-slant helix. According to Defini-

tion 5 and the proof of Proposition 7,

𝑔 (𝑉
𝑛
, 𝑋) = 𝜆

𝑛
𝜀
𝑛−1
= constant, (35)

where𝑋 is the axis of 𝛼. From Proposition 7, we have

𝑔 (𝑉
𝑛−(𝑖+1)

, 𝑋) = 𝐻
∗

𝑖
𝑔 (𝑉
𝑛
, 𝑋) (36)

for 1 ≤ 𝑖 ≤ 𝑛 − 2. Moreover, from (35) and Frenet formulas,
we can write

−𝜀
𝑛−2
𝜀
𝑛−1
𝑘
𝑛−1
𝑔 (𝑉
𝑛−1
, 𝑋) = 0. (37)

Since −𝜀
𝑛−2
𝜀
𝑛−1
𝑘
𝑛−1

is different from zero, 𝑔(𝑉
𝑛−1
, 𝑋) = 0. It is

known that the system {𝑉
1
, . . . , 𝑉

𝑛
} is a basis of 𝜘(𝑀) (tangent

bundle) along 𝛼. Hence,𝑋 can be expressed in the form

𝑋 =

𝑛

∑

𝑖=1

𝜆
𝑖
𝑉
𝑖
. (38)

Moreover, from (38), we get the system

𝜀
0
𝜆
1
= 𝑔 (𝑋,𝑉

1
) ,

𝜀
1
𝜆
2
= 𝑔 (𝑋,𝑉

2
) ,

...

𝜀
𝑛−3
𝜆
𝑛−2
= 𝑔 (𝑋,𝑉

𝑛−2
) ,

𝜀
𝑛−2
𝜆
𝑛−1
= 𝑔 (𝑋,𝑉

𝑛−1
) = 0,

𝜀
𝑛−1
𝜆
𝑛
= 𝑔 (𝑋,𝑉

𝑛
)

(39)

by using the metric 𝑔. Therefore, from Proposition 7 and the
above system, we can see that the following system is true:

𝜆
1
= 𝑔 (𝑋,𝑉

1
) = 𝜀
0
𝐻
∗

𝑛−2
𝑔 (𝑋,𝑉

𝑛
) ,

𝜆
2
= 𝑔 (𝑋,𝑉

2
) = 𝜀
1
𝐻
∗

𝑛−3
𝑔 (𝑋,𝑉

𝑛
) ,

...

𝜆
𝑛−2
= 𝑔 (𝑋,𝑉

𝑛−2
) = 𝜀
𝑛−3
𝐻
∗

1
𝑔 (𝑋,𝑉

𝑛
) ,

𝜆
𝑛−1
= 𝑔 (𝑋,𝑉

𝑛−1
) = 0,

𝜆
𝑛
= 𝜀
𝑛−1
𝑔 (𝑋,𝑉

𝑛
) .

(40)

Thus, the axis of the curve 𝛼 can be easily obtained as

𝑋 = 𝑔 (𝑋,𝑉
𝑛
) {

𝑛−2

∑

𝑖=1

𝐻
∗

𝑖
𝑉
𝑛−(𝑖+1)

𝜀
𝑛−(𝑖+2)

+ (𝜀
𝑛−1
𝑉
𝑛
)} (41)

by making use of equality (38) and the last system.
Therefore, from (41), we can write

𝑔 (𝑋,𝑋) = [𝑔 (𝑋,𝑉
𝑛
)]
2

(𝜀
3

0
𝐻
∗2

𝑛−2
+ ⋅ ⋅ ⋅ + 𝜀

3

𝑛−3
𝐻
∗2

1
+ 𝜀
3

𝑛−1
) .

(42)

Moreover, by the definition of metric tensor, we have

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑋,𝑋)

󵄨
󵄨
󵄨
󵄨
= ‖𝑋‖

2

. (43)

Since 𝛼 is a 𝑉
𝑛
-slant helix, ‖𝑋‖ = constant and 𝑔(𝑋,𝑉

𝑛
) is

nonzero constant along 𝛼. Hence, from (42), we obtain that

𝜀
3

0
𝐻
∗2

𝑛−2
+ ⋅ ⋅ ⋅ + 𝜀

3

𝑛−3
𝐻
∗2

1
+ 𝜀
3

𝑛−1
(44)

is constant. In other words,

𝜀
0
𝐻
∗2

𝑛−2
+ ⋅ ⋅ ⋅ + 𝜀

𝑛−3
𝐻
∗2

1
=

𝑛−2

∑

𝑖=1

𝜀
𝑛−(𝑖+2)

𝐻
∗2

𝑖
(45)

is constant.
Now, we will show that𝐻∗

𝑛−2
̸= 0. We assume that𝐻∗

𝑛−2
=

0. Then, for 𝑖 = 𝑛 − 2 in (36), we have

𝑔 (𝑉
1
, 𝑋) = 𝐻

∗

𝑛−2
𝑔 (𝑋,𝑉

𝑛
) = 0. (46)

If we take derivative in each part of (46) in the direction 𝑉
1

on𝑀, then we have

𝑔 (∇
𝑉
1

𝑉
1
, 𝑋) + 𝑔 (𝑉

1
, ∇
𝑉
1

𝑋) = 0. (47)

On the other hand, ∇
𝑉
1

𝑋 = 0 since 𝛼 is a𝑉
𝑛
-slant helix.Then,

from (47), we have

𝑔 (∇
𝑉
1

𝑉
1
, 𝑋) = 𝑘

1
𝑔 (𝑉
2
, 𝑋) = 0 (48)

by using the Frenet formulas. Since 𝑘
1
is positive, it must be

𝑔(𝑉
2
, 𝑋) = 0. Now, for 𝑖 = 𝑛 − 3 in (36),

𝑔 (𝑉
2
, 𝑋) = 𝐻

∗

𝑛−3
𝑔 (𝑉
𝑛
, 𝑋) . (49)



Abstract and Applied Analysis 5

Since 𝑔(𝑉
2
, 𝑋) = 0 and 𝑔(𝑉

𝑛
, 𝑋) ̸= 0, it must be 𝐻∗

𝑛−3
= 0.

Continuing this process, we get 𝐻∗
1
= 0. Let us recall that

𝐻
∗

1
= 𝜀
𝑛−3
𝜀
𝑛−2
(𝑘
𝑛−1
/𝑘
𝑛−2
) ; thus we have a contradiction

because all the curvatures are nowhere zero. Consequently,
𝐻
∗

𝑛−2
̸= 0.

Conversely, we assume that ∑𝑛−2
𝑖=1
𝜀
𝑛−(𝑖+2)

𝐻
∗2

𝑖
= constant

and𝐻∗
𝑛−2

̸= 0. We take the vector field

𝑋 = 𝜆
𝑛
𝑉
𝑛
+

𝑛−2

∑

𝑖=1

𝜆
𝑛
𝜀
𝑛−1
𝜀
𝑛−(𝑖+2)

𝐻
∗

𝑖
𝑉
𝑛−(𝑖+1)

(50)

or

𝑋 = 𝜆
𝑛
𝑉
𝑛
+ 𝜆
𝑛
𝜀
𝑛−1

𝑛

∑

𝑖=3

𝜀
𝑛−𝑖
𝐻
∗

𝑖−2
𝑉
𝑛−(𝑖−1)

, (51)

where 𝜆
𝑛
is constant. We will show that it is parallel along 𝛼;

that is, ∇
𝑉
1

𝑋 = 0. By direct calculation, we have

∇
𝑉
1

𝑋 = ∇
𝑉
1

(𝜆
𝑛
𝑉
𝑛
) + 𝜆
𝑛
𝜀
𝑛−1

𝑛

∑

𝑖=3

𝜀
𝑛−𝑖
∇
𝑉
1

(𝐻
∗

𝑖−2
𝑉
𝑛−(𝑖−1)

)

= 𝜆
𝑛
∇
𝑉
1

𝑉
𝑛

+ 𝜆
𝑛
𝜀
𝑛−1

𝑛

∑

𝑖=3

𝜀
𝑛−𝑖
[𝐻
∗󸀠

𝑖−2
𝑉
𝑛−(𝑖−1)

+ 𝐻
∗

𝑖−2
∇
𝑉
1

(𝑉
𝑛−(𝑖−1)

)]

= 𝜆
𝑛
𝜀
𝑛−1
[− 𝜀
𝑛−2
𝑘
𝑛−1
𝑉
𝑛−1

+ (

𝑛−1

∑

𝑖=3

𝜀
𝑛−𝑖
𝐻
∗󸀠

𝑖−2
𝑉
𝑛−(𝑖−1)

− 𝜀
𝑛−(𝑖+1)

𝑘
𝑛−𝑖
𝑉
𝑛−𝑖
𝐻
∗

𝑖−2

+𝑘
𝑛−(𝑖−1)

𝑉
𝑛−(𝑖−2)

𝐻
∗

𝑖−2
𝜀
𝑛−𝑖
)

+𝜀
0
𝐻
∗󸀠

𝑛−2
𝑉
1
+ 𝜀
0
𝑘
1
𝐻
∗

𝑛−2
𝑉
2
] .

(52)

Here, in the case 𝑛 = 3, we omit the term of sum.
On the other hand, by using (9), we can write

𝜀
𝑛−(𝑖+1)

𝜀
𝑛−𝑖
𝐻
∗󸀠

𝑖−2
= 𝜀
𝑛−(𝑖+1)

𝜀
𝑛−𝑖
𝑘
𝑛−(𝑖−1)

𝐻
∗

𝑖−3
− 𝑘
𝑛−𝑖
𝐻
∗

𝑖−1
(53)

for 4 ≤ 𝑖 ≤ 𝑛−1 together with (11). Moreover, from Lemma 6,
we know that

𝐻
∗󸀠

𝑛−2
= 𝑘
1
𝐻
∗

𝑛−3
. (54)

Therefore, by using (11), (53), and (54) and by the definition
of 𝐻∗
1
, algebraic calculus shows that ∇

𝑉
1

𝑋 = 0. Besides,
𝑔(𝑉
𝑛
, 𝑋) = 𝜆

𝑛
𝜀
𝑛−1

is constant. Consequently, 𝛼 is a 𝑉
𝑛
-slant

helix in𝑀.

Corollary 9. Let (𝑀, 𝑔) be a 𝑛-dimensional pseudo-
Riemannian manifold and let 𝛼(𝑠) be a proper curve of order

𝑛 (non-null). Then, 𝛼 is a 𝑉
𝑛
-slant helix in 𝑀 if and only

if 𝐻∗󸀠
𝑛−2

= 𝑘
1
𝐻
∗

𝑛−3
and 𝐻∗

𝑛−2
̸= 0, where {𝐻∗

1
, 𝐻
∗

2
, . . . , 𝐻

∗

𝑛−2
}

denote the harmonic curvature functions of the curve 𝛼.

Proof. It is obvious by using Lemma 6. andTheorem 8.

4. Conclusion

In this work, 𝑉
𝑛
-slant helix is defined and new character-

izations are given about the helix by using the harmonic
curvature functions in pseudo-Riemannian manifolds. Links
with other disciplines of the curve can be examined since
the curve is important for other branches of science such
as molecular biology and mathematical physics. On the
other hand, the curve can be analyzed in different spaces of
mathematics.
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38, 2009.



6 Abstract and Applied Analysis
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