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Magnetic susceptibility dependence on temperatures in different magnetic fields will be discussed. Until today, to calculate
magnetization and magnetic susceptibility, only dipole excitations have been considered, but, due to the symmetry of operators
in Hamiltonian and also to achieve more accuracy, other multiple excitations must be taken into account too. To this end, here,
both dipole and quadruple excitations are considered and then the resulting curves will be plotted in presence of different magnetic
fields. Finally, seen that the graphs obtained using the multipole excitations more accurately with results taken by experimental
data.

1. Introduction

Today about 100 magnetic clusters are known that show
some behaviors or characteristics which are interesting from
physics science point of view. These molecules are interme-
diate between simple paramagnetic salts and superparamag-
netic particles of submicrometer size [1].

Themagnetic cluster Fe
8
, Figure 1, has a spin ground state

𝑆 = 10, which arises from competing antiferromagnetic inter-
actions among the eight 𝑆 = 5/2 Fe spins whose dynamics are
quite similar. Spin-orbit and spin-spin interactions destroy
complete rotational invariance and give rise to anisotropy
with respect to the crystal lattice directions [2, 3].

A variety of experimental techniques (electron spin
resonance, ac susceptibility, magnetic relaxation, Mossbauer
spectroscopy, and neutron scattering) indicates [3–6] that
experimental data are in agreement with the followingmodel
Hamiltonians:

H = −𝐷𝑆
2

𝑧
+ 𝐸𝑆
2

𝑥
+ 𝑔𝜇
𝐵
S ⋅ B, (1)

where 𝑆
𝑥
and 𝑆

𝑧
are the two components of spin operator

and 𝐷 and 𝐸 are the anisotropy constants and are known
through variety of experimental evidence with 𝐷 = 0.33𝑘,
𝐸 = 0.092𝑘 [7, 8]. The last term of the Hamiltonian describes
the Zeeman energy associated with and applied fieldH. This

Hamiltonian defines hard and easy axes of magnetization in
𝑥 and 𝑧 direction, respectively.

In physics, every system could be characterized by its
response to external stimuli. In our study, nanoparticles could
be characterized by a response function. We are mainly
concerned with the response of such a system to a magnetic
field. In this case, the output is the magnetization and the
response function is the magnetic susceptibility.

The magnetic susceptibility of a material, commonly
symbolized by 𝜒

𝑚
, is equal to the ratio of the magnetization

M within the material to the applied magnetic field strength
𝐵 and can be obtained from the following equation [7]:

𝜒 = −
1

𝐵

(∑
𝑖
(𝜕𝐸
𝑖
/𝜕𝐵) 𝑒

−𝐸𝑖/𝑘𝑇)

∑
𝑖
𝑒−𝐸𝑖/𝑘𝑇

, (2)

where 𝐸
𝑖
is the energy of the system.

In this study, firstly, the magnetic susceptibility depen-
dence of high spin molecule Fe

8
(exact chemical formula:

[Fe
8
O
2
(OH)
12
(tacn)

6
]
8+) on temperature in the presence of

differentmagnetic fields in SU(2) group is calculated. In other
words, only dipole excitation in Hamiltonian is utilized. In
order to be more accurate and due to the symmetry and
power of spin operators in Hamiltonian, other multipole
excitations are introduced.
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Figure 1: Chemical structure and hysterics loop of Fe
8
.

2. Magnetic Susceptibility Calculation in
SU(2) Group

Expectation values of different spin operators in SU(2) group
are in the following form:

𝑆
+
= 𝑒
𝑖𝜑 sin 𝜃,

𝑆
−
= 𝑒
−𝑖𝜑 sin 𝜃,

𝑆
𝑧
= cos 𝜃.

(3)

If only dipole excitations in calculation of magnetization are
considered, classical energy of the system from Hamiltonian
(1) is obtained through the following form:

𝐸
𝑐𝑙
= −𝐷cos2𝜃 + 𝐸sin2𝜃cos2𝜑 + 𝑔𝜇

𝐵
𝑆𝐵 cos 𝜃. (4)

Substituting this relation into (2), magnetic susceptibility is
obtained in the following form:

𝜒 = (∫

𝜋/2

0

(𝑔𝜇
𝐵
𝑆 cos 𝜃)

⋅ exp [− (−𝐷cos2𝜃 + 𝐸sin2𝜃cos2𝜑

+ 𝑔𝜇
𝐵
𝑆𝐵 cos 𝜃)

⋅ (𝑘𝑇)
−1
] 𝑑𝜃)

⋅ (∫

𝜋/2

0

exp [− (−𝐷cos2𝜃 + 𝐸sin2𝜃cos2𝜑

+ 𝑔𝜇
𝐵
𝑆𝐵 cos 𝜃)

⋅ (𝑘𝑇)
−1
] 𝑑𝜃)

−1

.

(5)

For calculation of this integral, we used this approximation:

𝑒
𝑥
=

∞

∑

𝑛=0

𝑥
𝑛

𝑛!
≈ 1 + 𝑥. (6)

Then

𝜒 =

20𝜇
𝐵
(1 + (1/𝑘𝑇) (0.21 − 0.03cos2𝜑 − 15.6𝜇

𝐵
𝐵))

(1 + (1/𝑘𝑇) (0.24 − 0.07cos2𝜑 − 20𝜇
𝐵
𝐵))

.

(7)

Magnetic susceptibility along easy axis (𝜑 = 0) and hard axis
(𝜑 = 𝜋/2) is obtained in the following forms:

𝜒 =

{{{{{

{{{{{

{

20𝜇
𝐵
(1 + (1/𝑘𝑇) (0.21 − 15.6𝜇

𝐵
𝐵))

(1 + (1/𝑘𝑇) (0.24 − 20𝜇
𝐵
𝐵))

for 𝜑 = 𝜋

2

20𝜇
𝐵
(1 + (1/𝑘𝑇) (0.18 − 15.6𝜇𝐵𝐵))

(1 + (1/𝑘𝑇) (0.17 − 20𝜇
𝐵
𝐵))

for 𝜑 = 0.

(8)

The plot of the numerical calculation ofmagnetic susceptibil-
ity versus temperature is obtained as shown in Figure 2.

As it is seen from Figure 2, in low magnetic field, an
increase in the temperature causes an increase in the mag-
netic susceptibility. But as the magnetic field increases, mag-
netic susceptibility becomes less dependent on temperature
and eventually it almost reaches a constant value. Moreover,
for magnetic field along the easy and hard axes, both of these
curves are similar.
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Figure 2: In this case, only dipole excitation is considered and
magnetic susceptibility curves along easy axes (𝜑 = 0) and hard axes
(𝜑 = 𝜋/2) are similar.

3. Magnetic Susceptibility Calculation in
SU(3) Group

If dipole and quadrupole excitations are considered, the ex-
pectation values of spin operators are obtained in the follow-
ing form [9]:

𝑆
+
= 𝑒
𝑖𝜑 cos 2𝑔 sin 𝜃,

𝑆
−
= 𝑒
−𝑖𝜑 cos 2𝑔 sin 𝜃,

𝑆
𝑧
= cos 2𝑔 cos 𝜃.

(9)

Classical energy of the system is obtained from Hamilto-
nian (1) in the following form:

𝐸
𝑐𝑙
= −𝐷cos22𝑔cos2𝜃 + 𝐸cos22𝑔sin2𝜃cos2𝜑

− 𝑔𝜇
𝐵
𝐵 cos 2𝑔 cos 𝜃.

(10)

With substitution of this relation into (2), magnetic suscepti-
bility is obtained:

𝜒 = (∫

𝜋/2

0

∫

𝜋/4

0

(𝑔𝜇
𝐵
𝑆 cos 2𝑔 cos 𝜃)

⋅ exp [− (−𝐷cos22𝑔cos2𝜃

+ 𝐸cos22𝑔sin2𝜃cos2𝜑

+ 𝑔𝜇
𝐵
𝑆𝐵 cos 2𝑔 cos 𝜃)

⋅ (𝑘𝑇)
−1
] 𝑑𝜃 𝑑𝑔)
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Figure 3: In this case, both dipole and quadrupole excitations are
considered andmagnetic susceptibility curve along easy axes (𝜑 = 0)
and along hard axes (𝜑 = 𝜋/2).

⋅ (∫

𝜋/2

0

∫

𝜋/4

0

exp [− (−𝐷cos22𝑔cos2𝜃

+ 𝐸cos22𝑔sin2𝜃cos2𝜑

+ 𝑔𝜇
𝐵
𝑆𝐵 cos 2𝑔 cos 𝜃)

⋅ (𝑘𝑇)
−1
] 𝑑𝜃 𝑑𝑔)

−1

.

(11)

If used from relation (6), magnetic susceptibility is obtained
in the following form:

𝜒 =

20𝜇
𝐵
(0.5 + (1/𝑘𝑇) (0.07 − 0.01cos2𝜑 − 6𝜇𝐵𝐵))

(1 + (1/𝑘𝑇) (0.09 − 0.04cos2𝜑 − 10𝜇
𝐵
𝐵))

.

(12)

Magnetic susceptibility in different magnetic fields for the
easy axis direction (𝜑 = 0) and the hard axis direction (𝜑 =

𝜋/2) is obtained in the following form:

𝜒 =

{{{{{

{{{{{

{

20𝜇
𝐵
(0.5 + (1/𝑘𝑇) (0.0.07 − 6𝜇

𝐵
𝐵))

(1 + (1/𝑘𝑇) (0.0.09 − 10𝜇
𝐵
𝐵))

for 𝜑 = 𝜋

2

20𝜇
𝐵
(1 + (1/𝑘𝑇) (0.0.06 − 6𝜇𝐵𝐵))

(1 + (1/𝑘𝑇) (0.0.05 − 10𝜇
𝐵
𝐵))

for 𝜑 = 0.

(13)

If dipole and quadrupole excitations are considered, the plot
of the numerical calculation of magnetic susceptibility is
obtained as shown in Figure 3.

As it is clear fromFigure 3, similar to the previous section,
in low magnetic field, if temperature increases, magnetic
susceptibility increases too. But, because of the quadrupole
excitation, this dependency is very dramatic. Also, with
increasing magnetic field, magnetic susceptibility becomes
less dependent and it approaches a constant value, but this
is different from the case in which only dipole excitation
was considered. In addition, like the previous results, both
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of these curves are similar for both magnetic fields along the
easy and hard axes.

4. Conclusion

In this paper, we have discussed magnetic susceptibility
dependence on temperatures in presence of different mag-
netic fields. If only dipole excitation in calculation is con-
sidered, for the magnetic susceptibility, Figure 2 is obtained.
As we see, in low magnetic field and in low temperatures,
this dependency is very clear. As temperature increases
or magnetic field increases, magnetization almost becomes
independent of temperatures and this is due to all magnetic
dipoles that all of them alongwith themagnetic field (saturate
magnetization).

If quadrupole excitation is added, Figure 3 is obtained.
At low temperature, this dependency is very dramatic and
this is because of the quadrupole excitations that have not
been considered. As magnetic field increases, in comparison
to the previous section, there are some dependencies due to
quadrupole excitations.
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