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Passive liquid dampers have been used to effectively reduce the dynamic response of civil infrastructures subjected to earthquakes
or strong winds.The design of liquid dampers for structural vibration control involves the determination of the optimal parameters.
This paper presents an optimal design methodology for tuned liquid column dampers (TLCDs) based on the H

∞
control theory.

A practical structure, Dalian Xinghai Financial Business Building, is used to illustrate the feasibility of the optimal procedure. The
model of structure is built by the finite elementmethod and simplified to the lumpedmassmodel. To facilitate the design of TLCDs,
the TLCD parametric optimization problem is transferred to the feedback controller design problem. Through the bounded real
lemma, an optimization problemwith bilinear matrix inequality (BMI) constraints is constructed to design a static output feedback
H
∞
controller. Iterative linear matrix inequality method is employed and it added some value range constraints to solve the BMI

problem. After the TLCD parameters are optimized, the responses of displacement and acceleration in frequency domain and time
domain are compared for the structure with and without TLCD. It is validated that the TLCD with the optimized parameters can
make the structure satisfy the need for safety and comfort.

1. Introduction

Civil structural buildings can be damaged under heavy
excitation, such as earthquake.Theobvious vibration induced
by some slight excitations, such as slight earthquakes and
strong winds, can make the people in the building feel
uncomfortable. Passive control is an effective strategy to
suppress the vibration [1–4]. However, a lot of passive control
devices are needed to be instrumented additionally. If there
is already some device as a part of the building, it will not
cost so much to deal with the vibration control. Tuned liquid
column damper (TLCD) is first proposed by Sakai et al. [5],
which can change its dynamics by tuning the mass, stiffness,
and damping. So TLCDcan be designed tomake its dynamics
be suitable for the vibration control of a building. In the tall
building, the liquid tank filled with fresh water has to be
instrumented for the fire protection or daily supply. TLCD
can be set in the building as a liquid tank and also used for
vibration control.

Considering Building 1 in Dalian Xinghai Financial
Business Building, this paper presents a building vibration

control example with TLCD. The finite element model is
built and compared with the lumped mass model. It is found
that these two models are pretty close. The TLCD dynamics
is introduced, and the building dynamics with TLCD is
discussed. Motivated by the method proposed by Moreno
and Thomson [6], the formulation is derived to transfer
the parametric optimization problem of TLCD to design a
feedback controller problem.

For the feedback controller problem, this paper focuses
on how to design a static output feedback 𝐻

∞
controller.

According to the bounded real lemma [7], designing the
static𝐻

∞
controller is an optimization problemwith bilinear

matrix inequality (BMI) constraints. However, BMI is not a
convex problem and cannot be solved with the general off-
the-shelf packages as linear matrix inequality (LMI). To solve
the static output feedback 𝐻

∞
controller, Rubió-Massegú et

al. [8] produced a simple expression of the controller, in
which the corresponding symmetric variable matrix in the
bounded real lemma is congruent with a block diagonal
matrix. However, this variable matrix cannot represent all
its possible results because there may exist some matrix
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Figure 1: The buildings in Dalian Xinghai Bay Financial Business
District.

that is not congruent with the block diagonal matrix. So
the controller is conservative, and the desired controller
may not be obtained. Zečević and Šiljak [9] present another
method to design the static output feedback controller by
making some transformations between the outputmatrix and
controller matrix. Unfortunately, this method also supposed
some relationship between output matrix and controller. So,
the controller is also conservative. This paper employs the
iterative linear matrix inequality (ILMI) method proposed
by Cao et al. [10] and adds some value range restrictions
into ILMI method. ILMI is solving a generalized eigenvalue
minimization problem and does the iteration till satisfying
the predetermined tolerance.

After the desired controller is obtained, the optimal
parameters of TLCD are determined. The responses of the
displacement and acceleration in frequency domain and time
domain are compared to illustrate the performance of the
optimized TLCD.

2. Practical Model

This paper considers the vibration control of a building
subjected to the earthquake excitation, which has 46 stories
and is 149.95 meters high, as shown in Figure 1.

The building has a frame-shear-wall structure and can
be modeled by the finite element software ETABS. The finite
element model contains 5472 joints, 13691 frame elements,
and 4472 cell elements as shown in Figure 2.

Figure 2 displays the structural three-dimensional dia-
gram as Figure 2(a) and structural top floor plan diagram as
Figure 2(b). The first two vibration periods of the finite ele-
ment model are 3.346829 s and 2.69537 s. The corresponding
vibration modes are shown in Figures 3(a) and 3(b).

However, the computation for the responses of the finite
element model will cost a lot of time. Therefore, the lumped
mass can be used to simplify the finite element model, which
has 46 degrees of freedom (DOF) as shown in Figure 3(c).
The structural masses are concentrated on each floor, and
the interstory damping and stiffness between two lumped
masses can be calculated from the finite element model.

Table 1: Comparison with difference of the period between two
models.

First vibration
period

Second vibration
period

Finite element model 3.3468 2.6954
Lumped mass model 3.1312 2.6123
Difference 6.44% 3.08%

To describe the difference between the finite element model
and the lumped mass model, the vibration periods have been
compared in Table 1.

The difference in the 3rd row of Table 1 shows how
different the two types of models are and can be calculated
as the following expression:


𝑇
𝑓
− 𝑇
𝑙



𝑇
𝑓

× 100%, (1)

where 𝑇
𝑓

and 𝑇
𝑙
are the vibration periods of the finite

element model and lumped mass model, respectively. The
above comparison illustrates that there is little difference
between the finite element model and lumped mass model.
So, the lumped mass model can be used to approximate the
practical structure building. In Table 1, the first and second
vibration periods are the first mode along 𝑌 direction and
the first mode along 𝑋 direction, respectively. It means that
the structural stiffness along 𝑋 direction is larger than the
one along 𝑌 direction; that is to say, the structure along
𝑌 direction is weaker than that along 𝑋 direction. So, the
lumpedmassmodel can be built only considering the stiffness
and damping along 𝑌 direction. The structure is subjected to
an earthquake, whose dynamics can be formulated as follows:

Mẍ + Cẋ + Kx = −M�̈�
𝑔
, (2)
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2
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2

d −𝑘
𝑛

0 −𝑘
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]

]

,

(3)

where the elements 𝑚
𝑖
, 𝑐
𝑖
, and 𝑘

𝑖
in matrices M, C, and K

are the mass, damping, and stiffness of the 𝑖th floor (𝑖 =

1, . . . , 𝑛, 𝑛 = 46). It should be noted that matrices C and
K are calculated along 𝑌 direction. �̈�

𝑔
is the unidirectional

earthquake acceleration.The relative displacement vector x ∈
R𝑛×1 is defined as

x = [𝑥
1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑛
]
T
. (4)

For the tall building, the structural design proposed does
not only make the building satisfy safety requirement during
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Figure 2: Structural diagram: (a) structural three-dimensional diagram; (b) structural top floor plan diagram.
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Figure 3: Structural diagram: (a) the first vibration mode; (b) the second vibration mode; (c) the lumped mass model.

the earthquake excitation but also make the people in the
building feel comfortable during the slight external excita-
tion, such as wind excitation. The safe requirements mean
that the interstory drifts of the vibrating building should be
smaller. The comfortable requirement needs the acceleration
of the building to be smaller.

A liquid tank with fresh water has to be set in a tall
building, which would be used for the fire protection or
daily supply. So, the structural vibration can be suppressed by

the liquid tank with appropriate dynamics. The dynamics of
the liquid tank can be designed by the tank shapes.This paper
employs the tank with the shape of two columns that is called
the tuned liquid column damper (TLCD).

3. TLCD Design

3.1. The Dynamics of the Structure with TLCD. The structure
of the tuned liquid column damper (TLCD) is shown as
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Figure 4: Tuned liquid column damper system: (a) tuned liquid column damper; (b) the building with tuned liquid column damper.
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Figure 5: Deployment of three TLCDs on the top floor.

Figure 4(a). When it is located on the top floor of the
building as shown in Figure 4(b), the TLCD dynamics can
be described as the following equation, which is derived by
Lagrange’s method:

𝜌𝐴 (2𝐻 + 𝐵) ℎ̈ +
1

2
𝜌𝐴𝜉


ℎ̇

ℎ̇ + 2𝜌𝐴𝑔ℎ = −𝜌𝐴𝐵 (�̈�

46
+ �̈�
𝑔
) ,

(5)

where 𝜌 is the liquid density, ℎ is the displacement of the
liquid in the damper, 𝐻 is the vertical length of the liquid
column when the liquid is quiescent, 𝐴 is the cross-sectional
area of the tube, 𝐵 is the horizontal length of the column,
and 𝜉 is the head-loss coefficient. �̈�

𝑔
is the unidirectional

earthquake acceleration. �̈�
46
is the relative acceleration (with

respect to the ground) for the top floor of the building.
Equation (5) can be simplified as

𝑚
𝑇
ℎ̈ + 𝑐
𝑇
ℎ̇ + 𝑘
𝑇
ℎ = −𝛼𝑚

𝑇
(�̈�
46
+ �̈�
𝑔
) , (6)

where 𝑚
𝑇
= 𝜌𝐴𝐿 means the mass of liquid in the tube, 𝑐

𝑇
=

2𝑚
𝑇
𝜔
𝑇
𝜁
𝑇
is the equivalent damping of the liquid damper, 𝜔

𝑇

is the first resonant frequency of TLCD, 𝜁
𝑇
is the damping

ratio of the liquid damper, 𝑘
𝑇
= 2𝜌𝐴𝑔 expresses the stiffness

of the liquid column, 𝑔 is the gravitational constant, and 𝛼 =

𝐵/𝐿 denotes the length ratio. According to (4) and (6), the
dynamics of the structure instrumented with TLCD on the
top floor can be formulated as

M
𝑠
q̈ + C

𝑠
q̇ + K

𝑠
q = T

𝑤
�̈�
𝑔
, (7)

where

M
𝑠
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]

,

C
𝑠
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[
[
[

[

𝑐
1
+ 𝑐
2
−𝑐
2

0 0

−𝑐
2

d −𝑐
𝑛

0

0 −𝑐
𝑛

𝑐
𝑛

0

0 0 0 𝑐
𝑇

]
]
]

]

,

K
𝑠
=
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,
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𝑤
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,

q = [𝑞
1
⋅ ⋅ ⋅ 𝑞
𝑛
𝑞
𝑛+1

]
T
= [𝑥
1
⋅ ⋅ ⋅ 𝑥
𝑛
ℎ]

T
∈ R
(𝑛+1)×1

.

(8)

From (7), it is found that the dynamics of the structure
instrumented with TLCD can be influenced by the TLCD
parameters, such as𝑚

𝑇
, 𝑐
𝑇
, and 𝑘

𝑇
. When a TLCD is needed

to be designed for a building structure, the value ranges for
the mass ratio, frequency tuning ratio, and damping ratio
are always given first, which can be determined uniquely by
𝑚
𝑇
, 𝑐
𝑇
, and 𝑘

𝑇
. In practical engineering, mass ratio is usu-

ally predetermined to satisfy the architectural requirements.
Therefore, only frequency tuning ratio and damping ratio
should be optimized during the TLCD designing. There are
the following relationships with𝑚

𝑇
, 𝑐
𝑇
, and 𝑘

𝑇
:

𝜏 =
𝜔
𝑇

𝜔
𝑠

=
√𝑘
𝑇

𝜔
𝑠√𝑚𝑇

,

𝜁
𝑇
=

𝑐
𝑇

2𝑚
𝑇
𝜔
𝑇

=
𝑐
𝑇

2√𝑚
𝑇
𝑘
𝑇

,

(9)

where 𝜏 is the frequency tuning ratio, 𝜔
𝑠
is the first resonant

frequency of the building, and 𝜁
𝑇
is the TLCD damping

ratio as defined above. The TLCD designing objective is to
optimize the parameters 𝜏 and 𝜁

𝑇
such that the structural

vibration is reduced and satisfies the need for safety and
comfort. From (9), 𝑐

𝑇
and 𝑘

𝑇
can replace the parameters 𝜏

and 𝜁
𝑇
to be optimized.
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3.2. Transfer Parametric Optimization to Controller Design.
In order to optimize the parameters 𝑐

𝑇
and 𝑘
𝑇
in (8), they are

separated from the matrices C
𝑠
and K

𝑠
. Equation (7) is equal

to the following expression:

M
𝑠
q̈ + Cq̇ + Kq = T

𝑤
�̈�
𝑔
+ T
𝑢
𝑝 (𝑡) , (10)

where
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2

d −𝑘
𝑛
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0 0 0 0

]
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]

]

,

T
𝑢
= [0
1×𝑛

−1]
T
,

(11)

𝑝 (𝑡) = [𝑘
𝑇
𝑐
𝑇
] [
ℎ

ℎ̇
] . (12)

Equation (10) can be recognized as the structure with the
mass matrix M

𝑠
, damping matrix C, and stiffness matrix K

subjected to the earthquake excitation �̈�
𝑔
and the control

force 𝑝(𝑡). An appropriate control force 𝑝(𝑡) can suppress the
structural vibration. From (12), the value of the control force
can be decided by the matrix [𝑘

𝑇
𝑐
𝑇
] and would vary with

the TLCD state [ℎ ℎ̇]
T. Equation (10) can be represented by

the augmented system in state-space as

ż = Az + B
1
�̈�
𝑔
+ B
2
𝑝 (𝑡) ,

y
𝑧
= C
1
z +D
11
�̈�
𝑔
+D
12
𝑝 (𝑡) ,

y
𝑚
= C
2
z +D
21
�̈�
𝑔
+D
22
𝑝 (𝑡) ,

(13)

where

z = [q q̇]T; y
𝑚
= [ℎ ℎ̇]

T
. (14)

Matrices C
1
, D
11
, and D

12
can be determined according to

objective output y
𝑧
, which is always the combination of the

structural interstory drifts and the weighted control force.
Other matrices in (13) are denoted as

[
A B

1
B
2

C
2

D
21

D
22

]

=

[
[
[
[

[

0
(𝑛+1)×(𝑛+1)

I
(𝑛+1)×(𝑛+1)

0 0

−M−1
𝑠
K −M−1

𝑠
C M−1

𝑠
T
𝑤

M−1
𝑠
T
𝑢

0
1×𝑛

1 0
1×𝑛

0 0 0
0
1×𝑛

0 0
1×𝑛

1 0 0

]
]
]
]

]

.

(15)

The control force 𝑝(𝑡) in (12) can be rewritten as

𝑝 (𝑡) = Gy
𝑚
= [𝑘
𝑇
𝑐
𝑇
] [
ℎ

ℎ̇
] . (16)

So, the TLCDparametric optimization problem is transferred
to the controller design problem, that is, to design a controller
G to suppress the structural vibration efficiently.

3.3. H
∞

Static Output Feedback Controller Design. Taking
(16) into (13) to complete the feedback loop, the closed-loop
system can be represented as

ż = ACLz + BCL�̈�𝑔,

y
𝑧
= CCLz +DCL�̈�𝑔,

(17)

where

ΑCL = A + B
2
GC
2

BCL = B
1
+ B
2
GD
21

CCL = C
1
+D
12
GC
2

DCL = D
11
+D
12
GD
21
.

(18)

This paper focuses on how to design a static output feedback
𝐻
∞

controller G in (16). Some concepts about𝐻
∞

can refer
to [11]. According to the bounded real lemma [7], an 𝐻

∞

controller can be designed to stabilize the closed-loop system
in (17) and make the transfer function norm of the closed-
loop system smaller than a given scalar 𝛾, if and only if there
exists a symmetric positive definite matrix XCL > 0 to satisfy
the following matrix inequality:

[
[
[
[

[

AT
CLXCL + XCLACL XCLBCL CT

CL

BT
CLXCL −𝛾I DT

CL

CCL DCL −𝛾I

]
]
]
]

]

< 0. (19)

Substitute (18) into (19):

[
[
[
[
[

[

(A + B
2
GC
2
)
TXCL + XCL (A + B

2
GC
2
) XCL (B1 + B

2
GD
21
) (C

1
+D
12
GC
2
)
T

(B
1
+ B
2
GD
21
)
TXCL −𝛾I (D

11
+D
12
GD
21
)
T

C
1
+D
12
GC
2

D
11
+D
12
GD
21

−𝛾I

]
]
]
]
]

]

< 0. (20)
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In practical engineering, there are always some value ranges
for the frequency tuning ratio 𝜏 and damping ratio 𝜁

𝑇
. So, the

value ranges for 𝑘
𝑇
and 𝑐
𝑇
inG can be calculated from (9) and

formulated as

𝑐
𝑇
= L
𝑐
GR
𝑐
, 𝑐
𝑙

𝑇
≤ L
𝑐
GR
𝑐
≤ 𝑐
𝑢

𝑇
,

𝑘
𝑇
= L
𝑘
GR
𝑘
, 𝑘
𝑙

𝑇
≤ L
𝑘
GR
𝑘
≤ 𝑘
𝑢

𝑇
,

(21)

where

L
𝑐
= [1] , R

𝑐
= [0 1]

T
,

L
𝑘
= [1] , R

𝑘
= [1 0]

T
.

(22)

In (21), 𝑐𝑢
𝑇

and 𝑐
𝑙

𝑇
are denoted as the upper and lower

boundary for 𝑐
𝑇
and 𝑘

𝑢

𝑇
and 𝑘

𝑙

𝑇
are the upper and lower

boundary for 𝑘
𝑇
, respectively. So, the controller G should

be searched with the constraints (20) and (21). However, it
is a bilinear matrix inequality problem, which is nonconvex.
Rubió-Massegú et al. [8] and Zečević and Šiljak [9] proposed
new approaches to deal with the static output feedback
problem, respectively. But the controllers obtained by these
two methods are both conservative due to the predefined
restrictions. This paper employs the iterative linear matrix
inequality (ILMI) method proposed by Cao et al. [10] and
adds the constraints (21) into this method to numerically
calculate the static output feedback controller G. In order to
use ILMImethod, (20) should be rewritten into another form:

(A + BGC)
T
P + P (A + BGC) < 0, (23)

where

P = (

XCL 0 0
0 I 0
0 0 I

) , A = (

A B
1

0
0 −𝛾I/2 0
C
1

D
11

−𝛾I/2
) ,

B = (

B
2

0
D
12

) , C = (C
2
D
21

0) .

(24)

Equation (23) is a Lyapunov inequality, which means that
there is a static output feedback to stabilize the system
(A,B,C). So, the ILMI method can be used for the system
(A,B,C) and summarized as follows.

Step 1. According to the value range of the parameters 𝜏 and
𝜁
𝑇
, set the lower boundaries 𝑐𝑙

𝑇
and 𝑘𝑙
𝑇
and upper boundaries

𝑐
𝑢

𝑇
and 𝑘𝑢

𝑇
for 𝑐
𝑇
and 𝑘

𝑇
, respectively. Select Q > 0 and solve

P from the following algebraic Riccati equation:

ATP + PA − PBBTP +Q = 0. (25)

Set 𝑖 = 1 and X
1
= P.

Step 2. Solve the following convex problem for P
𝑖
, G, and 𝛼

𝑖
:

Minimize 𝛼
𝑖

s.t. (

Α
TP
𝑖
+ P
𝑖
A − X

𝑖
BBTP

𝑖
− P
𝑖
BBTX

𝑖
+ X
𝑖
BBTX

𝑖
− 𝛼
𝑖
P
𝑖
(BTP
𝑖
+ GC)

T

BTP
𝑖
+ GC −I

) < 0

P
𝑖
= PT
𝑖
> 0

𝑐
𝑙

𝑇
≤ L
𝑐
GR
𝑐
≤ 𝑐
𝑢

𝑇
, 𝑘
𝑙

𝑇
≤ L
𝑘
GR
𝑘
≤ 𝑘
𝑢

𝑇
.

(26)

Set 𝛼∗
𝑖
= the minimized 𝛼

𝑖
.

Step 3. If 𝛼∗
𝑖
≤ 0, G is the desired static output feedback gain

in (16). Iteration can be stopped.

Step 4. Solve the variable matrices P
𝑖
and G by minimizing

trace (P
𝑖
) with the constraints in (26), where 𝛼

𝑖
= 𝛼
∗

𝑖
. Set P∗

𝑖

= the solution P
𝑖
.

Step 5. CompareX
𝑖
andP∗

𝑖
. If ‖X

𝑖
−P∗
𝑖
‖ is smaller than a given

tolerance, go to Step 6; else set 𝑖 = 𝑖+1 andX
𝑖
= P∗
𝑖
, and then

go to Step 2.

Step 6. The system may not be stabilized through the output
feedback gain in (20) with the constraints (21). Stop the
iteration.

It should be noted that the matrix Q in (25) of Step 1 can
influence the convergence of the ILMImethod. If the iteration
cannot be converged, anotherQ should be chosen.Q is always
set to the identity matrix such that the iteration may obtain a
good convergence. Another notice is that the convex problem
in Step 2 is a generalized eigenvalueminimization problem. It
can be solved through the PEMBMI solver in Yalmip [12].

4. Calculation Results

For the building modeled in the first section, the TLCDs can
be instrumented on the top floor and used for fire protection
or daily supply, whose deployment is shown in Figure 5.

For the three TLCDs, they are first assumed to be one
TLCD for the purpose of simplicity during optimization.
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Figure 6: Frequency response curve comparisons: (a) frequency response for displacement; (b) frequency response for acceleration.

After the assumed TLCD is optimized, it would be divided
into three same TLCDs, whose total mass ratio, frequency
tuning ratio, and damping ratio are, respectively, equal to the
optimized parameters. To design the TLCD, its mass ratio
is pregiven to be 0.015, which means that 𝑚

𝑇
is 1.5% of the

structural total mass. And the value ranges for its frequency
tuning ratio 𝜏 and damping ratio 𝜁

𝑇
are set to be 0∼2.0 and

0∼0.1. So, the ranges for 𝑘
𝑇
and 𝑐
𝑇
can be derived as 0 = 𝑐

𝑙

𝑇
<

𝑐
𝑇
< 𝑐
𝑢

𝑇
= 1.3373 × 10

6 and 0 = 𝑘
𝑙

𝑇
< 𝑘
𝑇
< 𝑘
𝑢

𝑇
= 4.1923 × 10

7

according to (9). The length ratio 𝛼 in (6) is set to be 0.8. The
parametric optimizing process described in the last section is
used. After the iteration of the ILMImethod, the static output
feedback controller G in (16) is obtained:

G = [𝑘
𝑇
𝑐
𝑇
] = [7.83 × 10

6

5.78 × 10
5

] . (27)

Then, the parameters 𝜏 and 𝜁
𝑇
are determined as

𝜏 = 0.86452; 𝜁
𝑇
= 0.09988. (28)

To study the TLCD performance, the frequency response
comparisons between the lumped model without TLCD and
that with the optimized TLCD are shown in Figure 6.

Figure 6(a) is the frequency response for the top floor
displacement. The dashed line named Bare denotes the
frequency response of the structural top floor displacement
without TLCD, while the solid line named TLCD is for
the response with TLCD. It is found that the frequency
response peak is reduced by TLCD, which can reduce the
vibration response in time domain indirectly. It means that
the building instrumented with TLCD may satisfy the safety
need more easily than that without TLCD. Figure 6(b) is
the frequency response for the top floor acceleration. The
dashed line and solid line have similar definition with that
in Figure 6(a). It illustrates that the TLCD can reduce the
vibration acceleration and make the building satisfy the

comfortable requirement. The comparison in the frequency
domain can reflect the inherent property of the structure with
TLCD.

In practical engineering analysis, it is necessary to make
some comparisons in the time domain. Some earthquake
waves should be chosen to verify that the structural vibration
can be reduced, subjected to any earthquake excitation.There
are four earthquake waves to be chosen, which are Kobe
wave, El Centro wave, North wave, and Hach wave. Their
peak accelerations are scaled to 0.8337m/s2, 0.3495m/s2,
0.8428m/s2, and 0.2294m/s2, respectively. Due to the space
limitation, only the top floor responses are compared as
shown in Figures 7 and 8.

In Figure 7, the dashed line named Bare means the
structure without TLCD and the solid line named TLCD is
the one with TLCD control. From this figure, all the solid line
can reduce the corresponding dashed line a lot. In order to
describe the reduction precisely, the reduction ratios for the
top floor displacement under the different earthquake waves
are calculated according to the following equation:

reduction ratio

=
(Bare structural response) − (TLCD structural response)

Bare structural response

× 100%.
(29)

The reduction ratios are 3.13%, 31.31%, 16.13, and 28.55%
under the Kobe wave, El Centro wave, North wave, and Hach
wave, respectively. It means that the TLCD can suppress
the structural displacement vibration efficiently, which can
decrease the component damage andmake the structure safe.
The acceleration comparisons are also made as shown in
Figure 8.
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Figure 7: Time history comparison for the top floor displacement: (a) under Kobe wave; (b) under El Centro wave; (c) under North wave;
(d) under Hach wave.

In Figure 8, the dashed line and solid line have the same
definition as that in Figure 7. In the four figures, all the solid
line can reduce the peak value of the corresponding dashed
line. The reduction ratios for the top floor acceleration under
the four earthquake waves are also calculated as (29), which
are 3.54%, 4.05%, 5.09%, and 8.84%, respectively. It means
that TLCD canmake the structure satisfy the requirement for
comfort.

5. Conclusion

This paper optimizes the parameters of TLCD for Build-
ing 1 in Dalian Xinghai Financial Business Building with

the consideration of the earthquake excitation. The building
is built to the finite element model and the lumped mass
model, respectively. After the comparison of these two mod-
els, they are pretty close.The lumpedmodel is adopted due to
the simple calculation process for optimization.

TLCD is used to suppress the structural vibration sub-
jected to the earthquake excitation.TheTLCDparameters are
considered to be optimized.Through the equation derivation,
the parametric optimization problem is transferred to the
feedback controller design problem. The controller is the
static output feedback controller with some value range con-
straints.This paper designs a static𝐻

∞
controller. According

to bounded real lemma, a bilinear matrix inequality (BMI) is
constructed. To solve the BMI problem, the iterative linear
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Figure 8: Time history comparison for the top floor acceleration: (a) under Kobe wave; (b) under El Centro wave; (c) under North wave; (d)
under Hach wave.

matrix inequality (ILMI) is employed and added by the
value range constraints. After the iteration, the feedback
controller is calculated. Then the frequency tuning ratio
and damping ratio of TLCD are determined. To illustrate
the TLCD performance, the frequency responses of the top
floor displacement and acceleration for the building without
and with TLCD in frequency domain are compared. In
time domain, the displacement and acceleration responses
are compared, subjected to the four earthquake waves. It is
found that TLCD can reduce both the displacements and
accelerations of the building. It means that the TLCD can
make the structure satisfy the need for safety and comfort.
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