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Currently, reconfigurable hardware devices feature a high density of heterogeneous resources to enable multitasking and offer
flexibility in application needs. These concepts raise the need for efficient management of hardware tasks and hardware resources.
The scheduling of hardware tasks is highly dependent on placement. Placement focuses on allocation of hardware resources
required by the scheduled hardware tasks. In this paper, we propose novel three-level resource management that investigates
enhancement of placement quality by reducing task rejection, configuration overheads, and by optimizing resource utilization.
Improving placement quality will produce significant enhancement of performance for scheduling and overall execution time of
the application in FPGA. Hence, the placement problem is formulated into a constrained optimization problem and resolved with
powerful solvers using the Branch and Bound method. The obtained results of an application of heterogeneous hardware tasks
show an average resource utilization of 36% of the available resources on the reconfigurable region and an overall overhead of 11%
of total application running time, and we have eliminated the issue of task rejection. Compared to static implementation, the gain

in resource utilization within the reconfigurable region achieves up to 43%.

1. Introduction

Scheduling and placement are strongly linked. The scheduler
decides which of the ready tasks should be executed next
and calls the placer to find a feasible location. The scheduler
decision should be taken in accordance with the ability
of placer to allocate free resources required by the elected
task. Field-Programmable Gate Array (FPGA) is the most
widely used reconfigurable hardware device. Today’s FPGA
devices provide several million reconfigurable heterogeneous
resources. The development of dynamic partial reconfigura-
tion in the FPGAs allows reconfiguring only the necessary
part of the FPGA when required without interfering with
any other parts running on the same FPGA. While this
technique can increase device utilization and performance
of scheduling and application, it also leads to high con-
figuration overhead, fragmentation, and complex allocation
situations of hardware tasks [1]. Frequently, the existing
methods of placement face these issues. Consequently, the
quality of placement and performance of the scheduling

degrades while the overall response time increases. So, there
exists a serious need to define an efficient method that helps
manage the area of resources.

In general, the placement of hardware tasks consists of
two main functions: (i) partitioning, which handles the free
space in the device and identifies any potential sites enabling
execution of hardware tasks, and (ii) fifting, which selects the
feasible placement solution. In this paper, under FOSFOR
project [2], we address the aspect of placement and introduce
new three-level offline resource management that challenges
all the above mentioned issues. The main concern of our
method is enhancing placement quality by targeting the
optimized use of FPGA’s resources and taking into account
the physical and functional features of hardware tasks
(FOSFOR (Flexible Operating System For Reconfigurable
platform) is French national program (ANR) targeting the
most evolved technologies. Its main objective is to design
a real time operating system distributed on hardware and
software execution units which offers required flexibility
to application tasks through the mechanisms of dynamic



reconfiguration and homogeneous Hw/Sw OS services.).
During the conception of three-level resource management,
we rely on the physical architecture of target technology and
on the advantages of dynamic partial reconfiguration. The
contribution of this paper is the development of

(i) offline flow for hardware task classification which is
an enhancement of our previously proposed work in
[3] and which creates task classes,

(ii) a formulation of the task placement as a con-
strained optimization problem and its resolution by
powerful solvers using Branch and Bound method
by considering two independent sublevels: the first
sublevel ensures the fitting of obtained task classes
on physical blocs partitioned on target technology
which improves resource efficiency up to 36% and
the second sublevel performs the mapping of tasks to
obtained classes by optimizing the overall overhead
up to 11% of total running time and by minimizing
the number of task relocations.

The remainder of this paper is organized as follows.
Section 2 reviews related work of placement. Section 3 details
our three-level resource management. Section 4 focuses on
the formulation of hardware task placement as a constrained
optimization problem and its resolution by the Branch
and Bound method. The obtained results are depicted in
Section 5. In Section 6, we summarize our work, make some
concluding remarks, and present future works.

2. Related Work

Current strategies dealing with task placement are divided
into two categories: offline placement and online placement.

2.1. Online Methods for Hardware Task Placement. The main
reference is [4], Bazargan et al. suggest online scenario
for hardware task placement. In fast on-line placement,
Bazargan et al. introduce two partitioning techniques; the
first technique denoted Keeping All Maximal Empty Rectan-
gles (KAMER) searches all the Maximal Empty Rectangles
(MER) after each task insertion/deletion operation. The
MERs are defined as the empty rectangles which are
not contained in another empty rectangle and are not
necessarily disjoined. The second technique of partitioning
called Keeping Nonoverlapping Empty Rectangles keeps all the
nonoverlapping holes and is evoked after each split/merge
operation. For both previous techniques of partitioning, the
fitting in the on-line placement is conducted by the First Fit,
Best Fit (BF) and Bottom Left bin-packing algorithms [5].
Fast two-dimensional on-line placement is presented in
[6] which is an extension of Bazargan’s partitioning; the
Keeping Nonoverlapping Empty Rectangles. In [6], Walder et
al. propose placement methods that rely on efficient algo-
rithms of partitioning enhancing the quality of Bazargan’s
partitioning by 70% and on a hash matrix data structure
that finds a feasible placement in constant time. Based on
a nonpreemptive system without precedence constraint, the
Walder’s partitioner delays split decision instead of using
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the Bazargan’s heuristics for decision of split. Reference [6]
details four enhancements of Bazargan’s partitioner. The
main partitioner is On-The-Fly (OTF) partitioner which
consists of resizing empty rectangles only if the newly arrived
task overlaps them. After each task insertion or deletion, the
Walder’s partitioner updates the data on the hash matrix. If
a new arrived task fits into more than one empty rectangle
determined by the hash matrix, a fitting strategy is used to
choose a rectangle [6]. Reference [6] implements four types
of fitting: BF, Worst Fit, Best Fit with Exact Fit, and Worst Fit
with Exact Fit.

Ahmadinia et al. present in [7] a new method of on-
line placement by managing the occupied space instead
of free space because of the difficulty of managing empty
space and the huge increase of empty rectangles. In [7],
at the arrival of a new task, the space manager starts by
delimiting the Impossible Placement Region (IPR) relative to
placed modules and to device. Thereafter, the Nearest Possible
Position fitter selects the optimal point that gives the optimal
communication cost, which is not included in the IPR.

In [8], Marconi et al. extend Bazargan’s placement by
means of an Intelligent Merging (IM) algorithm. IM dynam-
ically combines three techniques of managing free resources:
Merging Only if Needed, Partially Merging, and Direct Com-
bine. IM accelerates Bazargan’s partitioner by 3 and improves
placement quality by increasing the rate of accepted tasks.

Handa et al. introduce the staircase method in [9]. The
staircase method handles free space during the first subfunc-
tion of the on-line placement. This method is considered
efficient as it tries to cover the faults of the KAMER method,
especially for task rejection.

Some approximate metaheuristics are adopted to resolve
the hardware task placement such as [10] that employs
an on-line task rearrangement by using genetic algorithm
approach. When a newly arrived task could not be placed
immediately, the proposed approach tries to rearrange a
subset of tasks executing on the FPGA to allow the processing
of the pending task sooner. The approach is based on the
First-Fit strategy and genetic algorithm. By allowing the
rotation of tasks and by using input buffer to save the
data of suspended tasks, the approach combines two genetic
algorithms to resolve two subproblems. The first subproblem
identifies a feasible rearrangement and the second one
consists on scheduling the moves of executing tasks to attain
the feasible rearrangement.

Reference [11] copes with task placement problem and
adopts interconnection-based FPGA as support for run-
time reallocation of hardware tasks. It applies matador
task concurrency management methodology for scheduling
hardware tasks on identical tiles by minimizing run-time
reconfiguration. This goal is reached by two new techniques
implied in the scheduler named configuration reuse and
configuration prefetch. Reduction in configuration overhead
decreases significantly the execution time and energy con-
sumption.

2.2. Offline Methods for Hardware Task Placement. In the
offline scenario for hardware task placement, [4] defines 3D
templates depicting the tasks in time and space dimensions
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and uses slow heuristics: simulated annealing and greedy
research, and KAMER-BF to perform a high-quality place-
ment in terms of resource utilization and task rejection.

Reference [12] models the problem of resource allocation
as a 0-1 integer linear programming problem which aims
necessarily at minimizing the resources area which is recon-
figured at runtime. Reference [12] considers an application
with known sequential execution trace. Hence, the huge
configuration latency is tackled by reducing the overlapped
areas between tasks.

By considering the placement of hardware tasks as rect-
angular items on hardware device as rectangular unit, sev-
eral approaches for resolving the two-dimensional packing
problem are proposed. For example, in [13], the offline
approximate heuristics: Next-Fit Decreasing Height, First-
Fit Decreasing Height, and Best-Fit Decreasing height are
presented as strip-packing approaches based on packing
items by levels.

In addition, Lodi et al. in [14] propose different offline
approaches to resolve hardware task placement as 2D bin-
packing problem. For instance, the Floor-Ceiling algorithm
that considers alternate directions for packing tasks, either
from left to right when their bottom edges touch the level
floor or from right to left; when their top edges are on
the top of the level floor. The Knapsack packing algorithm
is also proposed in [15] which initializes each level by the
tallest unpacked item and completes it by packing tasks as the
associated Knapsack problem that maximizes the total area
within level. For both latter algorithms, the second phase of
2D bin packing is achieved by Best-Fit Decreasing algorithm.

Baker et al. define in [16] the Bottom-left (BL) offline
algorithm. BL packs each hardware task in the bottom left
position.

Martello and Vigo propose in [17] an enumerative offline
approach to exact solution for 2D bin-packing. Their algo-
rithm is based on a two-level branching scheme: the outer
branch-decision tree that assigns tasks to the bins without
specifying their position and the inner branch-decision tree
that enumerates all possible patterns.

By optimizing the total execution time and the resource
utilization, the method of placement in [18] consists of two
phases: the first phase is the recursive bi-partitioning by
means of slicing tree that defines the relative position of
each hardware task towards the other hardware task place-
ment and finds the appropriate room in the reconfigurable
device for each hardware task according to task’s resources
and intertask communication. The second phase uses the
obtained room topology to achieve the sizing that computes
the possible sizes for each room.

Reference [19] minimizes task rejection and presents
offline algorithms for 3D floorplanning of hardware tasks on
reconfigurable functional unit such as: KAMER-BF Decreas-
ing, Simulated Annealing, Low-temperature Annealing, and
Zero-temperature Annealing. The 3D placement models
tasks as 3D boxes having a base corresponding to the spatial
dimensions of tasks and a height corresponding to their
time-span.

In [20], as bin-packing problem, an offline approach
is proposed by Fekete et al. through a graph-theoretical

characterization of the packing of a set of items into a
single bin. Tasks are presented as three-dimensional boxes
and the feasible packing is decided by the orthogonal
packing problem within a given container. Their approach
considers packing classes, precedence constraints, and the
edge orientation to solve the packing problem. Similarly,
in [21], Teich et al. definesthe task placement as more-
dimensional packing problem. Tasks are modeled as 3D
polytopes with two spatial dimensions and the time of
computation. Based on packing classes as well as on a fixed
scheduling, they search a feasible placement on a fixed-size
chip to accommodate the set of tasks. The resolution is
performed by Branch and Bound technique to optimality of
dynamic hardware reconfiguration.

The major shortcoming of all the above-proposed meth-
ods of placement is that they are applicable only in homo-
geneous devices. In fact, these methods assume that the
relocation of tasks is allowed and enable the allocation of
resources whenever sufficient free space is available. Further-
more, the placement disregards the routing constraints as it
does not address the issue of intertask communication and
/O routing. Moreover, tasks are nonpreemptive and almost-
identical. Unfortunately, the algorithms for 2D packing focus
only on the objective of minimizing resource waste and
do not satisty all other goals. All the existing strategies of
placement provide a nonguarantee system as they suffer from
task rejection and fragmentation. We believe the issue of
task rejection is caused by the constructive way in which
the placement is performed throughout all existent strategies
of placement. The issue of fragmentation may lead to
undesirable situations where a new task cannot be placed
although there would be sufficient free space.

As we have full knowledge about the set of hardware
tasks and the features of the reconfigurable device, in this
paper, we present a realistic three-level resource management
solution as a new strategy to perform offline placement of
hardware tasks in FPGA. This new strategy aims at enhancing
placement quality by trimming the previously mentioned
issues. Our proposed method is technology-dependent and
in accordance with generic placement as the second level
partitions the available resources in FPGA according to the
task classes provided by the first level. Nevertheless, the
third level ensures the subfunction of fitting. The task model
is preemptive and preemption points are predefined. Our
resource management allows the relocation of tasks and
results in strict positions for each hardware task by respecting
its preemption points and types of resources.

3. Three-Level Resource Management

We use Xilinx’s Virtex FPGA as a reference for the hardware
reconfigurable device to lead our hardware resource man-
agement study. We offer a definition of a few terms which
are used throughout the paper: NT is the number of tasks,
NR the number of Reconfigurable Physical Blocs, NZ the
number of Reconfigurable Zones, and NP the number of
resource types in the chosen technology. In the beginning,
we should start by introducing the hardware task models. We
have defined three models.



(i) The functional model: this contains the functional fea-

tures of hardware tasks T; as the worst case execution
time (C;), the period (P;), and preemption points /
(Preemp;). The number of preemption points of T;
is denoted by NbrPreemp;. This number also includes
the first point of execution of T;. Preemption points
are specified by the designer.

(ii) The behavioral model: This includes the finite state

machine controlling each task and which handles
a set of NbrReg registers of 32 bits to conduct
the context switch. The behavioral model defines
the functional overhead (Context;) that is needed
to preempt or resume the execution of tasks. This
functional overhead is fixed for all the hardware
tasks as they have similar register banks with NbrReg
registers. The functional overhead is computed as two
times (save and load) the access to a bus having 32
bits of width and functioning at 80 MHz. In addition,
we have considered the worst case, when tasks need
the NbrReg 32bit-registers to perform context switch.
Hence, this functional overhead represents sequential
access of NbrReg registers associated for a given task
to save and load its context through a 32 bit-bus
(Context; = 2x NbrReg/80 MHz).

In our preemptive modeling, we do not use the
classical method of readback and load bitstream
since it takes a significant latency, complicates the
preemption, and requires a large space memory as
a new readback bitstream must be saved at each
preemption. Thus, we resort to save the state of finite
state machine with an acceptable amount of data
by keeping always the same bitstream for each task.
Preemption points of hardware tasks are fixed in a
way to reduce the data dependency that could exist
between two states. In fact, we must avoid keeping
a preemption point between two states processing
the same data because we need to save these data
into an external memory which might increase the
overhead at run-time. Otherwise, it is recommended
to put a preemption point when the task is in a
blocked state waiting for receiving external resource
to allow the ready tasks to be executed in the RZ.
As tasks are periodic, a preemption point could be
inserted after the last state before restarting the task
to avoid any data dependency. In the finite state
machine, the longest execution time between two
states must be considered in order to deduct the worst
case execution time.

(iii) The RB-model: tasks are presented as a set of

reconfigurable resources called Reconfigurable Blocs
(RB). The RBs are closely shaped to the reconfig-
uration granularity in the chosen technology. The
determination of the RB-model of hardware tasks is
well-detailed in our work in [3]. Each type of RB
is characterized by specified cost RBCost; which is
defined according to three parameters: the number
of the RB type in the device, its power consumption
and the importance of its functionality. The more
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consistent these parameters are, the higher the cost
of RB type. The RB-model of each hardware task is
described by (1).

Ti-RB = {a;xRBx}, i is natural,

, (1)
1<i<NT,1<k<NP.

The functional model and the RB-model are the basic
models for resource management. However, the behavioral
model is employed during scheduling. The FPGA provides
reconfigurable resources organized according to column-
based technology [22]. The management of hardware
resources on FPGA consists of three levels.

3.1. Level 1: Offline Flow of Hardware Task Classification.
Level 1 takes a set of tasks as input and provides the types
and instances of Reconfigurable Zones (RZ). The RZs are
abstractions of task classes and are defined according to the
types of resources needed by the tasks. As the RZs model
the classes of hardware tasks, they are described by their RB-
model given by

RZ;_RB = {Bix RBx}, ik is natural,

, 2)
1<i<NZ, 1<k<NP

Level 1 consists of three steps:

Search of RZ types: Step 1 gathers the tasks sharing the
same types of RBs under the same type of RZ. Step 1 is
essentially based on RB-model of hardware tasks and is
achieved by Algorithm 1 of complexity in the worst case O
(NT *NP *NZ).

Step 1 scans the RB-model of each hardware task and
checks whether there exists in the list of RZ types List-RZ an
already inserted type of RZ that closely matches the required
types of RBs in the task (line 6). In this case, step 1 updates
the number of RBs within this type of RZ by the maximum
between the number of RBs in the task and that in the RZ
(line 9). If the required types of RBs in the task do not match
any type of RZ included in the List-RZ, the algorithm of the
search of RZ types decides the creation of a new type of RZ
as required by the task (line 13) and inserts it in List-RZ (line
14). At the end of step 1, we obtain the possible types of
RZs. The number of RZ types is limited by the number of
tasks. As shown in Figure 1, step 1 groups T; and T5 in the
same type of RZ (RZ;) as both need RB; and RB, and adjusts
the number of each RB type within RZ; by the maximum
number of RBs between Tyand T3. Similarly, RZ, is created
by T and T4, and T5 defines the third type of RZ (RZ3).

Classification of hardware tasks: Step 2 starts by comput-
ing cost D between hardware tasks and RZ types resulting
from step 1. Based on RB-models of hardware tasks (7T;) and
RZs (RZ)), cost D is computed as follows according to two
cases.

We define by
dijk = aix —Pjx» 1<i=<NT,

(3)
1<j<NZ 1<k=<NP
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RZ;={25RBy, 42 RB;}
{25RBy, 33 RB,} (T1,T3)

{36 RB;, 11 RBy}

{52RB,, 12RBs}

{18 RBy, 42 RB, } RZ>= {52 RBy, 12 RB4}
(T2, Ts)

QI0101910

{46 RBy, 53 RB», 1 RB3, lRB4} 5 RZs={46 RBj, 53 RBy,
1 RBs, 1 RBy}
(Ts)

FiGURrE 1: Example of RZ types search.

RZ-type =0// RZ types
List-RZ // list of RZ types
n // natural
for all tasks T; do

// Ti_RB = X,y RE¢

and Z,; = 0))) then

for all k do
Znj = max(Xik, Znx) // update RB number of RZ,
end for
else
Increment RZ-type

Insert(list-RZ, RZrz-type)
end if
End for

if (RZ-type #0)and (3 n,1 < n < RZ-type)/for all k((Xix #0 and Z,x #0) or (X;x = 0

// this test checks whether the task matches with an RZ type that already exists in list-RZ

RZgz.type = Create new RZ(X;x) // new type of RZ, RZpz.1ype

= {XixRE;}

ALGorITHM 1: Search of RZ types.

RBCost;= 20, RBCost,= 80, RBCostz= 192, RBCosty= 340

RZs= {46 RB, 53 RB;, 1 RB3, 1 RB,}

(Ts)

D (T1, RZ3) =20 x |25 — 46| + 80 X [33 — 53| + 192 x [0 — 1| + 340 x [0 — 1]

D (T2, RZ3) = o (lack of 10 RB4 in RZ3 for T»)

D (T3, RZ3) = 20 X |18 — 46| + 80 X [42 — 53| + 192 x [0 — 1| + 340 x [0 — 1]

D (T4, RZ3) = oo (Lack of 11 RB4 in RZ3 for Ty)
D (Ts,RZ3) =0

F1Gure 2: Example of computing cost D with RZ;.



Casel. for all k,d; ;i < 0,RZ; contains a sufficient number
of each type of RB (RBx) required by T;. In this case, cost D
is equal to the sum of differences in the number of each RB
type between T; and RZ; weighted by RBCosty (see (4))

D(T,RZ;) = 5. RBCost X
1<k<NP

dijk ‘ . (4)

Case 2. A k,d;jx > 0, the number of RBs required by T;
exceeds the number of RBs in the RZ; or T; needs RBy which
is not included in RZ;. In this case, the cost D between T; and
RZj is infinite (see (5))

D(T,RZ;) = o (5)

Figure 2 illustrates the computing of costs D between the five
tasks and RZ3 described in Figure 1.

As shown in Table 1, step 2 assigns each task to the RZ
giving the lowest cost D as described by the third column.
For example, T is assigned to RZ; since D (T}, RZ;) and D
(T1, RZ3) are superior to D (T}, RZ;). Then, by using (6),
step 2 computes the workload of each RZ according to this
assignment and by using the functional models of hardware
tasks

Load of RZ; = Z (Ci/P,'-i-NbrPreempi xOverheadj,i/Pi),
iinRZ;

Overhead;; = Config; + Context;.
(6)

The overhead Overhead;; is the sum of Config; corre-
sponding to each RZ; and Context; (save and load) common
for all tasks T;. Config; corresponds to the configuration
overhead to place RZ; on the target technology. We compute
this configuration overhead by making the floorplan of each
RZ; on the chosen device and by conducting the whole
partial reconfiguration flow up to the creation of partial
bitstream. According to the configuration frequency and the
configuration port, the Config; is determined by

Config;

size of bit stream
(Configuration frequency X configuration port width)"

(7)

For example, the workload of RZ; resulting from T; and
Ts is 66%. The last column in Table 1 gives costs D of the
other tasks not assigned to the RZ.

We notice an overload in RZ, caused by the workloads
of execution of T, and T4 as well as by their overheads. This
overload is resolved during Step 3.

Decision of increasing the number of RZs: Step 3 takes
place only when an overload within some RZs is detected
in Step 2 and is achieved by Algorithm 2. Step 3 aims to
lighten the overload in RZs by conducting the migration
of task execution sections to nonoverloaded RZs before
resorting to the solution of increasing the number of
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overloaded RZs. Hence, for each task, we search all the
possible combinations of task execution sections. For each
overloaded RZ, Algorithm 2 searches all the nonoverloaded
RZs that could accept at least one of its assigned tasks;
that is, D # oco. Then, Algorithm 2 checks task by task
the possibility of migration of an execution section or a
combination of execution sections of the current task in
order to reduce the overload of its RZ by respecting the
workload of the nonoverloaded receiving RZ. In the worst
case, the complexity of Algorithm2 is O (M *N *NTM
*TS), where M denotes the number of overloaded RZs, N
is the number of nonoverloaded RZs, NTM is the maximum
number of tasks assigned to an overloaded RZ and TS the
maximum number of execution section combinations for a
task assigned to an overloaded RZ.

Step 3 groups the workloads of overloaded RZs in
LI (line 7) and the workloads of nonoverloaded RZs in
L2 (line 7). Step 3 goes throughout the RZs in LI to
resolve their overloads independently (line 11). Step 3 uses
nonoverloaded RZs in L2 to lighten the workloads of RZs in
L1 (line 15). This step searches the nonoverloaded RZ in L2
that gives finite cost D with at least one task assigned to the
overloaded RZ during Step 2 (line 19). Once Step 3 finds the
set of tasks that could be executed in the nonoverloaded RZ,
it balances the workloads between both RZs by respecting the
tasks” preemption points (line 22-line 37). If the overload
persists in the RZ of LI, the algorithm decides adding
other instances of this RZ up to workload of RZ?(line 42).
When the processed nonoverloaded RZ, do not affect the
added number of overloaded RZ,,, Step 3 reinitializes their
workloads to their values before dealing with the overload of
RZ,,(line 43).

Without any loss of generality, our proposed strategy of
resource management includes the main functions of generic
placement: partitioning and fitting, which are fulfilled by the
two following levels.

3.2. Level 2: Partitioning of Reconfigurable Physical Blocs
on the Target Technology. Level 2 takes the types of RZs
provided by level 1 as inputs and searches all the possible
locations for them on the target device. These locations,
called Reconfigurable Physical Blocs (RPB), are partitioned
on the specified Reconfigurable Regions (RR) delimited in
the target device. The RPBs are depicted by their RB-model
as presented in

RPB;_RB = {yix RBi}, yix is natural,

, (8)
1<i<NR/1<k<NP

The RPBs must contain all the types of RBs required by
the RZ type. The number of RBs in RPBs is greater than
or equal to the number of RBs in RZs. Figure 3 shows an
example of RPBs partitioned in RR; which are associated
to an RZ requiring two RB; and one RB;3. The RPBs are
presented by the five dotted rectangles.

3.3. Level 3: Two-level Fitting. Level 3 consists of two inde-
pendent sublevels. The first sublevel ensures the fitting of
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TasLE 1: Example of final results of Step 2.

RZ types RZ resources Assigned tasks T; (D) and RZ workloads Costs D T;(D)

RZ, {25 RB,, 42 RB,} T, (720), Ts (140) 66% Ty(00), Ty(00), Ts(c0)

RZ, {52 RB,, 12 RB,} T, (1620), T, (0) 137% Ty (0), Ts(o0), T5(c0)

RZs {46 RB.1,53 RBy,1 RBs, 1 RBy} Ts (0) 35% T1(2552), Ty (c0) T5(1972), Ta(c0)

Load,,: the load (%) of overloaded RZ,,
Load,,: the load (%) of nonoverloaded RZ,
Load,;: the load (%) of nonoverloaded RZ, after adding a section of execution of T;
Section;: the list of possible execution sections of task T; determined by its preemption points
Exe;: execution section of T;
p» g 1> j, i, I: naturals
L1 = {loads of overloaded RZ;}; L2 = {loads of nonoverloaded RZ;}
L3: list of tasks
Sort L1 in descending order
Sort L2 in ascending order, in case of equality. Sort L2 in ascending order according to confi-guration overhead
for p = 1 to sizeof(L1) do
RZ,, = L1(p)
Load,, =load(RZ,,)
q=1
while g < sizeof(L2) and Load,, > 100 do
RZ, = L2(q)
Load,, =load (RZ,)
//Search Ti from RZ,, to migrate to RZ,
if3 {T;} assigned to RZ,,/D(T;,RZ,) # « then
Sort {T;} in ascending order according to D(T;,RZ,) in L3
r=1
while (7 < size of (L3)) and (Load,, > 100) do
T = L3(T)
I=1
// checking the possibility of relocation of the sections of T; by respecting the load of RZ,
while [ < size of (Section;) and Load,, > 100 do
Select the first execution section Exe; and discard it from Section;
Load,; = Load,, + Exe;/P; + Overhead,, ;/P;
if Load,,; < 100 then
// Migration of Exe; from RZ,, to RZ, is accepted
Load,, = Load,,-Exe;/P;-Overhead,, ;/P; // Removing Exe; from RZ,,
Load, = Load,,;// Migration of Exe; to RZ,
end if
I++
end while
r++
end while
end if
q++
end while
if Load,, > 100 then
New RZ} ([ Load,,/100] — 1)// Adding new RZ,,
Reinitialize the load of {RZ,} when it does not affect the number of added RZ,,
end if
end for

ALGORITHM 2: Decision of increasing the number of RZs.

RZs on the most suitable nonoverlapped RPBs in terms of
resource efficiency. The second sublevel performs the map-
ping of tasks to RZs according to their preemption points
by respecting the workload of each RZ and guaranteeing
the total execution of each task. Such mapping essentially

promotes the solution giving the lowest overhead and lowest
cost D. The second fitting sublevel provides an execution unit
for each task; consequently, there is no longer the issue of task
rejection. The mapping of tasks to RZs is strongly based on
dynamic partial reconfiguration. This latter concept enables
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FiGure 3: Example of partitioning RR; into RPBs.

multitasking as well as execution of several hardware tasks on
the same RZs. In fact, dynamic partial reconfiguration allows
the reconfiguration of subareas on the FPGA during runtime
without affecting other running tasks.

4. Resolution of the Hardware Task
Placement Problem

Previously, in our work presented in [23], we proposed a
straightforward method to resolve partitioning and fitting.
Nevertheless, with the rapid growth of resources in recent
technologies and with the increasing complexity of appli-
cations, this exhaustive search is not efficient. In fact, the
problem of partitioning/fitting is NP-complete, the search
space is immense and the temporal complexity of the
execution of our proposed algorithm in [23] is exponential.
In this paper, we formulate the partitioning/fitting problem
as a constrained optimization problem. Our work is based on
the smart nonexhaustive complete method called Branch and
Bound [24] which employs efficient techniques for scanning
search space and extracting the optimal solution.

4.1. Formulation of Hardware Task Placement as a Constrained
Optimization Problem. The problem of partitioning/fitting
is modeled as a constrained combinatory optimization
problem as it uses discrete solution set, chooses the best
solution out of all possible combinations and aims the
optimization of multicriteria function. Partitioning/fitting
problem is mixed integer problem as it uses some natural
and binary variables. This problem is described by the
quadruplet (Constants, Variables, Constraints, and Objective
Function).

4.1.1. Constants. NT: number of tasks constituting the appli-
cation, NZ: number of RZs resulting from level 1 (Offline
flow of hardware task classification), NP: number of RB types
existing in the target technology, D (T;, RZ;): the cost D
between T; and RZ;, RBCosty: the cost of each RB type.

Device Features. Device.Width: the width of the device,
Device_Height: the height of the device, Device_RB: the RB-
model of the device.
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Task features. C;: the Worst Case Execution Time (WCET)
of T;, P;: the period of T;, Preemp;;: the preemption point
I of Tj, NbrPreemp;: the number of preemption points in
T;, Context;: the functional overhead for preempting and
resuming T;, Overhead; ;: the full overhead for execution of
task T; on RZj, T; _RB: the RB-model for T;.

RZ features. RZ;_RB: the RB-model for RZ;, Config;: the
configuration overhead for RZ; in target technology.

4.1.2. Variables

RPB; Features for Each RZ;. X;j: the abscissa of the upper
left vertex of RPBj, Y;: the ordinate of the upper left vertex
of RPB;, WRPB;j: the abscissa of the upper right vertex
of RPBj, HRPB;: the ordinate of the bottom left vertex of
RPBj, RPB;_RB: the RB-model of the RPB; constructed by
the above coordinates.

The Task Preemption Points. Under the task functional
model, it is assumed that the preemption pointslof each task
T; are known. PreempUnicity;;;: Boolean variable controls
whether the mapping of Preemp;; of T; is performed
on RZ;. It is equal to 1 when Preemp;; is mapped to
RZ;. PreempTask;;;: each preemption point assigned to
RZ; is taken from the predefined preemption points of each
task(see(9)).

PreempTask;,;; = Preemp,; X PreempUnicity; ;,

)
V 1<i<NT, 1=<I<NbrPreemp,; 1< j<NZ.
SumPreemp;;: The sum of preemption points of T; per-
formed within RZjis expressed by

> 1

1<I<NbrPreemp;

SumPreemp i = PreempUnicity; ;, # 0 (10)

V1<i<NT, 1<j<NZ

OccupationRate;;: The full occupation rate of T; in RZ;
resulting from the mapping of preemption points of T; to
RZs. The occupation rate is computed as expressed in

OccupationRate; ;

1<I<NbrPreemp;
PreempUnicity;;; # 0

(Preempi,l = Preempi,,)

+ (C1 - Preempi,NbrPreemp,-)’

if PreempUnicityj’i,Nb,Preemp_ #0

Z (Preemp,-, 1= Preempi,l) )

1<I<NbrPreemp;
PreempUnicity; ;; 70

else.



International Journal of Reconfigurable Computing

AverageLoad: The average of RZ workloads obtained after
task mapping is calculated by

Z (OccupationRatej’i/Pi
1<i<NT
1<j<NZ

AverageLoad =

+SumPreemp i X Overheadj,,-/Pi) /NZ.

(12)

4.1.3. Constraints

Heterogeneity Constraint. The RZs must be fitted on RPBs
containing a sufficient number of their required types of RBs.
This constraint must be respected during partitioning and
fitting of RZs. The heterogeneity constraint is formulated by

> DI
X;j<m<WRPB; device_RB[m][n]=RBj
Y;<n<HRPB;

Bjk <

‘ (13)
V1=<j<NZ1=<k<NP

RZj, = {Bix RB}, 1<j<NZ 1<ks<NP.
Nonoverlapping between RPBs. As expressed by (14), this
constraint restricts the fitting of RZs on nonoverlapped RPBs

X, > WRPB; or X; > WRPB,
or Y, >HRPBj or Y; > HRPB, (14)

Vj#q1<j,q<NZ

Nonoverload in RZs. As mentioned in (15), the non-overload
in RZs must be respected during mapping of tasks

Z (OccupationRate ;,/Pi + SumPreemp ;
1<i<NT
XOverheadj)i/P,) (15)

<100%, V RZ;.

Infeasibility of Mapping for Preemption Points. This con-
straint prohibits the mapping of preemption points of tasks
to RZs giving infinite cost D (see (16)).

PreempUnicityj,i’, = 0 when D(Ti,RZ j) = oo,
V 1<i<NT,

1 <] < NbrPreemp,,1 < j < NZ.
(16)

Uniqueness of Preemption Points. This constraint claims that
each preemption point [ of T; must exist on unique RZ; and

guarantees the achievement of task execution as well as the
elimination of task rejection (see (17))

Z PreempUnicityj’iJ =1, V1<i<NT,
1<j<NZ (17)
1 <[ < NbrPreemp,.

Domains of RPB Coordinates. Equation (18) defines the
allowed domain of values that can be assigned to RPB
coordinates during partitioning

1< X, WRPB; < Device_-Width,
(18)
1 < Y;,HRPB; < Device_Height.

4.1.4. Minimization Objective Function (F). As with all
optimization problems, we have defined a minimization
objective function F that helps in selecting the optimal
solution. As described by (19), F promotes a solution
giving the best values for the two objective subfunctions
MappingFunction and PlaceFunction

F = MappingFunction + PlaceFunction. (19)

PlaceFunction focuses on the subproblem of fitting RZs
on the most suitable RPBs after partitioning the target
device by respecting the predefined constraints. In (20),
PlaceFunction evaluates the efficiency of resources after
fitting RZs on the selected RPBs. PlaceFunction promotes the
fitting of RZs on the RPBs that strictly contain the number
and type of RBs required by RZs

RPB; RB = |y« RB|,RZ; RB = |B;« R/, 20

1<j<NZ1=<k=<NP

MappingFunction focuses on the subproblem of fitting
hardware tasks on RZs by respecting the predefined preemp-
tion points. MappingFunction targets the full exploitation of
RZs and their workloads balance. It also aims at mapping
tasks to the RZs providing the lowest cost D to optimize
resource utilization. Moreover, MappingFunction promotes
the solution that minimizes the overall overhead and number
of task relocations. Thus, MappingFunction is expressed by
four subfunctions targeting these goals

MappingFunction = Mapl + Map2 + Map3 + Map4.
(21)

Mapl focuses on the RZ workloads by means of
(22). Its first expression evaluates whether the RZs are
fully exploited. While minimizing this expression, the RZ
workloads approach 100% of their exploitation. Its second
expression computes the variance of the RZ workloads
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towards the obtained average workload. Minimization of this
second expression ensures load balancing between RZs

Mapl = > (100% - ( > Ql))
1<j<NZ 1<i<NT
(22)
((31i-n1 ) — Average Load)”
+ 2> .
1<j<NZ NZ
Where
B OccupationRatej,i . SumPreempj,i x Overhead;;
- P; P;

(23)

Map2 computes the overhead in (24) resulting from the
mapping of task preemption points to the RZs. Map2 takes
into account all the possible preemption points, even when
two successive preemption points of one task are mapped
to the same RZ, for obtaining the worst case overhead. In
fact, the scheduler could preempt a task on these successive
preemption points in the same RZ in favor of a higher
priority task. Minimizing Map2 promotes the solutions that
map the tasks to the RZs providing the lowest configuration
overhead

Map2 = Z SumPreemp;; x Overhead. .
1<i<NT ’ > (24)
1<j<NZ

By minimizing Map3 in (25), we promote a solution
that maps tasks by a high occupation rate to the RZs
giving the lowest cost D. The benefit of this minimization is
optimizing the use of available resources in the technology.
Indeed, these D costs between tasks and RZs reveal the
rate of resource waste. Moreover, these D costs consider the
weight of each resource in terms of three parameters which
are: its frequency on the technology, the importance of its
functionality, and its power consumption. Our objective is to
minimize the utilization of these costly resources whenever
possible. Hence, the more we promote mapping of tasks with
high occupation rates to the RZs giving the lowest cost D, the
more we optimize resource utilization

2
Z D (Ti R RZj> XOccupationRatej,i2/4,

1<i<NT

1<j<NZ (25)

— D(T,- R RZj) X OccupationRatej,l-.

Map4 computes in (26) the total number of task reloca-
tions obtained after such mapping. Although the migration
of tasks between RZs solves the conflicts between tasks on the
same RZ, minimizing the number of migrations optimizes
the number of preemptions and overhead

2. 2. 1
1<i<NT 1<I<NbrPreemp, (26)
1<j=NZ PreempUnicity; ;, # 0, PreempUnicity, ;,, =0

Map4 =
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4.2. Branch and Bound Method for Solving the Hardware Task
Placement. Our work is based on the global optimization
method called Branch and Bound during partitioning of
resource space and fitting RZs and tasks. The method
of branch and Bound consists in enumerating all the
possible solutions in an intelligent way by relying on the
features of the specified problem. This technique succeeds in
eliminating all the partial solutions that do not lead to the
optimal solution. The Branch and Bound method relies on
a predefined bound function which is our objective function
F to make boundary on solutions to be excluded or to be
kept as potential solutions. The performance of the Branch
and Bound method depends on the quality of this function.
Branch and Bound is adapted to mixed integer linear and
non-linear programming.

Initially only one subset of solutions exists namely, the
root subset that contains all the solutions for the problem.
The unexplored subsets are represented as nodes in a
dynamically generated search tree. Each iteration on Branch
and Bound processes one such node. The iteration has three
components: the selection of the node to process, branching
and the bound function calculation of the ramified nodes.
For each node, the bound function calculation considers
the best fitting for the remaining RZs or tasks without
constraints. Whereas, only nodes respecting predefined con-
straints are only ramified after node selection. Our strategy
for selecting the next node is based on the value of the
bound function F of the node. We start by the node giving
the best bound function F at the current level and we use
the strategy of Depth First Search (DFS). This strategy starts
by exploring, at each level, the node giving the best F until
obtaining the complete solution which gives the last best F.
Then, the process is repeated for the next best node on the
last visited level if its F does not exceed the last best F. In this
case, we branch this node and compute the bound functions
of its ramified nodes and compare them to the last best F.
If F of these partial solutions is greater than or equal to the
last best F, they are rejected. If not, they are kept and the
best partial solution is selected to be processed by Branch
and Bound. Once a new complete solution is founded, the
method checks whether its F optimizes the last best F. When
an optimization is detected, the last best F is updated. The
process is repeated for all the next best nodes in each level
as described above. Algorithm 3 describes the Branch and
Bound method applied on our problem.

Partitioning resource space and fitting RZs can be
resolved independently from task mapping. In the sub-
problem of partitioning resource space and fitting RZs,
PlaceFunction is employed as the bound function F in
Algorithm 3. While in the task mapping subproblem, F
corresponds to MappingFunction. To fit RZs on their suitable
RPBs, the two subproblems of partitioning the RPBs on
the target device and fitting RZs on the selected RPBs
are performed in parallel. In fact, the resolution starts by
partitioning the RPBs corresponding to the RZ root (for
example RZ;) with respect to the heterogeneity constraint.
This partitioning is done randomly by assigning all potential
values to the RPB coordinates and the RZ root is fitted onto
the RPB that gives the best PlaceFunction. After selection
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Best F = +00,
while Live # @ do
Live = Live \ {(N,F(N))}
Best F = F(X)
elseif F(N) > Best F then

else
// partial candidate is kept

forc=1to b do

Live = Live U {(N¢, F(N¢)}
end for
end if
end while

¢: narural // the counter on branched nodes
b: natural // the number of branched nodes provided by the current node

Live = {(Node in root level, F(node in root level))}// the set of nodes to be processed
Select the node N from Live to be processed which gives the best F by using DFS
if F(N) = F(X) for a feasible complete solution X and F (X) < Best F then
Solution =X // A complete solution is founded

Discard N from processing // partial candidate is rejected

Branch on N generating N1,..., Nb by respecting the problem constraints

Bound Nc: compute F(Nc) // bound calculation for the node N¢

Optimal Solution = Solution, Optimal Value = Best F

ArcoriTHM 3: Branch and Bound for hardware task placement [24].

of the best RPB for the RZ root that is, the selected node,
this node is branched into all the possible RPBs for RZ, by
respecting the predefined constraints and the PlaceFunction
of each ramified node is computed. The first selected node
for the RZ, level must satisty the heterogeneity constraint
as well as the nonoverlapping constraint. The subset of
solutions ramified from this first selected node in RZ, level
is explored by searching the RPBs of RZ;. The resolution is
carried out similarly until the achievement of exploration
branched from the first selected node which gives the last
best PlaceFunction. The process is repeated for the next best
nodes and recursively, the remainder RZs are fitted on RPBs
as described for the RZ root by respecting the predefined
constraints. During exploration, if a partial solution gives
PlaceFunction worse than the last best PlaceFunction, this
partial solution is rejected and its branching is stopped.
If not, this partial partitioning/fitting of RZs is kept as a
potential partial solution. During this repetitive process, all
possible combinations of RPBs respecting the constraints are
tested, when the process is achieved, the optimal solution is
extracted.

Figure 4 illustrates the running of the Branch and Bound
method on the partitioning/fitting of four RZs. The nodes
with an X mark present the subsets of solutions that do not
contain the optimal solution and with a ,/ mark present
potential solutions. In the RZroot level and RZ, level, the
best node is selected, branched on partial solutions and
the PlaceFunction of its ramified nodes are computed. As
can be noticed, there are two processed best fittings in
the RZ; level. The method starts by the first best node
that is, PlaceFunction3p and processes this selected node.
It is branched into two nodes by the RPBs of RZ,. After
computing the PlaceFunction for these ramified nodes, the

RPB;-RZ, is selected and a complete solution is obtained.
The last best PlaceFunction is PlaceFunction4l. RPB,-RZ,
is rejected as it does not optimize PlaceFunction4l. The
next best node in the last visited level not yet processed
is RPB;-RZ3. The node is kept and branched into two
RPBs on the RZ, level. PlaceFunction43 optimizes the last
best PlaceFunction and the solution is complete, thus the
optimal solution is obtained by PlaceFunction43. The next
iteration processes the next best node in the last visited level;
partial solution RPB,-RZ;. This partial solution is rejected
as PlaceFunction32 exceeds the last best PlaceFunction. The
other nodes are also not processed as their partial bound
function exceeds the last best PlaceFunction. Finally, the
optimal solution of partitioning/fitting of RZs is obtained by
fitting RZroot (RZ;) on RPB;-RZroot, RZ; on RPB;-RZ;,, RZ3
on RPB-RZ3, and RZ, on RPB3-RZ,.

The resolution of mapping starts by randomly assigning
the preemption points of task root (7}) to RZs giving finite
cost D and computing the bound function of each node.
The selected node is the node that gives the most optimal
mapping of preemption points according to Mapping Func-
tion. This node is ramified for new processing for the next
task. This ramification must respect the total execution of
tasks as well as the non-overload on RZs. Recursively, as task
root, the remainder tasks are mapped by satisfying the two
previous constraints and computing the Mapping Function of
their ramified nodes. When a complete solution is obtained,
it represents the last best Mapping Function. Similarly to
partitioning/fitting of RZs, the mapping is resolved in a
recursive manner by computing the Mapping Function of
each partial mapping branched from the selected best nodes
and keeping only the ones optimizing the last best Mapping
Function. The mapping resolution is finished when all the
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F1Gure 7: Floorplanning of RPBs on Virtex 5 FX200.

potential mappings of preemption points for all tasks to RZs
respecting mapping constraints are checked.

Figure 5 describes the progress of mapping three tasks
to four RZs. The set of RZs giving finite cost D is provided
for each task. In Troot level, the resolution selects the first
best node that is, Mapping Function 13, after branching it
and after computing the Mapping Function of the partial
solutions, the next iteration is released on T, level. In T,
level, MappingFunction23 is the best partial solution, its
node is ramified on T3 level and the last best Mapping
Function is obtained by MappingFunction31. The process is
repeated for the next best nodes in the last visited level. The
nodes MappingFunction2] and MappingFunction22 are not
processed since they exceed the last best Mapping Function.
The method processes the next best node in the last visited
level which is MappingFunctionll. The branching of this
node does not optimize the last best MappingFunction. Thus,
its ramified nodes are not explored in T, level. Finally,

the optimal solution of mapping hardware tasks to RZs is
obtained by fitting the first preemption point P1 of T} on
RZ, and its remaining preemption points P2 and P3 on RZ,
and by fitting all the preemption points of T; and T5 on RZ;.

As well-known, in the worst case, the complexity of
the classical Branch and Bound method is exponential
[25]. In fact, in the worst case, the complexity of the
first subproblem: partitioning/fitting RZs is equal to O
((4*B+8*B*+(NZ +1)*B?)N2~114*B) where B denotes
a possible combination of RPB coordinates for a given
RZ as presented by a node in Figure4. Thus, B is a
possible value assignment for the decision variables
Xj, WRPB;j, Y, HRPB;. The values domain of B is equal to
|domainy | *|domainygps;|*|domainy; [* |domain_HRPBj|,
which is equal to (Device_Width)** (Device_Height)?. 4*B
depicts the selection of a node, its removal from the set
live, and both following test: the test of final and optimal
solution (line 8) and the test of failed solution (line 11). 8* B>
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TaBLE 2: Hardware task features.

Instances RBs WCET (us) Period (us) Configuration overhead (ys) Preemptio points (¢s)
MDCT {Ti, Ty, T10, T11, T12} {2 RB;,12 RB,,3 RB;,0 RBy} 40552 416666 1856 10000, 20000, 30000
AES {T,} {4 RBy,7 RB,,1 RBs,1 RB,} 51540 100000 2185 30000, 40000
DDS {T5} {0 RB;,1 RB,,1 RB3,1 RBy} 5000 12000 432 none
T48 1Ty} {5 RB;,4 RB,,0 RB3,0 RB,} 20000 50000 605 800, 10600, 16300
JPEG {T5} {8 RB;,12 RB2,0 RB;,2 RB4} 350000 416666 2421 200000, 300000
MULTF {Te} {1 RB;,1 RB,,0 RB3,1 RB4} 5600 10000 491 1400, 2350, 4020, 5170
FIR {T7, T13, Tha} {0 RB;,1 RB,,0 RB3,1 RB4} 300 2000 112 120, 210, 255
VGA {Ts} {2 RB;,4 RB,,1 RB3,0 RB4} 5000 10000 681 1650, 2700

TasLE 3: The results obtained for Step 1 and Step 2 of Level 1.
MDCT PEG MULTF FIR
(1 Ty, MBS () DDS (1) Tas (T 15 Mt g gl ) veA T

RZ:{2 RB1,12 RB,,3 RB;3,0 RB4}57% 0 0 ) 0 00 00 0 1024
RZ,{4 RB;,7 RB,,1 RB;,1 RB4}338% [ 0 560 0 732 752 620
RZ;{0 RBy,1 RB,,1 RB3,1 RB;}45% o0 00 0 0 00 0 192 0
RZ,{5 RB1,4 RB,,0 RB3,0 RB,}44% I 0 I 0 0 0 0 0
RZ5{8 RB;,12 RB,,0 RB;,2 RB4}85% 0 00 0 1380 0 1360 1380 e
RZs{ORB1,1 RB2,0 RB3,1 RB4}112% 00 00 00 00 00 oo 0 00

is the branching operation by respecting the constraints
(line 15) and (NZ+1)*B? is the bound computation for the
branched nodes (line 17) by assigning each already processed
RZ to its RPB and the remaining ones to the most suitable
RPBs in terms of resource efficiency without constraints and
the insertion of this branched nodes into the set live (line
18). Consequently, the complexity of the subproblem in the
worst case is ~ O (((Device_Width)** (Device_Height)*)N?).
In the worst case, the complexity of the second subproblem:
task fitting is O ((4*B+B** (2+NT+6*NT *NZ))NT-1+4*B)
where B denotes a possible fitting of preemption points on
RZs RZ; for a given task as associated to a node in Figure 5.
Thus, B is a possible value assignment for the decision
variables PreempUnicity;;;. The values domain of B for a
given task T; is |[domainPreempUnicityj, 7,1| which is equal
to: {0, 1}|MaxPreemp™NZ - H)MaxPreemp*NZ and we consider
the maximum number of preemption points is MaxPreemp.
After the branching of the selected node, we compute the
bound of its branched candidate by considering that the
remaining tasks which are not yet processed are mapped
with 100% to their optimal RZs in terms of distance and
configuration overhead. Consequently, in the worst case, the
complexity of the second sub-problem by using the Branch
and Bound search is ~ O(2MaPreemp*NT*NZ) Thyg in the
worst case, the search by Branch and Bound algorithm grows
exponentially with NT and NZ. This complexity is expected
as the placement of hardware tasks on the heterogeneous
reconfigurable devices is NP-complete problem. Currently,
many enhancements on Branch and Bound algorithm are
conducted as in [26] which could reduce the exponential
complexity of some problems to logarithmic complexity. But
despite this possible exponential complexity, compared to
an exhaustive exact method, the Branch and Bound method
immensely lightens the search space. Effectively, the search

tree branches are discarded when the current bound function
exceeds the last best bound function. The Branch and Bound
ensures complete resolution of placement problem with
a performance better than or equal to that of complete
exhaustive method in terms of resolution speed and storage
space. With this smart method, we ensure a full combination
of RZ fittings as well as task mapping which solves the
problem of task rejection confronted in the previous works
of placement. Unlike the approached methods such as
metaheuristics [27], this method is complete and affords an
optimal solution. In fact, within these metaheuristics, the
computation in each generation is rather complicated and
time consuming and the number of generations must be
increased to ensure a more favorable solution. The quality
of the obtained solution in metaheuristics is conditioned by
the best choice of the initial generation.

5. Application and Results

To investigate the influence of our proposed method for
hardware task placement, we implemented an application
composed of several hardware tasks taken from opencores
[28]. We have chosen examples of hardware tasks that are fre-
quently used in recent embedded systems performing video
and audio applications. Our application features hardware
tasks of varied sizes and of heterogeneous resources. The
hardware tasks are guided by an application manager; the
microcontroller. We do not consider the control overhead
between the microcontroller and the other hardware tasks.
During the design of this application, we synthesized the
resources of each hardware task by the ISE 11.3 Xilinx tool.
We defined the configuration overheads of the obtained RZs
by performing the partial reconfiguration flow by means of
the Planahead 11.3 Xilinx tool.
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FIGURE 8: Resolution of fitting tasks on RZs.
TasBLE 4: Coordinates of obtained RPBs.
X; WRP, Y; HRPB,
RPB; for RZ, 40 45 1 3
RPB, for RZ, 25 38 3 3
RPB; for RZ; 33 36 5 5
RPB, for RZ, 14 18 1 2
RPBs for RZs 1 39 4 4
RPBg¢ for RZ; 39 40 6 6
RPB; for RZ, 24 37 2 2
RPBg for RZg 24 37 1 1
(%) (i) Application manager.
0 25 72 92 100
Te | | | | |
! ! ! ! ' (a) Microcontroller T48: Hardware task configura-
tion and data flow synchronization.
RZs(RPBg) RZ7(RPBy) RZ,(RPB;)

FIGURE 9: Mapping of preemption points of Tg.

5.1. Application. Figure 6 shows the hardware tasks included
in the application. The core of the application is the
microcontroller T48. The microcontroller guides the other
hardware tasks either for speeding up the computing such as
FIR and MULTF or for performing complicated processing
such as JPEG compression. Consequently, there are three

categories of hardware tasks.

(ii) Fine-grained hardware tasks (for speeding up micro-
controller).

(a) FIR: Performs 1000 FIR (Finite Impulse Re-
sponse) filters. Each FIR features 3 taps, 8bit-
input data and 48bit-coefficients.

(b) MULTF: Performs 1000 floating point multi-
plications between two vectors of 8 bits. The
exponent precision and mantissa precision are
3 and 4 respectively. These multiplications are
pipelined with the latency of 8 clock cycles.
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TaBLE 5: Comparison of number of RBs between RZs and RPBs.

RB, RB, RB; RB, A
RPB, 3 12 3 0 1 RB,
RPB, 4 7 2 1 1 RB;
RPB; 0 2 1 1 1 RB,
RPBy 6 4 0 0 1 RB,
RPBs 8 12 3 2 3 RBs
RPBs 0 1 0 1 0
RPB; 4 7 2 1 1 RB;
RPBg 4 7 2 1 1 RB;
TABLE 6: Placement results comparison.
Placement Methods Task rejection R.es'our.ce Configuration Complexity
utilization overhead
3-level offline placement
—RR composed of 55 x 6 of heteroge-
neous RBs 0 36% 1% O(((Device_Width)*x (Device_Height)*)N?)
—14 heterogeneous hardware tasks +O(2MaxPreempxNTXNZ)
—Configuration frequency: 100 MHz
Metaheuristics

Simulated annealing [4]
—Device cells: 100 x 100
—100 tasks 13% — — —
—Task size: 17 x 17

Genetic algorithm [10]
—Device cells: 64 X 64
—Sets of 3,000 tasks 45% 60%-80% — —
—Task size: 32 x 32

Heuristics

KAMER-BF [4]
—Device cells: 100 x 100
—2048-16384 tasks 13%—-18% — — O(nlog(n))n: number of tasks on the device
—Task size: 17 X 17
Blind compaction [1]
—Device cells: 64 x 64
~10.000 tasks — 60% — O(n?)n: number of tasks on the device
—Task size: 32 x 32
IM [8]
—Device cells: 100 x 100
—13 task sets each of 1000 tasks 10% — — —
—Task size: 2 X 2 — 20 X 20

Configuration Reuse + Configuration
Prefetch [11]

—Device cells: 4 tiles 5% ) .
_JPEG decoder, MPEG encoder . . (JPEG), O(NT x N) + O(N?)NT: number of tiles N:

18% number of threads
—Configuration frequency: 50 MHz (MPEG)

LFD [32]
—Virtex II Pro
-2 JPEG + 1 MPEG — — 8% —
—Configuration frequency: 100 MHz
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(iii) Coarse-grained hardware tasks.

(a) MDCT: Computes Modified Discrete Cosine
Transform.

(b) AES: (Advanced Encryption Standard): Per-
forms encryption of blocs of 128 bits with
256bit-key.

(c) DDS: (Direct Digital Synthesizer): Creates sinu-
soidal waves programmable with frequency and
phase on-time.

(d) JPEG: Performs hardware compression of 24
frames per second.

(e) VGA: Drives VGA monitors with an 800x600
resolution, it can display one picture on the
screen either of chars or color waveforms or
color grid.

The features of hardware tasks and their instances are
presented in Table 2. These hardware tasks are characterized
by considering the resource area in Virtex 5 technology [29].
Virtex 5 contains four main types of resources CLBL, CLBM,
BRAM, and DSP. The RBs are vertical stacks composed of
the same type of resources and match the reconfiguration
granularity. Hence, RB; is 20 CLBMs, RB, is 20 CLBLs,
RBs is 4 BRAMs, and RB, is 8 DSPs. We have assigned
20, 80, 192, and 340 as RBCost, respectively, for RB;, RB,,
RBs, and RB,. Configuration overhead is determined as
described in (7) by considering that each task defines an
RZ. After synthesizing hardware tasks by the ISE tool, they
are modeled under their RB-model reported in [3]. The
partial reconfiguration flow dedicated by the Planahead tool
enables the floorplanning of hardware tasks on the chosen
device to create their bitstreams independently for estimating
configuration overheads. The estimation of configuration
overheads considers the best case fitting of each task, as
we believe the subproblem of partitioning/fitting RZs is
solved efficiently and independently from the subproblem of
task mapping. We rely on parallel 8bit-width configuration
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ports and use 100 MHz as the configuration clock frequency.
Preemption points are determined arbitrarily according to
the granularity of hardware tasks and their WCET. For all
tasks, we consider the first preemption point is equal to 0 ps.

5.2. Results. We applied the three levels of our resource
management on the application and obtained the following
results.

5.2.1. Level 1 Results. Step 1 creates 6 types of RZ depicted in
Table 3. RZ, is created by MDCT and VGA tasks, RZ, by AES,
RZ3 by DDS, RZ4 by T48, RZ5 by JPEG, and MULTF and
RZq by FIRs. If the RBs of one type of RZ are not constructed
from the same task (i.e. there exist some RBs created by other
tasks), the configuration overhead corresponding to this RZ
must be recomputed as described in (7) before performing
Step 2. In our application, the RBs of all RZs are created by
one task. Hence, the RZ configuration overhead is provided
by the predefined features of hardware tasks in Table 2.

During Step 2, the D costs between tasks and RZs are
computed; in Table 3, the column specific for each task
and its instances shows the values of obtained D costs.
Thereafter, step 2 calculates the workloads of obtained RZs
by assigning to each RZ the tasks giving lowest cost D
as mentioned by the bold numbers. WorkLoad values are
presented in the first column of Table 3. For example, the
workload of RZ, is computed by assigning the hardware
tasks AES, MULTE, and VGA. We detected an overload in
RZ, and RZs. The overloads on these RZs are the result
of the assigned hardware task execution time as well as the
overheads, especially the configuration overheads of the RZs.
These overloads are dealt with in step 3.

To resolve these overloads, step 3 adds two other RZs
having the same type of RZ, since the other RZs cannot
totally resolve its overload. In fact, the only possible migra-
tion is performed by Tg on its second 1650 ys preemption
point which loads off RZ, up to 299%. Whereas, the overload
of RZs could be resolved by performing the migration of
two tasks among T7, T13, and T14 on RZ3; on their second
preemption points that is, 120us, since RZ; is the least
loaded. Consequently, the final number of RZs is equal to
8: RZl, 3 X RZZ (RZz, RZ7, RZg), RZ3, RZ4, RZS, and RZ6

5.2.2. Level 2 and Level 3 Results. Among all the available
solvers [30], our work is based on the AIMMS environment
[31] relying on powerful solvers. AIMMS environment
has independently resolved the two subproblems: parti-
tioning/fitting of RZs and fitting of tasks on RZs based
on the Branch and Bound method. For the subproblem
of partitioning/fitting of RZs, we used the Mixed Integer
Programming model and for task fitting we employed
Mixed Integer Nonlinear Programming model. At the end
of resolution on CPU of 2 GHz with 2GB of RAM, each
RZ is fitted on its most suitable RPB and each preemption
point of each task is mapped to a unique RZ. The resolution
respects the consistency of constraints and extracts the
optimal solution.
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FiGure 11: Task Occupation

The subproblem of RZ partitioning/fitting was resolved
after 2 hours and 30 minutes. Table4 shows the four
coordinates of the most suitable RPBs for RZ fitting on the
initial RR limited on the Virtex 5 FX200 device (82 x 12 RBs)
as depicted in Figure 7. The initial RR is defined by the
designer and by taking into account the set of resources
dedicated only for the static part.

Table 5 shows comparison between the RBs of the
obtained RPBs and their RZs. We observe high resource effi-
ciency as the number of RBs within the RPBs is nearly equal
to that of the RZs. Consequently, the internal fragmentation
within the RPBs is considerably reduced. The differences of
RBs are given by the last column (A) of Table 5. For all RZs,
except RZs and RZg, their corresponding RPBs have one RB
in excess. The RPB of RZ5 contains 3 extra RB; and the RPB
of RZ; strictly contains the required number of each RB type.
The nonnull A is explained by the rectangular shape of the
RPBs, thus the number of RBs included in the RPB could
exceed the required RBs in the RZ. The nonnull A is also
due to the heterogeneity on the device; the partitioning could
book some RBs which are not used by the RZ.

Figure 7 depicts the floorplanning of RPBs conducted
on the Virtex 5 FX200 device. The obtained results show
an average of resources utilization of 36% of the available
resources on the initial RR. This average is computed
according to the number and the cost of each RB type. The
optimization in utilization of resources minimizes the area
of FPGA which is reconfigured at runtime. We have created
static design by floorplanning each instance of each hardware
task on its RPB without using the concept of dynamic
partial reconfiguration. The obtained utilization of such
static design resources is 63% of the available resources on
the initial RR. Therefore, the gain of configuration overhead
in a static design is paid by the resource waste, which is
43% compared to our obtained results employing dynamic
partial reconfiguration. The RPBs are closely packed on the

rates on RZs after task mapping.

initial RR which avoids the resources waste and the external
fragmentation in the device. For this reason, the initial RR
could be resized in order to dedicate sufficient space for the
remainder static part as depicted in Figure 7 by final RR.

Once the final RPB floorplanning is conducted, the final
configuration overheads corresponding to RZs are deter-
mined. Thus, these new values are used to resolve the sub-
problem of task mapping to RZs.

The subproblem of task fitting on RZs was solved within
9 seconds. Figure 8 shows the results of preemption point
mapping of hardware tasks in the application. T7 and T14
start on RZg, they are preempted after 85% of their WCET
and continue their execution on RZ;. Tg is mapped first to
RZ,, it is stopped on RZ, on its second preemption point
that is, after 33% of execution and restarts on RZg up to 54%.
At this third preemption point, Ty migrates to RZ; where it
completes its execution. Ty, Ty, T19, T11, and T1, are totally
mapped to RZ;. Ty, T3, Ty, Ts, and T3 are totally mapped,
respectively to RZ;, RZ3, RZs, RZ5, and RZ;.

As shown in Figure 9, task T starts its execution on RZg
then is preempted on its third preemption point that is, after
42% of execution. Ts resumes its execution on RZ; till 72%
of its execution. Hence, it is preempted again on RZ; on
the fourth preemption point and restarts on RZ, where it is
achieved.

This resolution of mapping hardware tasks to RZs dis-
cards the problem of task rejection as it guarantees an execu-
tion unit for each task to achieve its execution by respecting
its predefined preemption points.

The bar chart on Figure 10 presents obtained RZ work-
loads after task mapping resolution. Except RZ, having a
workload of 44%, the remainder RZs have balanced work-
loads which are closest to the average workload equal to 89%.

The bar chart in Figure 11 depicts the task occupation
rates on the RZs as a result of mapping. This bar chart
shows the number of migrations that must be performed to
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avoid the RZ overloads and ensure total execution of tasks.
We obtained 6 migrations. Tg realizes two migrations. In
fact, Ty is mapped to RZ;, RZ,, and RZs. The mapping of
Ts combines the two objectives expressed by Map2, which
is the minimization of configuration overhead and Map4
which optimizes utilization of costly resources. Similarly T
is mapped to RZ,, RZ;, and RZs. T7 and Ty4 sustain both,
migration from RZg to RZs.

If we consider independent tasks, within each RZ respect-
ing 100% as workload bound, execution sections mapped to
this RZ could be scheduled by Earliest Deadline First (EDF)
algorithm as they respect the monoprocessor sufficient
schedulability condition (3. 7j yapped 1o Rz (Exei/Pi) < 1).

After RZ fitting on their RPBs and according to the
obtained task mapping, the final RPB configuration over-
heads are determined. In the worst case, by counting all
the possible preemption points, the total overhead including
configuration overheads and functional overheads of tasks is
72959 ps. The overall overhead is 11% of total running time.

Table 6 gives some comparisons with previous work in
hardware task placement in terms of task rejection, resource
utilization, configuration overhead, and the complexity of
the performed technique. To the best of our knowledge,
there are several placement algorithms proposed for each
goal. These algorithms could be classified as metaheuristics
or online heuristics. Nevertheless, these algorithms target
only one goal and do not take into account other goal
satisfactions. In opposition to [11, 32], our multiobjective
placement computes the configuration overhead in the worst
case before scheduling (11%) and targets an application of
14 tasks which is not the case of [11, 32] that optimizes
the configuration overhead only for two or three tasks
during the scheduling (18%, 8%). Comparing to [10] (sets
of 3,000 homogeneous tasks) and [1] (10.000 homogeneous
tasks) applied in homogeneous devices; we have reduced
efficiently the resource utilization (36%) for an application
of 14 heterogeneous tasks and by taking into account
the heterogeneity of recent reconfigurable devices. The
heterogeneous resources in FPGA could fit the RZs on large
RPBs giving a significant resource waste. Comparing to
the offline simulated annealing in [4] performed for 100
tasks which produces 13% of task rejection, our three-level
offline placement discards totally the task rejection for an
application of 14 tasks.

6. Conclusion and Future Works

In this paper, we propose novel three-level resource man-
agement that investigates enhancing placement quality by
reducing task rejection, resource waste, and configuration
overheads. Our work is based on the optimization of resource
utilization relying on the features of heterogeneous reconfig-
urable devices and on constrained optimization problems.
We reported on resolution showing an improvement of
placement quality compared to previous works. In fact,
the overall overhead is 11% of total running time, the
average resource utilization is 36% of the available resources
on the reconfigurable region and we enhanced resource
utilization by 43% compared to static design. In addition,
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the non-overload in some RZs improves the possibility of
mapping other tasks by respecting their deadlines without
performing another resource allocation. Unlike the works
achieved in placement that deal with independent tasks, we
eliminated the issue of task rejection as we pack tasks on RZs
and employ dynamic partial reconfiguration.

Our results do not agree with other works on hardware
task placement since experimental conditions are not the
same. In fact, we used the recent FPGA technology that
provides the highest configuration frequency and wide
data ports that speed up configuration overhead. The
improvement of resource utilization is explained by the
optimality of our solution. The cancellation of task rejection
is due to the employment of dynamic partial reconfiguration
to map several tasks to the same RZ instead of dealing
with each task placement independently. We have exploited
powerful solvers that ensure the achievement of searching.
Consequently, the most optimal solution provides the least
rates of resources utilization and configuration overhead.

To conclude, it is recommended to take advantage of the
obtained results for purposes of establishing the rules of
hardware task scheduling for real-time applications. By
attempting to follow the obtained partitioning/fitting, we
guarantee the highest placement quality equal to or better
than that obtained in offline three-level resource manage-
ment.

Further work includes the defining of efficient on-line
scheduling guided by obtained offline results. Moreover,
we aim improving our offline task mapping by adding
precedence constraints as well as deadline and periodicity
constraints to achieve an offline mapping/scheduling of
hardware tasks. Consequently, we ensure a full offline
placement/scheduling of hardware tasks on hardware recon-
figurable devices. The dependency between tasks should be
investigated, especially in considering intertask communi-
cation with the overall overhead presented in this paper.
Intertask communication will be an important criterion in
deciding the most optimal RZ fitting. Intertask communica-
tion relies on the management of an efficient communication
network such as FAT-Tree [33] as well as on the management
of a shared memory.

Acknowledgments

This paper was supported by AIMMS technical support and
Xilinx tools. It is sponsored by the national agency of research
in France and the world-ranking “Secured Communicating
Solutions” (SCS) cluster that pool together with industrial,
research and higher education players which are involved
in the microelectronics, telecommunications, software, and
multimedia sectors.

References

[1] A. A. El Farag, H. M. El-Boghdadi, and S. I. Shaheen,
“Improving utilization of reconfigurable resources using
two dimensional compaction,” in Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition
(DATE °07), pp. 135-140, Nice, France, April 2007.



20

(2]
(3]

=

)

~

‘w

—
—

[12]

(13

http://www.polytech.unice.fr/~fmuller/fosfor/,FOSFOR.2008.
L. Belaid, F. Muller, and M. Benjemaa, “Off-line placement
of hardware tasks on FPGA, in Proceedings of the 19th
International Conference on Field Programmable Logic and
Application (FPL ’09), pp. 591-595, Prague, Czech republic,
September 2009.

K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast tem-
plate placement for reconfigurable computing systems,” IEEE
Design and Test, Special Issue on Reconfigurable Computing, vol.
17, no. 1, pp. 68-83, 2000.

E. G. Coffman Jr., M. R. Garey, and D. S. Johnson, Approxi-
mation Algorithms for Bin Packing: A Survey, Chapter 2, PWS
Publishing Company, Boston, Mass, USA, 1997.

H. Walder, C. Steiger, and M. Platzner, “Fast online task place-
ment on FPGAs: free space partitioning and 2D-hashing,”
in Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS °03), p. 178, Nice, France, April
2003.

A. Ahmadinia, C. Bobda, M. Bednara, and J. Teich, “A new
approach for on-line placement on reconfigurable devices,” in
Proceedings of the 18th International Parallel and Distributed
Processing Symposium (IPDPS ’04), vol. 4, p. 134, Santa Fe,
NM, USA, April 2004.

T. Marconi, Y. Lu, K. Bertels, and G. Gaydadjiev, “Intelligent
merging online task placement algorithm for partial reconfig-
urable systems,” in Proceedings of the Design Automation Test
Europe (DATE *08), pp. 1346—1351, Munich, Germany, March
2008.

M. Handa and R. Vemuri, “An efficient algorithm for finding
empty space for online FPGA placement,” in Proceedings of the
41st Design Automation Conference (DAC *04), pp. 960-965,
San Diego, Calif, USA, June 2004.

H. ElGindy, M. Middendorf, H. Schmeck, and B. Schmidt,
“Task rearrangement on partially reconfigurable FPGAs with
restricted buffer,” in Proceedings of the Field Programmable
Logic and Applications, vol. 1896, pp. 379-388, Vienna, Aus-
tria, August 2000.

J. Resano, D. Mozos, D. Verkest, S. Vernalde, and F. Catthoor,
“Run-time minimization of reconfiguration overhead in
dynamically reconfigurable systems,” in Proceedings of the
International Conference on Field Programmable Logic and
Application, vol. 2778 of Lecture Notes in Computer Science, pp.
585-594, Lisbon, Portugal, September 2003.

E. M. Panainte, K. Bertels, and S. Vassiliadis, “FPGA-area
allocation for partial run-time reconfiguration,” in Proceedings
of the Design Automation Test Europe (DATE °05), pp. 100-105,
Munich, Germany, March 2005.

A. Lodi, S. Martello, and M. Monaci, “Two-dimensional
packing problems: a survey,” European Journal of Operational
Research, vol. 141, no. 2, pp. 241-252, 2002.

A. Lodi, S. Martello, and D. Vigo, “Neighborhood search
algorithm for the guillotine non-oriented two-dimensional
bin packing problem,” in Proceedings of the Meta-heuristics :
Advances and Trends in Local Search Paradigms for Optimiza-
tion, pp. 125-139, Sophia Antipolis, France, July 1997.

A. Lodi, S. Martello, and D. Vigo, “Heuristic and metaheuristic
approaches for a class of two-dimensional bin packing prob-
lems,” INFORMS Journal on Computing, vol. 11, no. 4, pp.
345-357, 1999.

B. S. Baker, E. G. Coffman Jr., and R. L. Rivest, “Orthogonal
packings in two dimensions,” SIAM Journal on Computing, pp.
846855, 1980.

(17]

(18]

(21]

(22]

(23]

International Journal of Reconfigurable Computing

S. Martello and D. Vigo, “Exact solution of the two-dimen-
sional finite bin packing problem,” Management Science, vol.
44, no. 3, pp. 388-399, 1998.

K. Danne and S. Stuehmeier, “Off-line placement of tasks onto
reconfigurable hardware considering geometrical task vari-
ants,” in From Specification to Embedded Systems Application,
vol. 184 of International Federation for Information Processing,
Springer, New York, NY, USA, 2005.

K. Bazargan, R. Kastner, and M. Sarrafzadeh, “3-D floor-
planning: simulated annealing and greedy placement methods
for reconfigurable computing systems,” Design Automation for
Embedded Systems, vol. 5, no. 3, pp. 329-338, 2000.

S. P. Fekete, E. Kohler, and J. Teich, “Optimal FPGA module
placement with temporal precedence constraints,” in Proceed-
ings of the Conference Design Automation and Test in Europe,
pp. 658-665, Munich, Germany, 2001.

J. Teich, S. P. Fekete, and ]. Schepers, “Optimization of
dynamic hardware reconfigurations,” The Journal of Supercom-
puting, vol. 19, no. 1, pp. 57-75, 2001.

E Rivoallon and A. Cosoroaba, Achieving Higher System
Performance with the Virtex 5 Family of FPGAs, Xilinx White
Paper, San Jose, Calif, USA, 2006.

L. Belaid, F. Muller, and M. Benjemaa, “Off-line placement of
reconfigurable zones and off-line mapping of hardware tasks
on FPGA,” in Proceedings of the Design and Architectures for
Signal and Image Processing (DASIP ’09), Sophia Antipolis,
France, September 2009.

J. Clausen, Branch and Bound Algorithms-Principles and
Examples, University of Copenhagen, Copenhagen, Denmark,
1999.

G. Pataki, M. Tural, and E. B. Wong, “Basis reduction and
the complexity of branch-and-bound,” in Proceedings of the
Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
1254-1261, Austin, Tex, USA, January 2010.

S. M. Azam, M. ur-Rehman, A. K. Bhatti, and N. Daudpota,
“Parallel branch and bound model using logarithmic sam-
pling (PBLS) for symmetric traveling salesman problem,” in
Proceedings of the World Academy of Science, Engineering and
Technology, vol. 6, pp. 66—69, June 2005.

J.-K. Hao, P. Galinier, and M. Habib, “Métaheuristiques pour
loptimisation combinatoire et I'affectation sous contraintes,”
Revue d’Intelligence Artificielle, vol. 13, no. 2, pp. 283-324,
1999.

http://opencores.org/.

“Virtex-5 FPGA Configuration User Guide,” Xilinx white
paper, August 2009.

A. Neumaier, O. Shcherbina, W. Huyer, and T. Vinkd, “A
comparison of complete global optimization solvers,” Math-
ematical Programming, vol. 103, no. 2, pp. 335-356, 2005.
http://www.aimms.com/.

J. A. Clemente, C. Gonzalez, J. Resano, and D. Mozos,
“A hardware task-graph scheduler for reconfigurable multi-
tasking systems,” in Proceedings of the International Conference
on Reconfigurable Computing and FPGAs, pp. 79-84, Cancun,
Mexico, December 2008.

L. Devaux, D. Chillet, S. Pillement, and D. demigny, “Flex-
ible communication support for dynamically reconfigurable
fpgas,” in Proceedings of the 5th Southern Conference on
Programmable Logic (SPL °09), pp. 6570, Sao Paulo, Brazil,
April 2009.



- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

e

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering



