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In the recent decade, disease classification and biomarker discovery have become increasingly important in modern biological
and medical research. ECGs are comparatively low-cost and noninvasive in screening and diagnosing heart diseases. With the
development of personal ECG monitors, large amounts of ECGs are recorded and stored; therefore, fast and efficient algorithms
are called for to analyze the data and make diagnosis. In this paper, an efficient and easy-to-interpret procedure of cardiac disease
classification is developed through novel feature extraction methods and comparison of classifiers. Motivated by the observation
that the distributions of various measures on ECGs of the diseased group are often skewed, heavy-tailed, or multimodal, we
characterize the distributions by sample quantiles which outperform sample means. Three classifiers are compared in application
both to all features and to dimension-reduced features by PCA: stepwise discriminant analysis (SDA), SVM, and LASSO logistic
regression. It is found that SDA applied to dimension-reduced features by PCA is the most stable and effective procedure, with
sensitivity, specificity, and accuracy being 89.68%, 84.62%, and 88.52%, respectively.

1. Introduction

In the recent decade, classification and feature discovery have
attracted more and more attention in many areas of sciences,
such as biology, medicine, chemistry, and economics. In
particular, disease classification and biomarker discovery
become increasingly important in modern biological and
medical research. ECGs are comparatively low-cost and non-
invasive in screening and diagnosing heart diseases. With the
development of personal ECG monitors, large amounts of
ECGs are recorded and stored; therefore, fast and efficient
algorithms are called for to analyze the data andmake diagno-
sis. In this paper, an efficient and easy-to-interpret procedure
of cardiac disease classification is developed through novel
feature extraction methods and comparison of classifiers.
Such procedure can be applied to other similar classification
and biomarker identification problems.

Classification of ECGs usually consists of three steps: sig-
nal preprocessing, feature extraction, and classification. Fea-
tures that have been used in characterizing the ECGs include
heartbeat interval features, frequency-based features, higher
order cumulant features, Karhunen-Loeve expansion of ECG

morphology, and hermite polynomials [1–5]. Previous meth-
ods of ECG classification include linear discriminants [6],
decision tree [7–9], neural networks [1, 10, 11], support vector
machine [2–5], and Gaussian mixture model algorithm [12].
Some researchers perform disease detection using ECG data
along with other clinical measurements [8, 10]. However, for
those methods which used coefficients of various basis func-
tions as features for classification, such as the wavelet coeffi-
cients, the coefficients are usually not easy to interpret clini-
cally. And for those methods which only chose certain parts
on ECGs for classification, their selectionmight be subjective
and might cause bias in the final results. A simple method
using 12-lead ECG data is developed in [13], which measures
eight temporal intervals for each of the 12 leads, and uses
the number of the intervals exceeding the control value by
two standard deviations as a disease indicator. Although the
sensitivity and specificity of this method are relatively high
compared to other methods (72% and 92%, resp.), it does
not include variables other than temporal measurements and
cannot capture the features well when the distributions of the
measurements are heavy-tailed or skewed or exhibit other
nonnormal patterns.
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Table 1: Number of cases in the training and testing data sets
according to their class of diagnosis.

Data set Diagnosis class Number of cases

Training No disease 26
Disease 98

Testing No disease 26
Disease 96

In this paper, we use novel methods to extract inter-
pretable features and compare the performance of different
types of classifiers. The novelties of this paper are threefold.
Firstly, we extract features by taking quantiles of the distribu-
tions of measures on ECGs, while commonly used character-
izing feature is themean.This ismotivated by our observation
that the distributions of the measures of the diseased group
are often skewed, heavy-tailed, ormultimodal, whose features
cannot be well captured by the mean. It turns out that the
performance of quantile measures is better than that of the
mean measures. Secondly, we include commonly used mea-
surement variables on ECGs without preselection and use
dimension reduction methods to identify biomarkers. Our
method is useful when the number of input variables is large
and no prior information is available on which ones are more
important. Thirdly, we compare the performance of three
frequently used classifiers applied both to all features and
to dimension-reduced features by PCA. The three methods
are from classical to modern: stepwise discriminant analysis
(SDA), SVM, and LASSO logistic regression. It is found that
SDA on dimension-reduced features by PCA is the most
stable and effective procedure, with sensitivity, specificity, and
accuracy being 89.68%, 84.62%, and 88.52%, respectively.

2. Data Description and Signal Preprocessing

The real data used in the paper is PTB data set available
at http://www.physionet.org/physiobank/database/ptbdb/. It
contains ECG records of 290 volunteers; some are healthy
and others diagnosed with certain cardiac diseases. Each
subject has several 1-2-minute-long records of standard 12-
lead ECGs, accompanied with his/her gender, age, and
clinical diagnosis results. There are 219 male and 81 female
subjects, age ranging from 17 years to 87 years with an
average age of 57.2. Among the 290 subjects, 44 subjects have
missing information in their records, so 246 subjects with
498 ECG records are used in classification. The data contains
five health status categories: healthy, myocardial infarction,
cardiomyopathy, atrioventricular bundle branch block, and
rhythm disorders. Since the sample sizes for cardiomyopathy,
atrioventricular bundle branch block, and rhythm disorders
are too small to generate a reasonable classifier, we put the
disease groups together to form a “Disease” category; see
Table 1. The sampling frequency of the data set is 1000Hz,
and the precision is 16 bits. The input voltage is about 16mV,
and the compensation offset voltage is about 300mV.

We use single-lead data (MLII) for classification, noting
that the methods can be applied to 12-lead data as well. The
ECGPUWAVE function in the WFDB package available

at http://www.physionet.org/physiotools/ecgpuwave/ is
applied to mark the start, peak, and end points of the P
wave, the QRS complex, and the T wave. This function also
provides the T wave type of each heartbeat which is one of
the features used in classification.

3. Feature Extraction

ECGmeasurements for each heartbeat are obtained based on
the annotations by the ECGPUWAVE function. Four types
of features are considered as input variables for classification:
T wave type, time span measurements, amplitude measure-
ments, and the slopes of waveforms. Below are detailed
descriptions about these features.

3.1. Four Types of Features

(1) TWave Type.TheECGPUWAVE function labels 6 types of
T waves for each beat: Normal, Inverted, Positive Monopha-
sic, Negative Monophasic, Biphasic Negative-Positive, and
Biphasic Positive-Negative based on the T wave morphology.
This is the only categorical variable considered.

(2) Time Span Measurements. Six commonly used time span
measurements are considered: the length of the RR interval,
PR interval, QT interval, P wave, QRS wave, and T wave.

(3) Amplitude Measurements. The amplitudes of P wave, R-
peak, and T wave are used as input variables. To measure the
P wave amplitude, we first estimate the baseline by taking the
mean of the values in the PR segment, ST segment, and TP
segment (from the end of the T wave to the start of the P
wave of the next heartbeat), then subtract the maximum and
minimum values of the P wave by the estimated baseline, and
take the one with a bigger absolute value as the amplitude of P
wave. Other amplitude measurements are obtained similarly.

(4)The Slopes of Waveforms.The slopes of waveforms are also
considered to measure the dynamic features of a heartbeat.
Each heartbeat is split into nine segments and the slope of
the waveform in each segment is estimated by simple linear
regression. Table 2 lists the nine waveforms with definitions.

3.2. Adjustment for Time SpanMeasurements. It is well docu-
mented that the QT interval is related to the RR interval and
needs to be adjusted to be compared among beats. Similarly,
other time span measures also tend to change with the RR
interval. Note that a commonly used clinical correction for
QT interval is Bazett’s formula [14]: QT

𝑐
= QT/√RR, where

QT
𝑐
represents the adjusted value of QT interval. We thus

apply Model (1) to the data of healthy subjects to find correc-
tion formulas for the other time spanmeasurement variables:

𝑦 = 𝛽RR𝛼 + 𝜀, (1)

where 𝑦 represents a time spanmeasurement variable and 𝜀 is
an error term.Through investigating the scatterplots between
𝑦 and RR, the range of 𝛼 in (1) for all these measurement
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Figure 1: Sample distributions of the PR interval, the QT interval, the slope of the Up-T waveform, and the slope of Down-T waveform of
both healthy and diseased subjects.

Table 2: Definition of the nine waveforms.

Waveform Definition

Up-P Waveform from the start of the P wave to the peak
of the P wave

Down-P Waveform from the peak of the P wave to the end
of the P wave

PR Waveform from the end of the P wave to the start
of the QRS wave

Up-R Waveform from the start of the QRS wave to the
peak of the R wave

Down-R Waveform from the peak of the R wave to the end
of the QRS wave

ST Waveform from the end of the QRS wave to the
start of the T wave

Up-T Waveform from the start of the T wave to the peak
of the T wave

Down-T Waveform from the peak of the T wave to the end
of the T wave

TP
Waveform from the end of the T wave of the
current beat to the start of the P wave of the next
beat

variables is roughly within [0, 1]. Though 𝛼 is a continuous
variable, we discretize its range and select a best value of
𝛼 among {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} for each
variable. The selection criterion is the goodness of fit of the
model characterized by the R-square. After estimating 𝛼 for

each variable, we use the formula (𝑌
𝑐
= 𝑌/RR𝛼) to adjust the

time span measurement variables:

PR
𝑐
=

PR
RR0.2
,

Pspan
𝑐
=

Pspan
RR0.1
,

Tspan
𝑐
=

Tspan
RR0.5
,

(2)

where Pspan and Tspan represent the lengths of P wave and
T wave, respectively. Length of QRS interval is not adjusted
since there is no correlation found between the QRS interval
and the RR interval.

3.3. Sample Quantiles. Each measurement variable (such as
the QT interval) has one observed value per beat. Note that
there are several hundred beats observed for each subject.
Variation among beats can be represented by the sample
distributions of the variables. To reduce the dimension and
retain the key information, summary measures need to be
chosen for each variable and input to a classifier. The most
frequently used summary measure in ECG analysis so far is
the mean of the sample distribution. However, we observe
that the distributions of various measures of the diseased
subjects are often skewed, more heavy-tailed, or multimodal,
as compared to the symmetric, light-tailed, and unimodal
distributions for healthy subjects. Figure 1 shows the sample
distributions of the PR interval, the QT interval, the slope of
the Up-T waveform, and the slope of Down-T waveform of
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Table 3: Major quantile features in the first eight principal components.

Principal components Major quantile features Contribution (63.60%)

PC1 QT-int p95, Down-T-slo p95, QT-int p90,Down-T-slo p90,
Down-T-slo p75 22.62%

PC2 Down-T-slo p25, Down-T-slo p5, Down-T-slo p10, Down-T-slo p75,
Down-T-slo p90 10.8%

PC3 Up-R-slo p99, QRS-amp p99, Up-T-slo p99, T-amp p99,
Up-T-slo p95 9.36%

PC4 Up-P-slo p1, P-amp p75, PR-slo p75, P-amp p90,Down-R-slo p95 7.12%
PC5 TP-slo p10, TP-slo p5, TP-slo p25, RR-int p90, RR-int p95 5.84%
PC6 PR-int p75, PR-int p90, PR-int p95, PR-int p99, PR-int p25 4.53%
PC7 Up-R-slo p25, Up-R-slo p1, P-int p25, Down-R-slo p25, T-amp p99 3.32%

PC8 Up-R-slo p1, Down-P-slo p90, Down-P-slo p75, Up-R-slo p5,
Down-P-slo p95 3.00%

Note: “-int” represents the length of the indicated interval, “-slo” represents the slope of the indicated waveform, and “-amp” represents the amplitude of the
indicated wave.

both healthy and diseased subjects. For PR and QT intervals,
the distributions of the diseased subjects have heavier tails
than the healthy subjects; for the slopes of Up-T and Down-T
waveforms, the distributions are mixed for diseased subjects
and not mixed for healthy subjects. The reason is that, for
diseased subjects, most of the heartbeats are normal, with a
small portion of the beats being abnormal, represented by
heavy-tailed or mixed distribution for certain measurement
variables. Therefore, quantiles which characterize the tail
behavior of the distributions are preferred. In this paper, the
1st, 5th, 10th, 25th, 75th, 90th, and 95th percentiles, denoted
by p1, p5, p10, p25, p75, p90, p95, and p99, respectively,
are used to differentiate the distributions of the two groups.
Further research on optimal quantile selection is ongoing.

3.4. Biomarker Discovery via PCA and Stepwise Discrimi-
nant Analysis. So far, six time span measurements, three
amplitude measurements, and nine slope measurements
are considered to be input variables for classification. For
each variable, eight sample quantiles (p1, p5, p10, p25, p75,
p90, p95, and p99) are used, which generates in total 144
input variables. The number of variables is relatively large
compared to the number of subjects in the data set.There also
exist correlations among these variables. Therefore, principal
component analysis (PCA) is used to reduce the dimension
and extractmajor information from the variables.TheTwave
type variable is not included in the PCA but is included in the
final classification.

Table 3 displays the major quantile features in the first
eight principal components. For each principal component,
five variables are listed with the order determined by their
coefficients. The selected features provide reasonable inter-
pretations; for example, PC1 and PC2 mostly consist of
quantiles of the QT interval and the slope of Down-T
waveform.These two variables represent a significant portion
of all information. Tomake comparisons, 10 variables selected
by stepwise discriminant analysis for best classification results
are listed in Table 4.The bolded variables are selected by both

Table 4: Major features selected by stepwise discriminant analysis.

Major features
T wave type,Down-T-slo p90, Up-R-slo p75, P-amp p10,
Up-T-slo p90, RR-int p95, QRS-amp p1, T-int p99,
QRS-amp p75, Down-R-slo p99,Down-R-slo p95
Note: “-int” represents the length of the indicated interval, “-slo” represents
the slope of the indicated waveform, and “-amp” represents the amplitude of
the indicated wave.

methods, which aremore likely to be biomarkers distinguish-
ing diseased subjects from healthy subjects. In particular,
Down-T-slo p90 plays an important role in both methods,
which makes it the most significant biomarker among them.

4. Classification

In the classification stage, performances of four sets of input
variables are compared:

(i) Features extracted with the mean.
(ii) Features extracted with the mean and dimension

reduced by PCA.
(iii) Features extracted with the quantiles.
(iv) Features extracted with the quantiles and dimension

reduced by PCA.

Besides, three frequently used classifiers are com-
pared: stepwise discriminant analysis (SDA), support vector
machine (SVM), and LASSO logistic regression (LLR). As
described briefly in the sequel, the three methods are based
on distinctively different principles and procedures.

(1) Stepwise Discriminant Analysis (SDA).Discriminant anal-
ysis is a classical statistical method to separate two or more
classes of objects based on the distance between them. In this
paper, we develop a discriminant function using a measure
of generalized squared distance. The generalized squared
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Figure 2: A flow chart of the classification procedure.

distance from a sample 𝑥 to a class 𝑡 is defined as 𝐷2
𝑡
=

𝑑

2

𝑡
+ 𝑔
1
(𝑡) + 𝑔

2
(𝑡), where 𝑑2

𝑡
is the squared Mahalanobis

distance from 𝑥 to class 𝑡, 𝑔
1
(𝑡) is nonzero if the variances of

different classes are unequal, and 𝑔
2
(𝑡) is nonzero if the prior

probabilities are unequal. Here 𝑔
2
(𝑡) is ignored since equal

prior probabilities are assumed. A test of homogeneity of the
variances is performed to determine whether to include the
item 𝑔

1
(𝑡). To reduce the high dimensionality of the input

variables, stepwise procedure is applied to select the most
useful variables.

(2) Support Vector Machine (SVM). The idea of the support
vector machines (SVMs) is to find the optimal hyperplanes
between data points of different groups; see [3] for a detailed
description about the method. Here the SVM classifier was
implemented using LIBSVM [15], a one-against-one multi-
class classifier.

(3) LASSO Logistic Regression (LLR). The LASSO (Least
Absolute Shrinkage and Selection Operator) is a widely
used shrinkage and selection method for regression models
with a constraint on the sum of the absolute values of the
model parameters [16]. In LASSO logistic regression, this
constraint is introduced into a logistic regression model. The
objective function for estimation can be expressed by adding
a Lagrangian penalty to the joint log-likelihood of the model
parameters [17]. In this paper, the “glmnet” package in R is
used for implementing LASSO logistic regression.

A summary of the procedure is shown by a flow chart in
Figure 2.

5. Results

Results of sensitivity, specificity, and accuracy obtained on
the test set of cases are displayed in Table 5. Comparing
the three methods, the performance of the SDA method is
better and more stable than the other two methods. The
classifiers built with SVM and LLR have good sensitivity
but unsatisfactory specificity. Between these two methods,
results of SVM are generally better than LLR. Comparing

Table 5: Classification results of the different methods on the test
set of cases.

Data set Method Sensitivity Specificity Accuracy

Mean
SDA 82.29% 73.08% 80.33%
SVM 85.57% 61.54% 80.49%
LLR 92.71% 34.61% 80.33%

Quantile
SDA 89.58% 73.04% 86.66%
SVM 86.6% 73.07% 83.74%
LLR 86.46% 69.23% 82.79%

Mean + PCA
SDA 87.5% 73.08% 84.43%
SVM 89.7% 50% 81.3%
LLR 89.58% 38.46% 78.69%

Quantile + PCA
SDA 89.68% 84.62% 88.52%
SVM 89.68% 76.92% 86.99%
LLR 94.79% 53.85% 86.70%

the quantile features to the mean features, the performance
of the quantile features is better and more stable than that
of the mean features no matter which classifier is used. It
is also found that the dimension reduction by PCA does
improve the performance of all the classifiers. Therefore,
the best classification procedure concluded in this paper is
“Quantile + PCA + SDA” which yields 89.68% sensitivity,
84.62% specificity, and 88.52% accuracy (bolded in Table 5).

In addition to the quantile features, the T wave type
variable is also useful in increasing the performance of the
classifiers. In stepwise discriminant analysis, the T wave type
variable is selected and increases the specificity by 7% for the
quantile-based data sets and 17% for the mean-based data
sets.

6. Discussion

Much research on ECG classification focused on beat classi-
fication; relatively little was on disease classification. To com-
pare our results with previously reported results, we use two
articles [7, 18] as examples. In [18], the authors compared the
performances of logistic regression, decision trees, and neural
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network in disease classification and used variables not only
on ECGs but also from other sources.Their sensitivity, speci-
ficity, and accuracy were all between 73.1% and 81.1%. These
are lower than our results. In [7], the author developed a
classification tree approach for detecting ischemiawith 3-lead
information on a study population of 90 subjects, the sensitiv-
ity and specificity reached 98%, higher than our results. How-
ever, since the data sets, the input variables, and the disease
categories were all different, it is rather hard to compare the
methods just based on results of sensitivity and specificity.

LASSO type of methods is well known for competitive
performance in variable selection and classification when the
number of independent variables is large (even larger than the
sample size) and only a few of them are related to the response
variable (model sparsity). In this application, the number of
independent variables is large but still can be handled well by
other methods. In addition, model sparsity may not be satis-
fied, because many variables may be related to the response
and they are correlated. In this case, PCA and stepwise pro-
cedures are more appropriate dimension reduction methods.

Due to low sample sizes in disease categories such as
bundle branch block, cardiomyopathy, and dysrhythmia, only
2-class classification is performed in the paper. However,
the proposed method can be extended to multiple disease
classification when more data are available. With bigger
sample sizes, multilead analysis is preferred to single-lead
analysis, since different diseases may show abnormality in
different leads.

The performance of quantile-based measures can be
improved by selecting more appropriate quantiles to dis-
tinguish the distributions of healthy and diseased subjects.
Instead of using eight fixed quantiles for each variable, one
may select one or two quantiles for each variable which best
distinguish the distributions of that variable. Although it may
take more time and effort to select optimal quantiles, both
the number of variables and their correlations can be greatly
reduced, extracted features will be more precise, and thus the
performance of classification and biomarker identification
will be greatly improved. This research is ongoing.
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