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We construct an operator Rwhose restriction onto weighted pluriharmonic Bergman Space b2μ(B
n)

is an isometric isomorphism between b2μ(B
n) and l#2. Furthermore, using the operator R we

prove that each Toeplitz operator Ta with radial symbols is unitary to the multication operator
γa,μI. Meanwhile, the Wick function of a Toeplitz operator with radial symbol gives complete
information about the operator, providing its spectral decomposition.

1. Introduction

Let B
n be the open unit ball in the complex vector space C

n. For any z = (z1, . . . , zn) and
ξ = (ξ1, . . . , ξn) inC

n, let z·ξ = ∑n
j=1 zjξj , where ξj is the complex conjugate of ξj and |z| =

√
z · z.

For a multi-index α = (α1, . . . , αn) and z = (z1, . . . , zn) ∈ C
n, we write zα = zα1

1 · · · zαn
n , where

αk ∈ Z+ = N ∪ {0}, and |α| = α1 + · · · + αn is its length, α! = α1! · · ·αn!.
The weighted pluriharmonic Bergman space b2μ(B

n) is the subspace of the weighted
space L2

μ(B
n) consisting of all pluriharmonic functions on B

n. A pluriharmonic function in the
unit ball is the sum of a holomorphic function and the conjugate of a holomorphic functions.
It is known that b2μ(B

n) is a closed subspace of L2
μ(B

n) and hence is a Hilbert space. LetQμ

Bn be
the Hilbert space orthogonal projection from L2

μ(B
n) onto b2μ(B

n). For a function u ∈ L2
μ(B

n),
the Toeplitz operator Tu : b2μ(B

n) → b2μ(B
n)with symbol u is the linear operator defined by

Tuf = Q
μ

Bn

(
uf
)
, f ∈ b2μ(B

n). (1.1)

Tu is densely defined and not bounded in general.



2 Abstract and Applied Analysis

The boundedness and compactness of Toeplitz operators on Bergman type spaces have
been studied intensively in recent years. The fact that the product of two harmonic functions
is no longer harmonic adds some mystery in the study of Toeplitz operators on harmonic
Bergman space. Many methods which work for the operator on analytic Bergman spaces
lost their effectiveness on harmonic Bergman space. Therefore new ideas and methods are
needed. We refer to [1–3] for references about the results of Toeplitz operator on harmonic
Bergman space. The paper [3] characterizes compact Toeplitz operators in the case of the unit
disk D. In [2], the authors consider Toeplitz operators acting on the pluriharmonic Bergman
space and study the problem of when the commutator or semicommutator of certain Toeplitz
operators is zero. Lee [1] proved that two Toplitz operators acting on the pluriharmonic
Bergman space with radial symbols and pluriharmonic symbol, respectively, commute only
in an obvious case.

The authors in [4] analyze the influence of the radial component of a symbol to
spectral, compactness and Fredholm properties of Toeplitz operators on Bergman space on
unit disk D. In [5], they are devoted to study Toeplitz operators with radial symbols on the
weighted Bergman spaces on the unit ball in C

n.
In this paper, we will be concerned with the question of Toeplitz operators with radial

symbols on the weighted pluriharmonic Bergman space. Based on the techniques in [4–6],
we construct an operator R whose restriction onto weighted pluriharmonic Bergman space
b2μ(B

n) is an isometric isomorphism between b2μ(B
n) and l#2, and

RR∗ = I : l#2 −→ l#2,

R∗R = Q
μ

Bn : L2
μ(B

n) −→ b2μ(B
n);

(1.2)

where l#2 is the subspace of l2. Using the operator R we prove that each Toeplitz operator Ta
with radial symbols is unitary to the multication operator γa,μI acting on l#2. Next, we use
the Berezin concept of Wick and anti-Wick symbols. It turns out that in our particular (radial
symbols) case the Wick symbols of a Toeplitz operator give complete information about the
operator, providing its spectral decomposition.

2. Pluriharmonic Bergman Space and Orthogonal Projection

We start this section with a decomposition of the space L2
μ(B

n). Consider a nonnegative
measurable function μ(r), r ∈ (0, 1), such that mes{r ∈ (0, 1) : μ(r) > 0} = 1, and

∫

Bn

μ(|z|)dv(z) =
∣
∣
∣S2n−1

∣
∣
∣

∫1

0
μ(r)r2n−1dr < ∞, (2.1)

where |S2n−1| = 2πn−(1/2)Γ−1(n − (1/2)) is the surface area of unit sphere S2n−1 and Γ(z) is the
Gamma function.

Introduce the weighted space

L2
μ(B

n) =
{

f :
∥
∥f
∥
∥2
L2
μ(Bn) =

∫

Bn

∣
∣f(z)

∣
∣2μ(|z|)dv(z) < ∞

}

, (2.2)
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where dv(z) is the usual Lebesgue volume measure and L2(S2n−1) is the space with the usual
Lebesgue surface measure.

The space L2(S2n−1) is the direct sum of mutually orthogonal spaces Hk, that is,

L2

(
S2n−1

)
=

∞⊕

k=0

Hk, (2.3)

where Hk denotes the space of spherical harmonics of order k. Meanwhile, each space Hk

is the direct sum (under the identification C
n = R

2n) of the mutually orthogonal spaces Hp,q

(see, e.g., [7]):

Hk =
⊕

p+q=k
p,q∈Z+

Hp,q, k ∈ Z+, (2.4)

where Hp,q, for each p, q = 0, 1, . . ., is the space of harmonic polynomials (their restrictions to
the unit sphere) of complete order p in the variable z and complete order q in the conjugate
variable z = (z1, . . . , zn). Thus, we can get

L2

(
S2n−1

)
=

⊕

p,q∈Z+

Hp,q. (2.5)

The Hardy space H2(Bn) in the unit ball B
n is a closed subspace of L2(S2n−1). Denote

by PS2n−1 the Szegö orthogonal projection of L2(S2n−1) onto the Hardy spaceH2(Bn). It is well

known that H2(Bn) =
∞⊕

p=0
Hp,0. The standard orthonormal base in H2(Bn) has the form

eα(ω) = dn,αω
α, dn,α =

√
(n − 1 + |α|)!

|S2n−1|(n − 1)!α!
for |α| = 0, 1, . . . . (2.6)

Fix an orthonormal basis {eα,β(ω)}α,β, α, β ∈ Z
n
+, in the space L2(S2n−1) so that eα,0(ω) ≡ eα(ω),

e0,α(ω) ≡ eα,0(ω) ≡ eα(w), |α| = 0, 1, . . ..
Passing to the spherical coordinates in the unit ball we have

L2
μ(B

n) = L2

(
(0, 1), μ(r)r2n−1dr

)
⊗ L2

(
S2n−1

)
. (2.7)

For any function f(z) ∈ L2
μ(B

n) have the decomposition

f(z) =
∞∑

|α|+|β|=0
cα,β(r)eα,β(ω), r = |z|, ω =

z

r
, (2.8)
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with the coefficients cα,β(r) satisfying the condition

∥
∥f
∥
∥2
L2
μ(Bn) =

∞∑

|α|+|β|=0

∫1

0

∣
∣cα,β(r)

∣
∣2μ(r)r2n−1dr < ∞. (2.9)

According to the decomposition (2.7), (2.8) together with Parseval’s equality, we can define
the unitary operator

U1 : L2

(
(0, 1), μ(r)r2n−1dr

)
⊗ L2

(
S2n−1

)
−→ L2

(
(0, 1), μ(r)r2n−1dr

)
⊗ l2

≡ l2
(
L2

(
(0, 1), μ(r)r2n−1dr

))
,

(2.10)

by the rule U1 : f(z) → {cα,β(r)}, and

∥
∥f
∥
∥2
L2
μ(Bn) =

∥
∥cα,β(r)

∥
∥2
l2(L2((0,1),μ(r)r2n−1dr)) =

∞∑

|α|+|β|=0

∥
∥cα,β(r)

∥
∥2
L2((0,1),μ(r)r2n−1dr). (2.11)

Let f(z) be a pluriharmonic in the unit ball B
n and write f = g+h, where the functions

g, h are holomorphic in B
n. Suppose

g(z) =
∞∑

|α|=0
cαzα, h(z) =

∞∑

|β|=0
cβz

β (2.12)

are their power series representations of g and h, respectively. We have

f(z) =
∞∑

|α|=0
cαz

α +
∞∑

|β|=0
cβzβ =

∞∑

|α|=0
cα(r)eα(ω) +

∞∑

|β|=0
cβ(r)eβ(ω), (2.13)

where cα(r) = cαd
−1
n,αr

|α|, cβ(r) = cβd
−1
n,β

r |β|, r = |z|, ω = (z/r).

Let b2μ(B
n) be the pluriharmonic Bergman space in B

n from L2
μ(B

n). Denote by Q
μ

Bn

the pluriharmonic Bergman orthogonal projection of L2
μ(B

n) onto the Bergman space b2μ(B
n).

From the above it follows that to characterize a function f(z) ∈ b2μ(B
n) and considering its

decomposition according to (2.13), one can restrict to the function having the representation

f(z) = g(z) + h(z) =
∞∑

|α|=0
cα,0(r)eα,0(ω) +

∞∑

|β|=0
c0,β(r)e0,β(ω). (2.14)
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Now let us take an arbitrary f(z) from b2μ(B
n) in the form (2.14). It will satisfy the Cauchy-

Riemann equations, that is,

∂

∂zk
g(z) ≡ 1

2

(
∂

∂xk
+ i

∂

∂yk

)

g(z) = 0, k = 1, . . . , n, z ∈ B
n,

∂

∂zk
h(z) ≡ 1

2

(
∂

∂xk
− i

∂

∂yk

)

h(z) = 0, k = 1, . . . , n, z ∈ B
n.

(2.15)

Applying ∂/∂zk, ∂/∂zk to g and h, respectively, we have

∂

∂zk

∞∑

|α|=0
cα,0(r)eα,0(ω) =

zk
2r

∞∑

|α|=0

(
d

dr
cα,0(r) − |α|

r
cα,0(r)

)

eα,0(ω),

∂

∂zk

∞∑

|β|=0
c0,β(r)e0,β(ω) =

zk
2r

∞∑

|β|=0

(
d

dr
c0,β(r) −

∣
∣β
∣
∣

r
c0,β(r)

)

e0,β(ω),

(2.16)

where k = 0, . . . , n, andwe come to the infinite system of ordinary linear differential equations

d

dr
cα,0(r) − |α|

r
cα,0(r) = 0, |α| = 0, 1, . . .

d

dr
c0,β(r) −

∣
∣β
∣
∣

r
c0,β(r) = 0,

∣
∣β
∣
∣ = 0, 1, . . . .

(2.17)

Their general solution has the form cα,0 = bαr
|α| = λ(n, |α|)cα,0r |α|, c0,β = bβr

|β| = λ(n, |β|)c0,βr |β|,
with λ(n,m) = (

∫1
0 t

2m+2n−1μ(t)dt)−1/2. Hence, for any f(z) ∈ b2μ(B
n)we have

f(z) =
∞∑

|α|=0
cα,0λ(n, |α|)r |α|eα,0 +

∞∑

|β|=0
c0,βλ

(
n,
∣
∣β
∣
∣
)
r |β|e0,β. (2.18)

And, it is easy to verify ‖f‖2
L2
μ(Bn)

=
∑∞

|α|=0 |cα,0|2 +
∑∞

|β|=0 |c0,β|2. Thus the image b21,μ(B
n) =

U1(b2μ(B
n)) is characterized as the closed subspace of

L2

(
(0, 1), μ(r)r2n−1dr

)
⊗ l2 = l2

(
L2

(
(0, 1), μ(r)r2n−1dr

))
(2.19)

which consists of all sequences {cα,β(r)} of the form

cα,β(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ(n, |α|)cα,0r |α|,
∣
∣β
∣
∣ = 0

λ
(
n,
∣
∣β
∣
∣
)
c0,βr

|β|, |α| = 0

0, |α|/= 0,
∣
∣β
∣
∣/= 0.

(2.20)
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For each m ∈ Z+ introduce the function

ϕm

(
ρ
)
= λ(n,m)1/n

(∫ρ

0
r2m+2n−1μ(r)dr

)1/2n

, ρ ∈ [0, 1]. (2.21)

Obviously, there exists the inverse function for the function ϕm(ρ) on [0, 1], which we will
denote by φm(r). Introduce the operator

(
umf

)
(r) =

√
2n

λ(n,m)
φ−m
m (r)f

(
φm(r)

)
. (2.22)

By Proposition 2.1 in [5], the operator um maps unitary L2((0, 1), μ(r)r2n−1) onto
L2((0, 1), r2n−1dr) in such a way that

um(λ(n,m)rm) =
√
2n, m ∈ Z+. (2.23)

Intoduce the unitary operator

U2 : l2
(
L2

(
(0, 1), μ(r)r2n−1dr

))
−→ l2

(
L2

(
(0, 1), r2n−1dr

))
, (2.24)

where

U2 :
{
cα,β(r)

} −→ {(
u|α|+|β|cα,β

)
(r)

}
. (2.25)

By (2.23), we can get the space b22,μ = U2(b21,μ) coincides with the space of all sequences {kα,β}
for which

kα,β =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
2ncα,0,

∣
∣β
∣
∣ = 0

√
2nc0,β, |α| = 0

0, |α|/= 0,
∣
∣β
∣
∣/= 0.

(2.26)

Let l0(r) =
√
2n. We have l0(r) ∈ L2((0, 1), r2n−1dr) and ‖l0‖L2((0,1),r2n−1) = 1. Denote

by L0 the one-dimensional subspace of L2((0, 1), r2n−1dr) generated by l0(r). The orthogonal
projection P0 of L2((0, 1), r2n−1dr) onto L0 has the form

(
P0f

)
(r) =

〈
f, l0

〉
l0 =

√
2n

∫1

0
f
(
ρ
)√

2nρ2n−1dρ. (2.27)

Let dα,β = kα,β(
√
2n)−1. Denote by l#2 the subspace of l2 consisting of all sequences {dα,β}. And

let p# be the orthogonal projections of l2 onto l#2, then p# = χ+(α, β)I, where χ+(α, β) = 0, if
|α‖β| > 0 and χ+(α, β) = 1, if |α‖β| = 0.
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Observe that b22,μ = L0 ⊗ l#2 and the orthogonal projection B2 of

l2
(
L2

(
(0, 1), r2n−1dr

))
≡ L2

(
(0, 1)r2n−1dr

)
⊗ l2 (2.28)

onto b22,μ has the form B2 = P0 ⊗ p#. This leads to the following theorem.

Theorem 2.1. The unitary operator U = U1U2 gives an isometric isomorphism of the space L2
μ(B

n)
onto l2(L2((0, 1), r2n−1dr)) ≡ L2((0, 1), r2n−1dr) ⊗ l2 such that

(1) the pluriharmonic Bergman space b2μ(B
n) is mapped onto L0 ⊗ l#2,

U : b2μ(B
n) −→ L0 ⊗ l#2, (2.29)

where L0 is the one-dimensional subspace of L2((0, 1), r2n−1dr), generated by the function l0(r) =√
2n;

(2) the pluriharmonic Bergman projection Q
μ

Bn is unitary equivalent to

UQ
μ

BnU
−1 = P0 ⊗ p#, (2.30)

where P0 is the one-dimensional projection (2.27) of L2((0, 1), r2n−1dr) onto L0.

Introduce the operator

R0 : l#2 −→ L2

(
(0, 1), r2n−1dr

)
⊗ l2 (2.31)

by the rule

R0 :
{
dα,β

} −→ l0(r)
{
dα,β

}
. (2.32)

The mapping R0 is an isometric embedding, and the image of R0 coincides with the space
b22,μ. The adjoint operator

R∗
0 : L2

(
(0, 1), r2n−1dr

)
⊗ l2 −→ l#2 (2.33)

is given by

R∗
0 :
{
cα,β(r)

} −→
{

χ+
(
α, β

)
∫1

0
cα,β

(
ρ
)√

2nρ2n−1dρ

}

,

R∗
0R0 = I : l#2 −→ l#2,

R0R
∗
0 = B2 : L2

(
(0, 1), r2n−1dr

)
⊗ l2 −→ b22,μ.

(2.34)
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Meanwhile the operator R = R∗
0U maps the space L2

μ(B
n) onto l#2, and its restriction

R | b2μ(Bn) : b2μ(B
n) −→ l#2 (2.35)

is an isometric isomorphism. The adjoint operator

R∗ = U∗R0 : l#2 −→ b2μ(B
n) ⊂ L2

μ(B
n) (2.36)

is isometric isomorphism of l#2 onto the subspace b2μ(B
n) of L2

μ(B
n).

Remark 2.2. We have

RR∗ = I : l#2 −→ l#2, R∗R = Q
μ

Bn : L2
μ(B

n) −→ b2μ(B
n). (2.37)

Theorem 2.3. The isometric isomorphism R∗ = U∗R0 : l#2 → b2μ(B
n) is given by

R∗ :
{
dα,β

} �−→
∞∑

|α|=0
λ(n, |α|)cα,0r |α|eα,0(ω) +

∞∑

|β|=1
λ
(
n,
∣
∣β
∣
∣
)
c0,βr

|β|e0,β(ω). (2.38)

Proof. Let {dα,β} ∈ l#2, we can get

R∗ = U∗
1U

∗
2R0 :

{
dα,β

} �−→ U∗
1U

∗
2

({√
2ndα,β

})

= U∗
1

({
λ(n, |α|)cα,0r |α|

}
+
{
λ
(
n,
∣
∣β
∣
∣
)
c0,βr

|β|
})

=
∞∑

|α|=0
λ(n, |α|)cα,0r |α|eα,0(ω) +

∞∑

|β|=1
λ
(
n,
∣
∣β
∣
∣
)
c0,βr

|β|e0,β(ω).

(2.39)

Corollary 2.4. The inverse isomorphism R : b2μ(B
n) → l#2 is given by

R : ϕ(z) �−→ {
dα,β

}
=
{
(
√
2n)

−1
kα,β

}
, (2.40)

where cα,0 = 〈ϕ, ẽμα,0〉 = λ(n, |α|)dn,α

∫
Bn ϕ(z)z

αdv(z), c0,β = 〈ϕ, ẽμ0,β〉 = λ(n, |β|)dn,β

∫
Bn ϕ(z)zβ

dv(z), |α|, |β| ∈ Z+, and {ẽμα,0}∞|α|=0 ∪ {ẽμ0,β}∞|β|=1 is the standard basis for the pluriharmonic Bergman

space b2μ(B
n); that is,

ẽ
μ

α,0 = dn,αλ(n, |α|)zα, ẽ
μ

0,β = dn,βλ
(
n,
∣
∣β
∣
∣
)
zβ. (2.41)
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3. Toeplitz Operator with Radial Symbols on b2μ(B
n)

In this section we will study the Toeplitz operators Ta = Q
μ

Bna : ϕ ∈ b2μ(B
n) �→ Q

μ

Bnaϕ ∈ b2μ(B
n)

with radial symbols a = a(r).

Theorem 3.1. Let a(r) be a measurable function on the segment [0, 1]. Then the Toeplitz operator
Ta acting on b2μ(B

n) is unitary equivalent to the multication operator γa,μI acting on l#2. The sequence
γa,μ = {χ+(α, β)γa,μ(|α| + |β|)} is given by

γa,μ(m) = λ2(n,m)
∫1

0
a(r)r2m+2n−1μ(r)dr, m ∈ Z+. (3.1)

Proof. By means of Remark 2.2, the operator Ta is unitary equivalent to the operator

RTaR
∗ = RQ

μ

BnaQ
μ

BnR
∗ = R(R∗R)a(R∗R)R∗ = (RR∗)RaR∗RR∗ = RaR∗

= R∗
0U2U1a(r)U−1

1 U−1
2 R0 = R∗

0U2a(r)U−1
2 R0

= R∗
0
{
χ+
(
α, β

)
a
(
φ|α|+|β|(r)

)}
R0.

(3.2)

Further, let {dα,β} be a sequence from l#2. By (2.21), we have

R∗
0
{
χ+
(
α, β

)
a
(
φ|α|+|β|(r)

)}
R0
{
dα,β

}

= R∗
0

{√
2ndα,βχ+

(
α, β

)
a
(
φ|α|+|β|(r)

)}

=

{∫1

0
χ+
(
α, β

)
a
(
φ|α|+|β|(r)

)
2ndα,βr

2n−1dr

}

=

{

χ+
(
α, β

)
dα,β

∫1

0
a
(
y
)
dϕ2n

|α|+|β|
(
y
)
}

=

{

χ+
(
α, β

)
dα,βλ

2(n, |α| + ∣∣β∣∣)
∫1

0
a
(
y
)
y2(|α|+|β|)+2n−1μ

(
y
)
dy

}

=
{
χ+
(
α, β

)
dα,βγa,μ

(|α| + ∣∣β∣∣)}.

(3.3)

Corollary 3.2. (i) The Toeplitz operator Ta with measurable radial symbol a(r) is bounded on b2μ(B
n)

if and only if supm∈Z+
|γa,μ(m)| < ∞. Moreover,

‖Ta‖ = sup
m∈Z+

∣
∣γa,μ(m)

∣
∣. (3.4)
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(ii) The Toeplitz operator Ta is compact if and only if limm→∞γa,μ(m) = 0. The spectrum of
the bounded operator Ta is given by

spTa =
{
γa,μ(m) : m ∈ Z+

}
, (3.5)

and its essential spectrum ess-spTa coincides with the set of all limits points of the sequence
{γa,μ(m)}m∈Z+

.

Let H be a Hilbert space and {ϕg}g∈G a subset of elements of H parameterized by
elements g of some set G with measure dμ.

Then {ϕg}g∈G is called a system of coherent states, if for all ϕ ∈ H,

∥
∥ϕ

∥
∥2 =

(
ϕ, ϕ

)
=
∫

G

∣
∣(ϕ, ϕg)

∣
∣2dμ, (3.6)

or equivalently, if for all ϕ1, ϕ2 ∈ H,

(
ϕ1, ϕ2

)
=
∫

G

(
ϕ1, ϕg

)(
ϕ2, ϕg

)
dμ. (3.7)

We define the isomorphic inclusion V : H → L2(G) by the rule

V : ϕ ∈ H �−→ f = f
(
g
)
=
(
ϕ, ϕg

) ∈ L2(G). (3.8)

By (3.7) we have (ϕ1, ϕ2) = 〈f1, f2〉, where (·, ·) and 〈·, ·〉 are the scalar products on H and
L2(G), respectively, and fh(g) = fg(h). Let H2(G) = V (H) ⊂ L2(G). A function f ∈ L2(G)
is an element of H2(G) if and only if for all h ∈ G, 〈f, fh〉 = f(h). The operator (Pf)(g) =∫
G(ϕt, ϕg)f(t)dμ(t) is the orthogonal projection of L2(G) onto H2(G).

The function a(g), g ∈ G, is called the anti-Wick (or contravariant) symbol of an
operator T : H → H if

VTV −1 | H2(G) = Pa
(
g
)
P = Pa

(
g
)
I | H2(G) : H2(G) −→ H2(G), (3.9)

or, in other terminology, the operator VAV −1 | H2(G) is the Toeplitz operator

Ta(g) = Pa
(
g
)
I | H2(G) : H2(G) −→ H2(G) (3.10)

with the symbols a(g).
Given an operator T : H → H, introduce the (Wick) function

ã
(
g, h

)
=

(
Tϕh, ϕg

)

(
ϕh, ϕg

) , g, h ∈ G. (3.11)
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If the operator T has an anti-Wick symbols, that is, VTV −1 = Ta(g) for some function
a = a(g), then

ã
(
g, h

)
=

〈Tafh, fg〉
〈fh, fg〉 , g, h ∈ G. (3.12)

And the operator Ta admits the following representation in terms of its Wick function:

(
Taf

)(
g
)
=
∫

G

a(t)f(t)ft
(
g
)
dμ(t) =

∫

G

a(t)ft
(
g
)
dμ(t)

∫

G

f(h)fh(t)dμ(h)

=
∫

G

f(h)dμ(h)
∫

G

a(t)ft
(
g
)
fh(t)dμ(t)

=
∫

G

f(h)dμ(h)
fh
(
g
)

〈
fh, fg

〉

∫

G

a(t)fh(t)fg(t)dμ(t)

=
∫

G

ã
(
g, h

)
f(h)fh

(
g
)
dμ(h).

(3.13)

Interchanging the integrals above, we understand them in a weak sense.
The restriction of the function ã(g, h) onto the diagonal

ã
(
g
)
= ã

(
g, g

)
=

(
Tϕg, ϕg

)

(
ϕg, ϕg

) , g ∈ G, (3.14)

is called the Wick (or covariant or Berezin) symbols of the operator T : H → H.
The Wick and anti-Wick symbols of an operator T : H → H are connected by the

Berezin transform

ã
(
g
)
= ã

(
g, g

)
=

(
Tϕg, ϕg

)

(
ϕg, ϕg

) =
〈Tafg, fg〉
〈fg, fg〉 =

∫
G a(t)

∣
∣fg(t)

∣
∣2dμ(t)

∫
G

∣
∣fg(t)

∣
∣2dμ(t)

. (3.15)

The pluriharmonic Bergman reproducing kernel in the space b2μ(B
n) has the form

Rz(w) = Kz(w) +Kz(w) − d2
n,0λ

2(n, 0) =
∞∑

|α|=0
ẽ
μ
α(w)ẽμα(z) +

∞∑

|α|=0
ẽ
μ
α(z)ẽ

μ
α(w) − d2

n,0λ
2(n, 0),

(3.16)

where α = 0 = (0, . . . , 0). For f ∈ b2μ(B
n), the reproducing property

f(z) =
(
Q

μ

Bnf
)
(z) =

∫

Bn

f(w)Rz(w)μ(|w|)dv(w) (3.17)
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shows that the system of functions Rz(w), w ∈ B
n, forms a system of coherent states in the

space b2μ(B
n). In our context, we have G = B

n, dμ = μ(|z|)dxdy, H = H2(G) = b2μ(B
n),

L2(G) = L2
μ(B

n), ϕg = fg = Rg , where g = z ∈ B
n.

Lemma 3.3. Let Ta be the Toeplitz operator with a radial symbol a = a(r). Then the corresponding
Wick function (3.11) has the form

ã(z,w) = R−1
w (z)

⎛

⎝
∞∑

|α|=0
ẽ
μ
α(w)ẽμα(z)γa,μ(|α|) +

∞∑

|α|=0
ẽ
μ
α(z)ẽ

μ
α(w)γa,μ(|α|) − d2

n,0λ
2(n, 0)γa,μ(0)

⎞

⎠.

(3.18)

Proof. By (3.11) and (3.16), we have

ã(z,w) =
〈TaRw,Rz〉
〈Rw,Rz〉 = R−1

w (z)〈aRw,Rz〉

= R−1
w (z)

(
〈aKw,Kz〉 +

〈
aKw,Kz

〉
− d4

n,0λ
4(n, 0)〈a, 1〉

)

= R−1
w (z)

⎛

⎝
∞∑

|α|=0
ẽ
μ
α(w)ẽμα(z)

〈
aẽ

μ
α, ẽ

μ
α

〉
+

∞∑

|α|=0
ẽ
μ
α(z)ẽ

μ
α(w)

〈
aẽ

μ
α, ẽ

μ
α

〉
− d4

n,0λ
4(n, 0)〈a, 1〉

⎞

⎠

= R−1
w (z)

⎛

⎝
∞∑

|α|=0
ẽ
μ
α(w)ẽμα(z)γa,μ(|α|) +

∞∑

|α|=0
ẽ
μ
α(z)ẽ

μ
α(w)γa,μ(|α|) − d2

n,0λ
2(n, 0)γa,μ(0)

⎞

⎠.

(3.19)

Denote by L
μ
α the one-dimensional subspace of b2μ(B

n) generated by the base element
ẽ
μ
α(z), |α| ∈ Z+. Then the one-dimensional projection P

μ
α of b2μ(B

n) onto L
μ
α has obviously the

form

P
μ
α f =

〈
f, ẽ

μ
α

〉
ẽ
μ
α = ẽ

μ
α(z)

∫

Bn

f(w)ẽμα(w)μ(|w|)dv(w). (3.20)

In the similar method, Lμ
α denote the one-dimensional subspace of b2μ(B

n) generated by the

base element ẽμα(z). Let P
μ
α be the projection from b2μ(B

n) onto L
μ
α, and the projection can be

rewritten as

P
μ
α f(z) =

〈
f, ẽ

μ
α

〉
ẽ
μ
α(z) = ẽ

μ
α(z)

∫

Bn

f(w)ẽμα(w)μ(|w|)dv(w). (3.21)
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Theorem 3.4. Let Ta be a bounded Toeplitz operator having radial symbol a(r). Then one can get the
spectral decomposition of the operator Ta:

Ta =
∞∑

|α|=0
γa,μ(|α|)Pμ

α +
∞∑

|α|=0
γa,μ(|α|)Pμ

α − γa,μ(0)P
μ
0 . (3.22)

Proof. According to (3.13), (3.20), (3.21), and Lemma 3.3, we get

(
Taf

)
(z) =

∫

Bn

ã(z,w)f(w)Rw(z)μ(|w|)dv(w).

=
∫

Bn

⎛

⎝
∞∑

|α|=0
ẽ
μ
α(w)ẽμα(z)γa,μ(|α|) +

∞∑

|α|=0
ẽ
μ
α(z)ẽ

μ
α(w)γa,μ(|α|)

−d2
n,0λ

2(n, 0)γa,μ(0)

⎞

⎠f(w)μ(|w|)dv(w).

=
∞∑

|α|=0
γa,μ(|α|)Pμ

α f(z) +
∞∑

|α|=0
γa,μ(|α|)Pμ

α f(z) − γa,μ(0)P
μ
0f(z).

(3.23)

The value γa,μ(|α|) depends only on |α|. Collecting the terms with the same |α| and
using the formula

(z ·w)m =
∑

|α|=m

m!
α!

zαwα (3.24)

we obtain

ã(z,w) = R−1
w (z)

[ ∞∑

m=0

l(m,n)γa,μ(m)
(
(z ·w)m + (w · z)m) − d2

n,0λ
2(n, 0)γa,μ(0)

]

, (3.25)

where (l(m,n) = (m + n − 1)!/|S2n−1|m!(n − 1)!)λ2(n,m). The orthogonal projection of b2μ(B
n)

onto the subspace generated by all element ẽμα with |α| = m,m ∈ Z+ can be written as

(
P
μ

(m)f
)
(z) = l(m,n)

∫

Bn

f(w)(z ·w)mμ(|w|)dv(w); (3.26)

similarly,

(
P
μ

(m)f
)
(z) = l(m,n)

∫

Bn

f(w)(w · z)mμ(|w|)dv(w) (3.27)
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denotes the orthogonal projection from b2μ(B
n) onto the subspace generated by all elements

ẽ
μ
α with |α| = m. Therefore, (3.22) has the form

Ta =
∞∑

m=0

γa,μ(m)Pμ

(m) +
∞∑

m=0

γa,μ(m)Pμ

(m) − γa,μ(0)P
μ
0 . (3.28)

In view of (3.25), we can get the following useful corollary.

Corollary 3.5. Let Ta be a bounded Toeplitz operator having radial symbol a(r). Then the Wick
symbol of the operator Ta is radial as well and is given by the formula

ã(z) = ã(r) = R−1
z (z)

(

2
∞∑

m=0

l(m,n)γa,μ(m)r2m − d2
n,0λ

2(n, 0)γa,μ(0)

)

, (3.29)

where Rz(z) = 2
∞∑

m=0
l(m,n)r2m − d2

n,0λ
2(n, 0).

In terms of Wick function the composition formula for Toeplitz operators is quite
transparent.

Corollary 3.6. Let Ta, Tb be the Toeplitz operators with the Wick function

ã(z,w) = R−1
w (z)

[ ∞∑

m=0

l(m,n)γa,μ(m)
(
(z ·w)m + (w · z)m) − d2

n,0λ
2(n, 0)γa,μ(0)

]

,

b̃(z,w) = R−1
w (z)

[ ∞∑

m=0

l(m,n)γb,μ(m)
(
(z ·w)m + (w · z)m) − d2

n,0λ
2(n, 0)γb,μ(0)

]

,

(3.30)

respectively. Then the Wick function c̃(z,w) of the composition T = TaTb is given by

c̃(z,w) = R−1
w (z)

[ ∞∑

m=0

l(m,n)γb,μ(m)γa,μ(m)
(
(z ·w)m + (w · z)m) − d2

n,0λ
2(n, 0)γb,μ(0)γa,μ(0)

]

.

(3.31)



Abstract and Applied Analysis 15

Proof. According to Lemma 3.3 and (3.25), we have

c̃(z,w) =
〈TaTbRw,Rz〉
〈Rw,Rz〉 = R−1

w (z)〈TbRw, aRz〉

= R−1
w (z)

∫

Bn

(TbRw)(u)Rz(u)a(|u|)μ(|u|)dv(u)

= R−1
w (z)

∫

Bn

〈TbRw,Ru〉Rz(u)a(|u|)μ(|u|)dv(u)

= R−1
w (z)

⎛

⎝
∞∑

|α|=0
ẽ
μ
α(w)eμα(z)γb,μ(|α|)γa,μ(|α|) +

∞∑

|α|=0
ẽ
μ
α(z)e

μ
α(w)γb,μ(|α|)γa,μ(|α|)

−d2
n,0λ

2(n, 0)γb,μ(0)γa,μ(0)

⎞

⎠

= R−1
w (z)

[ ∞∑

m=0

l(m,n)γb,μ(m)γa,μ(m)
(
(z ·w)m + (w · z)m) − d2

n,0λ
2(n, 0)γb,μ(0)γa,μ(0)

]

.

(3.32)
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