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A toxin producing phytoplankton-zooplankton model with inhibitory exponential substrate and time delay has been formulated
and analyzed. Since the liberation of toxic substances by phytoplankton species is not an instantaneous process but is mediated by
some time lag required for maturity of the species and the zooplankton mortality due to the toxic phytoplankton bloom occurs
after some time laps of the bloom of toxic phytoplankton, we induced a discrete time delay to both of the consume response
function and distribution of toxic substance term. Furthermore, based on the fact that the predation rate decreases at large toxic-
phytoplankton density, the system is modelled via a Tissiet type functional response. We study the dynamical behaviour and
investigate the conditions to guarantee the coexistence of two species. Analytical methods and numerical simulations are used
to obtain information about the qualitative behaviour of the models.

1. Introduction

Phytoplankton are one of the most important components
of the marine ecosystem. They not only form a basis for all
aquatic food chains but also perform a very useful service by
producing a huge amount of oxygen for human and other liv-
ing animals after absorbing carbon-dioxide from surround-
ing environments [1]. Zooplankton are microscopic animals
that eat other plankton and serve as a most favorable food
source for fish and other aquatic animals. During the recent
years, many authors have studied the system between zoo-
plankton and phytoplankton. Authors in [2] have dealt with
a nutrient-plankton model in an aquatic environment in the
context of phytoplankton bloom. In [3] the effect of season-
ality and periodicity on plankton dynamics is investigated.
In [4], two plankton ecosystem models with explicit repre-
sentation of viruses and virally infected phytoplankton are
presented.

Themost common features of the phytoplankton popula-
tion is rapid increase of biomass due to rapid cell proliferation
and almost equally rapid decrease in populations, separated
by some fixed time period. This type of rapid change in
phytoplankton population density is known as “bloom” [5].

Due to the accumulation of high biomass or to the presence of
toxicity, someof these blooms,more adequately called “harm-
ful algal blooms” [6], are noxious to marine ecosystems or to
human health and can produce great socioeconomic damage.
There has been a global increase in harmful plankton blooms
in last two decades [7–9].

Because of the difficulty in measuring plankton biomass,
mathematical modeling of plankton population is an impor-
tant alternative method of improving our knowledge of the
physical and biological processes relating to plankton ecology
[10–15]. In [16], nutrient-plankton-zooplankton interaction
models with a toxic substance which inhibits either the
growth of phytoplankton, zooplankton, or both trophic levels
are proposed and studied. In [17], the authors have con-
structed a mathematical model for describing the interaction
between a nontoxic and toxic phytoplankton with a single
nutrient.

Based on the fact that (1) the release of toxin from phyto-
plankton species is not an instantaneous process but is medi-
ated by some time lag required for maturity of the species
and (2) the zooplankton may die after some time lapse of
the bloom of toxic phytoplankton (see http://www.mote.org/,
http://www.mdsg.umd.edu/),models incorporating timedelay

Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2015, Article ID 756315, 13 pages
http://dx.doi.org/10.1155/2015/756315



2 Discrete Dynamics in Nature and Society

in diverse biological models are extensively reviewed by
Beretta and Kuang [18], Gopalsamy [19], Cooke and Gross-
man [20], and Cushing [21]. The discrete time delay has
potential to change the qualitative behavior of the dynamical
systems [22–29]. Chattopadhyay et al. proposed a delay
model incorporating time lag in toxin liberation by phyto-
plankton to avoid predation by zooplankton [28]. In [28], the
authors introduced distribution delay and discrete to toxin
liberation term. Due to discrete time delay in toxin libera-
tion, the local existence of periodic solution through Hopf
bifurcation has been obtained in [28].

In [5, 10, 28–31], the following plausible toxic-phytoplank-
ton-zooplankton system has been studied:

𝑑𝑃

𝑑𝑡
= 𝑟𝑃 (1 −

𝑃 (𝑡)

𝐾
) − 𝜇𝑓 (𝑃 (𝑡)) 𝑍 (𝑡) ,

𝑑𝑍

𝑑𝑡
= 𝛽𝑓 (𝑃 (𝑡)) 𝑍 (𝑡) − 𝐷𝑍 (𝑡) − 𝜌𝑔 (𝑃 (𝑡)) 𝑍 (𝑡) ,

(1)

where 𝑃 = 𝑃(𝑡) is the density of the toxin-producing phyto-
plankton (TPP) population and 𝑍 = 𝑍(𝑡) is the density of
zooplankton population at any instant of time 𝑡. In model
(1), 𝑟 is the intrinsic growth rate and 𝐾 is the environmental
carrying capacity of TPPpopulation.The term𝑓(𝑃)describes
the functional response for the grazing of phytoplankton by
zooplankton, and 𝜇 is the maximum uptake rate for zoo-
plankton. 𝛽 denotes the ratio of biomass conversion and𝐷 is
the natural death rate of zooplankton.The function 𝑔(𝑃) rep-
resents the distribution of toxic substance which ultimately
contributes to the death of zooplankton populations, and the
parameter 𝜌 denotes the rate of toxic substances produced by
per unit biomass of phytoplankton.

Model (1) has been studied for the following cases: (1)
when 𝑓(𝑃) is linear but 𝑔(𝑃) is Holling type II [10, 28, 29] or
Holling type III [10]; (2)when𝑓(𝑃) and𝑔(𝑃) are bothHolling
type II [5, 10] orHolling type III [10]; (3)when𝑔(𝑃) is Holling
type II while 𝑓(𝑃) is Holling type III [10].

In above cases, 𝑓(𝑃) and 𝑔(𝑃) are both increasing func-
tions of 𝑃 over the entire interval 0 < 𝑃 < ∞. However, in
some cases, very high substrate concentrations in the lakes
actually inhabit the growth of phytoplankton cells. Moreover,
with the substrate concentrations increasing unlimitedly,
some kind of microorganism will die eventually [32]. To
describe the above phenomenon accurately, we consider𝑓(𝑃)
from a different point of view. Adopting the idea used in [32],
we assume that there exists a constant 0 < 𝑃∗ < ∞ such that
𝑓(𝑃) is increasing over the interval 0 ≤ 𝑃 < 𝑃∗ and is decreas-
ing on the interval 𝑃∗ < 𝑃 < ∞. More precisely, we use the
so-called Tissiet functional response of the form of 𝑓(𝑃) =
𝜇𝑃𝑒−𝑃/𝐾/(𝛼 + 𝑃) (see, e.g., [32]). This type of functional
response takes care of the fact that the predation rate
decreases at large toxic-phytoplankton density.

The remainder of this paper is organized as follows. The
model is described in Section 2. In Section 3, we state and
prove the positivity and boundedness of the solutions. Then,
in Section 4, equilibria, their existence, and local asymptotic
stability are considered. Under the aids of numerical simula-
tion method, we further analyse the model and determine if
there is a parameter range for the delay parameter 𝜏, where

more complicated dynamics occur. In Section 5, the perma-
nence of the system is discussed by some analytic techniques
on limit sets of differential dynamical systems. Finally, a brief
discussion is presented in Section 6.

2. State of the Model

In a real ecological context, the interaction between phy-
toplankton and zooplankton will not be essentially instan-
taneous. Instead, the response of zooplankton to contacts
with phytoplankton is likely to be delayed due to a gestation
period. Another fact, during the interaction between phy-
toplankton and zooplankton, is that the liberation of toxic
substances by phytoplanktonmust bemediated by some time
lag which is required for thematurity of toxic-phytoplankton.
Let 𝜏
1
stand for the time delay in conversion of food to viable

biomass for the species, and 𝜏
2
is the discrete time period

required for the maturity of phytoplankton cells to liberate
toxic substances. Based on model 3 in [5], we intend to study
a model system with the assumption that 𝑓(𝑃) and 𝑔(𝑃) are
described by same type of function, namely, Tissiet functional
response. Then we arrive at the following model:

𝑑𝑃

𝑑𝑡
= 𝑟𝑃 (𝑡) (1 −

𝑃 (𝑡)

𝐾
) −

𝜇𝑃 (𝑡) 𝑍 (𝑡)

𝛼 + 𝑃 (𝑡)
𝑒
−𝑃(𝑡)/𝐾

,

𝑑𝑍

𝑑𝑡
=
𝛽𝑃 (𝑡 − 𝜏

1
) 𝑍 (𝑡 − 𝜏

1
)

𝛼 + 𝑃 (𝑡 − 𝜏
1
)

𝑒
−𝑃(𝑡−𝜏

1
)/𝐾

− 𝐷𝑍 (𝑡)

−
𝜌𝑃 (𝑡 − 𝜏

2
) 𝑍 (𝑡 − 𝜏

2
)

𝛼 + 𝑃 (𝑡 − 𝜏
2
)

𝑒
−𝑃(𝑡−𝜏

2
)/𝐾

,

(2)

where the parameter 𝑟 is the intrinsic growth rate and𝐾 is the
environmental carrying capacity of TPP population.The con-
stant 𝜇 is the maximum per capita grazing rate, 𝛽 denotes the
ratio of biomass conversion, 𝜌 denotes the rate of toxic sub-
stances produced by per unit biomass,𝐷 is the natural death
rate of the zooplankton. All the parameters in system (2) are
positive constants with their usual ecological meanings.

Here we observe that if there is no delay (i.e., 𝜏
1
= 𝜏
2
= 0)

and 𝛽 − 𝐷 − 𝜌 < 0, then 𝑍󸀠(𝑡) < 0. Hence, throughout our
analysis, we assume that 𝛽 − 𝐷 − 𝜌 > 0.

For the sake of simplicity of mathematical analysis, in this
paper, we consider model (2) for the special case: the time
delay in conversion of food to viable biomass for the species
equal to the discrete time period required for the maturity of
phytoplankton cells to liberate toxic substances; that is, 𝜏

1
=

𝜏
2
= 𝜏.
By performing the following scaling for model (2):

𝑡
∗

= 𝑟𝑡, 𝑃
∗

(𝑡
∗

) =
𝑃 (𝑡)

𝐾
, 𝑍

∗

(𝑡
∗

) =
𝜇𝑍 (𝑡)

𝑟𝐾
,

𝛼
∗

=
𝛼

𝐾
, 𝛽

∗

=
𝛽

𝜇
, 𝜌

∗

=
𝜌

𝜇
,

𝜏
∗

= 𝑟𝜏, 𝐷
∗

=
𝐷

𝜇
,

(3)
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we obtain a dimensionless system in the state variables 𝑃∗,
𝑍∗, which can be written, by removing the stars, in the form

𝑃
󸀠

(𝑡) = 𝑃 (𝑡) (1 − 𝑃 (𝑡)) −
𝑃 (𝑡) 𝑍 (𝑡)

𝛼 + 𝑃 (𝑡)
𝑒
−𝑃(𝑡)

,

𝑍
󸀠

(𝑡) =
𝛽𝑃 (𝑡 − 𝜏)𝑍 (𝑡 − 𝜏)

𝛼 + 𝑃 (𝑡 − 𝜏)
𝑒
−𝑃(𝑡−𝜏)

− 𝐷𝑍 (𝑡)

−
𝜌𝑃 (𝑡 − 𝜏)𝑍 (𝑡 − 𝜏)

𝛼 + 𝑃 (𝑡 − 𝜏)
𝑒
−𝑃(𝑡−𝜏)

,

(4)

with initial conditions:

𝑃 (𝜃) = 𝜙 (𝜃) ≥ 0, 𝑍 (𝜃) = 𝜑 (𝜃) ≥ 0, 𝜃 ∈ [−𝜏, 0] , (5)

where (𝜙(𝜃), 𝜑(𝜃)) ∈ 𝐶([−𝜏, 0], 𝑅2
+
).

3. Positive and Boundedness

In this section, we consider the positive and boundedness of
the solutions of model (4) with initial condition (5). One has
the following theorem.

Theorem 1. Let 𝜙(𝜃) ≥ 0, 𝜑(𝜃) ≥ 0 on −𝜏 ≤ 𝜃 < 0 and
𝑃(0) > 0, 𝑍(0) > 0. Then

(a) all the solutions of (4) with initial condition (5) exist
on [0, 𝜎) for some constant 𝜎 > 0 and are unique and
positive for 0 < 𝑡 < 𝜎,

(b) lim sup
𝑡→+∞

𝑃(𝑡) ≤ 1, lim sup
𝑡→+∞

𝑍(𝑡) ≤ 𝑀, where
𝑀 = (𝛽 − 𝜌)(1 + 𝐷)

2

/4𝐷,

(c) if 𝛽 < 𝜌 + 4𝛼𝐷/(1 +𝐷)2, then lim inf
𝑡→+∞

𝑃(𝑡) ≥ 𝑚
0
,

where𝑚
0
= 1 −𝑀/𝛼. Further, the subset

Γ = {(𝜙 (𝜃) , 𝜑 (𝜃)) ∈ 𝐶 | 𝑚
0
≤ 𝜙 (𝜃) ≤ 1, 𝜑 (𝜃) ≥ 0} (6)

is positively invariant with respect to (4).

Proof. By Theorems 2.1 and 2.3 in Hale and Lunel [33],
solutions of (4) with initial data ∈ Int𝐶2

+
exist on 0 < 𝑡 < 𝜎 for

some 𝜎 > 0 and are unique. Suppose (𝑃(𝑡), 𝑍(𝑡)) is a solution
of (4) for 𝑡 ∈ [0, 𝜎).Without loss of generality, assume that 𝑡 ∈
[0, 𝜎) is the maximum internal of the solution and 𝜎 = ∞ if
the solution exists for any 𝑡 > 0. Integrating the first equation
of (4) gives

𝑃 (𝑡) = 𝜙 (0) exp [∫
𝑡

0

(1 − 𝑃 (𝑢) −
𝑍 (𝑢)

𝛼 + 𝑃 (𝑢)
𝑒
−𝑃(𝑢)

)𝑑𝑢] > 0,

𝑡 ∈ [0, 𝜎) .

(7)

To prove the 𝑍(𝑡) > 0 for any 𝑡 ∈ [0, 𝜎), use the method of
contradiction. Suppose there exists a 𝑡∗ ∈ [0, 𝜎) such that

𝑍 (𝑡
∗

) = 0, 𝑍
󸀠

(𝑡
∗

) ≤ 0, 𝑍 (𝑡) > 0 for any 𝑡 ∈ [0, 𝑡∗) .
(8)

From the second equation of system (4), we have

𝑍
󸀠

(𝑡
∗

) =
(𝛽 − 𝜌) 𝑃 (𝑡∗ − 𝜏)𝑍 (𝑡∗ − 𝜏) 𝑒−𝑃(𝑡

∗
−𝜏)

𝛼 + 𝑃 (𝑡∗ − 𝜏)
> 0. (9)

This contradicts 𝑍󸀠(𝑡∗) ≤ 0. Hence, 𝑍(𝑡) > 0 for all 𝑡 ∈ [0, 𝜎).
This completes the proof of conclusion (a) in Theorem 1.

It follows from the first equation of (4) that 𝑃󸀠(𝑡) ≤
𝑃(𝑡)(1−𝑃(𝑡)), which implies that lim sup

𝑡→∞
𝑃(𝑡) ≤ 1. Define

𝑊(𝑡) = (𝛽 − 𝜌)𝑃(𝑡) +𝑍(𝑡 + 𝜏), 𝑡 ≥ 0. Then from (4) we obtain
𝑑𝑊

𝑑𝑡
= −𝐷𝑊(𝑡) + (𝛽 − 𝜌) 𝑃 (𝑡) (1 + 𝐷 − 𝑃 (𝑡))

≤ −𝐷𝑊(𝑡) +
(𝛽 − 𝜌) (1 + 𝐷)

2

4
.

(10)

Applying the theorem of differential inequality we obtain that

0 < 𝑊 (𝑃, 𝑍) ≤
(𝛽 − 𝜌) (1 + 𝐷)

2

4𝐷
(1 − 𝑒

−𝐷𝑡

)

+𝑊(𝑝 (𝜃) , 𝑍 (0)) 𝑒
−𝐷𝑡

.

(11)

Therefore, lim sup
𝑡→+∞

𝑍(𝑡) ≤ 𝑀. Thus, there is a constant
𝑇 > 0, such that 𝑍(𝑡) ≤ 𝑀 for all 𝑡 ≥ 𝑇. This completes the
proof of conclusion (b) inTheorem 1.

From the first equation of system (4) we get

𝑃
󸀠

(𝑡) ≥ 𝑃 (𝑡) (1 − 𝑃 (𝑡)) −
𝑀

𝛼
𝑃 (𝑡) = 𝑃 (𝑡) (1 −

𝑀

𝛼
− 𝑃 (𝑡)) ,

𝑡 ≥ 𝑇

(12)
which implies that lim inf

𝑡→+∞
𝑃(𝑡) ≥ 1 −𝑀/𝛼 = 𝑚

0
.

For any 𝜓 = (𝜙, 𝜑) ∈ Γ, let (𝑃(𝑡), 𝑍(𝑡)) be the solution of
(4) with the initial function 𝜓. If there is a 𝑡

1
> 0 such that

𝑃(𝑡
1
) > 1, then 𝑃̇(𝑡

0
) > 0 for some 𝑡

0
∈ (0, 𝑡

1
) and 𝑃(𝑡

0
) = 1.

Hence, it follows from the first equation of (4) that

𝑃̇ (𝑡
0
) = 𝑃 (𝑡

0
) (1 − 𝑃 (𝑡

0
)) −

𝑃 (𝑡
0
) 𝑍 (𝑡
0
)

(𝛼 + 𝑃 (𝑡
0
)) 𝑒𝑃(𝑡0)

< 0, (13)

which is a contradiction to 𝑃̇(𝑡
0
) > 0. So,𝑃(𝑡) ≤ 1 for all 𝑡 ≥ 0.

It is easy to prove that if there is a 𝑡
2
> 0 such that 𝑃(𝑡

2
) =

𝑚
0
, then for all 𝑡 > 𝑡

2
one has 𝑃(𝑡) > 𝑚

0
. Which implies that

𝑃(𝑡) ≥ 𝑚
0
for all 𝑡 ≥ 0.This completes the proof of conclusion

(c) in Theorem 1.

Remark. The conclusions (b) and (c) in Theorem 1 indicate
that if the ratio of biomass conversion is less than certain
value, then phytoplankton population will be persistent.

4. Equilibrium, Stability, and Hopf Bifurcation

4.1. Existence of Equilibria. It is easy to see that model (4) has
two boundary equilibria 𝐸

0
(0, 0) and 𝐸

1
(1, 0). To discuss the

existence of the positive equilibria, we work on the equation

𝑍 = (1 − 𝑃) (𝛼 + 𝑝) 𝑒
𝑃

,

(𝛽 − 𝜌) 𝑃

𝛼 + 𝑃
𝑒
−𝑃

− 𝐷 = 0.

(14)
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Denote the left-hand side of the second equation in (14):

𝐹 (𝑃) =
(𝛽 − 𝜌) 𝑃

𝛼 + 𝑃
𝑒
−𝑃

− 𝐷, 𝑃 ∈ [0, 1] . (15)

Then 𝐹(0) = −𝐷 < 0, lim
𝑃→+∞

𝐹(𝑃) = −𝐷,

𝐹
󸀠

(𝑃) =
(𝛽 − 𝜌) [(𝛼 + 𝑃) − 𝑃 (1 + (𝛼 + 𝑃))]

(𝛼 + 𝑃)
2

𝑒𝑃

=
(𝛽 − 𝜌)

(𝛼 + 𝑃)
2

𝑒𝑃
(−𝑃
2

− 𝛼𝑃 + 𝛼) , 𝑃 ∈ [0, 1] .

(16)

Let 𝐺(𝑃) = −𝑃2 − 𝛼𝑃 + 𝛼, we have 𝐺(𝑝
1
) = 𝐺(𝑝

2
) = 0, where

𝑝
1
=
−√𝛼2 + 4𝛼 − 𝛼

2
< 0, 0 < 𝑝

2
=
√𝛼2 + 4𝛼 − 𝛼

2
< 1.

(17)

From this we know that the function 𝐹(𝑃) is monotone
increasing in the interval [0, 𝑝

2
] and monotone decreasing

in the interval [𝑝
2
, +∞). Hence, 𝐹(𝑃) reaches its maximum

𝐹
𝑚
= ((𝛽 − 𝜌)/(𝛼 + 𝑝

2
))𝑒−𝑝2 − 𝐷 on the interval (0, +∞).

Therefore, we have the following results.

Theorem 2. The following statements hold.

(1) If𝐹(𝑝
2
) < 0, then equation𝐹(𝑃) = 0 has no roots in the

interval [0, +∞) (Figure 1(a)). In this case, for system
(4), there is no positive equilibrium.

(2) If 𝐹(𝑝
2
) > 0 and 𝐹(1) > 0, then equation 𝐹(𝑃) = 0

has only one root, 𝑃 = 𝑝∗
1
, in the interval [0, 1], where

0 < 𝑝∗
1
< 1 (Figure 1(c)). In this case, for system (4),

there exists a single positive equilibrium 𝐸∗(𝑝∗
1
, 𝑧∗
1
).

(3) If 𝐹(𝑝
2
) > 0 and 𝐹(1) < 0, then equation 𝐹(𝑃) = 0 has

two distinct roots, 𝑃 = 𝑝∗
12
and 𝑃 = 𝑝∗

21
, in the interval

[0, 1], where 0 < 𝑝∗
12
< 𝑝
2
< 𝑝∗
21
< 1 (Figure 1(d)). In

this case, for system (4), there are two distinct positive
equilibria 𝐸∗(𝑝∗

12
, 𝑧∗
12
) and 𝐸∗(𝑝∗

21
, 𝑧∗
21
).

(4) If 𝐹(𝑝
2
) = 0, then equation 𝐹(𝑃) = 0 has a unique

root, 𝑝∗
2
= 𝑝
2
, in the interval [0, +∞), 0 < 𝑝∗

2
= 𝑝
2
<

1 (Figure 1(b)). In this case, for system (4), there is a
unique positive equilibrium 𝐸∗(𝑝∗

2
, 𝑧∗
2
).

(5) If 𝐹(𝑝
2
) > 0 and 𝐹(1) = 0, then equation 𝐹(𝑃) = 0 has

two distinct roots, 𝑃 = 𝑝∗
3
and 𝑃 = 1, in the interval

(0, +∞), where 0 < 𝑝∗
3
< 𝑝
2
< 1 (Figure 1(e)). In

this case, for system (4), there is also unique positive
equilibrium 𝐸∗(𝑝∗

3
, 𝑧∗
3
),

where 𝑧∗
𝑖
, 𝑖 = 1, 2, 3, 12, 21, are determined by the first equation

in (14).

4.2. Local Stability and Hopf Bifurcation. Let 𝐸∗(𝑝∗, 𝑧∗)
denote any one of the equilibrium points of system (4).
Linearizing (4) about 𝐸∗ we obtain

𝑃
󸀠

(𝑡) = [1 − 2𝑝
∗

−
𝑧∗

𝛼 + 𝑝∗
(

𝛼

𝛼 + 𝑝∗
− 𝑝
∗

) 𝑒
−𝑝
∗

]𝑃 (𝑡)

−
𝑝∗

𝛼 + 𝑝∗
𝑒
−𝑝
∗

𝑍 (𝑡) ,

𝑧
󸀠

(𝑡) = (𝛽 − 𝜌) (1 − 𝑝
∗

) (
𝛼

𝛼 + 𝑝∗
− 𝑝
∗

)𝑃 (𝑡 − 𝜏) − 𝐷𝑍 (𝑡)

+
(𝛽 − 𝜌) 𝑝

∗

𝛼 + 𝑝∗
𝑒
−𝑝
∗

𝑍 (𝑡 − 𝜏) .

(18)

Inwhat follows, existence of the interior equilibria, dynamical
properties of the zooplankton-free equilibrium, and the
interior equilibrium are investigated.

Theorem 3. For any time delay 𝜏 ≥ 0, 𝐸
1
(1, 0) is locally

asymptotically stable if 𝐹(1) < 0 and is unstable if 𝐹(1) > 0;
the trivial solution of the linearized system of (4) about𝐸

1
(1, 0)

is stable for 𝐹(1) = 0.

Proof. From (18) we know that, at any equilibrium point
𝐸(𝑝
∗, 𝑧∗), the characteristic equation is

𝜆
2

+ 𝑎
0
𝜆 + 𝑎
1
+ (𝑎
2
− 𝐷𝜆) 𝑒

−𝜆𝜏

= 0, (19)

where

𝑎
0
= 𝐷 −

𝑃∗

𝛼 + 𝑃∗
𝐻(𝑃
∗

) , 𝑎
1
= −𝐷

𝑝∗

𝛼 + 𝑝∗
𝐻(𝑝
∗

) ,

𝑎
2
= 𝐷[

𝑝∗

𝛼 + 𝑝∗
𝐻(𝑝
∗

) + (1 − 𝑝
∗

) (
𝛼

𝛼 + 𝑝∗
− 𝑝
∗

)] ,

(20)

in which𝐻(𝑝∗) = [−𝑝∗2 − (𝛼 + 1)𝑝∗ + 1].
We first consider local stability of 𝐸

1
(1, 0). For 𝐸

1
(1, 0),

(19) becomes

(𝜆 + 1) (𝜆 + 𝐷 −
(𝛽 − 𝜌)

(𝛼 + 1) 𝑒
𝑒
−𝜆𝜏

) = 0. (21)

One of the roots of (21) is 𝜆
1
= −1 < 0, and other roots are

given by solution of the following equality:

(𝐷 + 𝜆) 𝑒
𝜆𝜏

=
(𝛽 − 𝜌)

(𝛼 + 1) 𝑒
. (22)

It follows from [34] that

(i) if 𝐹(1) < 0, then all roots of (22) have negative parts
for any time delay 𝜏 ≥ 0. Hence, 𝐸

1
(1, 0) is locally

asymptotically stable for any time delay 𝜏 ≥ 0;
(ii) if 𝐹(1) > 0, then (22) has roots which have positive

real parts for any time delay 𝜏 ≥ 0. Hence, 𝐸
1
(1, 0) is

unstable for any time delay 𝜏 ≥ 0;
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Figure 1: The graph of function 𝐹(𝑃) = 0.
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(iii) if 𝐹(1) = 0, this is a critical case and (22) is equivalent
to

𝜆 + 𝐷 (1 − 𝑒
−𝜆𝜏

) = 0. (23)

From [34], it has that except 𝜆 = 0, any root of (23) has
negative real part for any time delay 𝜏 ≥ 0. Hence, the trivial
solution of the linearized system of (4) about 𝐸

1
(1, 0) is stable

for any time delay 𝜏 ≥ 0.

Theorem 4. Suppose that the positive equilibria 𝐸∗(𝑝∗
𝑖
, 𝑧∗
𝑖
),

𝑖 = 1, 2.12, 21, of system (4) exist. For system (4), the following
statements hold.

(i) If 𝑝∗
𝑖
> Δ
𝛼
and 2𝑝∗𝐻(𝑝∗

𝑖
) + (1 − 𝑝∗

𝑖
)𝐺(𝑝∗
𝑖
) > 0, then

𝐸∗(𝑝∗
𝑖
, 𝑧∗
𝑖
) are locally asymptotically stable for 𝜏 < 𝜏(𝑖)

0
,

𝐸∗(𝑝∗
𝑖
, 𝑧∗
𝑖
) are unstable for 𝜏 > 𝜏

(𝑖)

0
, and there is a

periodic solution around 𝐸∗(𝑝∗
𝑖
, 𝑧∗
𝑖
) for 𝜏 = 𝜏

(𝑖)

0
. If

0 < 𝑝∗
𝑖
< Δ
𝛼
, then𝐸∗(𝑝∗

𝑖
, 𝑧∗
𝑖
) is unstable for any 𝜏 ≥ 0,

where 𝜏(𝑖)
0

is determined by (30), 𝑖 = 1, 12.
(ii) 𝐸∗(𝑝∗

21
, 𝑧∗
21
) is unstable for any 𝜏 ≥ 0.

(iii) If 𝑝∗
2
> Δ
𝛼
, then the trivial solution of the linearized

system of (4) about 𝐸∗(𝑝∗
2
, 𝑧∗
2
) is stable for any 𝜏 ≥ 0. If

0 < 𝑝∗
2
< Δ
𝛼
, then the trivial solution of the linearized

system of (4) about𝐸∗(𝑝∗
2
, 𝑧∗
2
) is unstable for any 𝜏 ≥ 0,

where Δ
𝛼
= (√(𝛼 + 1)

2

+ 4 − (𝛼 + 1))/2, 0 < Δ
𝛼
< 1.

Proof. When 𝜏 = 0, the transcendental equation (19) becomes

𝜆
2

+ (𝑎
0
− 𝐷) 𝜆 + 𝑎

1
+ 𝑎
2
= 0, (24)

where

𝑎
0
− 𝐷 = −

𝑝∗
𝑖

𝛼 + 𝑝∗
𝑖

𝐻(𝑝
∗

𝑖
) ,

𝑎
1
+ 𝑎
2
=
𝐷 (1 − 𝑝∗

𝑖
)

𝛼 + 𝑝∗
𝑖

𝐺 (𝑝
∗

𝑖
) ,

𝑖 = 1, 2, 12, 21.

(25)

𝐻(𝑝∗
𝑖
) > 0 if 0 < 𝑝∗

𝑖
< Δ
𝛼
, and 𝐻(𝑝∗

𝑖
) < 0 if Δ

𝛼
< 𝑝∗
𝑖
≤ 1,

𝑖 = 1, 2, 12, 21.
By the argument in Section 4.1, as long as 𝐸∗(𝑝∗

𝑖
, 𝑧∗
𝑖
)

exists, it must be𝐺(𝑝∗
𝑖
) > 0, 𝑖 = 1, 12; thus, 𝑎

1
+𝑎
2
> 0; as long

as 𝐸∗(𝑝∗
21
, 𝑧∗
21
) exists, it must be 𝐺(𝑝∗

21
) < 0; thus, 𝑎

1
+ 𝑎
2
< 0;

as long as 𝐸∗(𝑝∗
2
, 𝑧∗
2
) exists, it must be 𝐺(𝑝∗

2
) = 0; thus,

𝑎
1
+ 𝑎
2
= 0; hence, from Routh-Hurwitz theorem, we have

that if 𝑝∗
𝑖
> Δ
𝛼
, 𝑖 = 1.12, then 𝐸∗(𝑝∗

1
, 𝑧∗
1
) and 𝐸∗(𝑝∗

12
, 𝑧∗
12
)

are locally asymptotically stable. If 0 < 𝑝∗
𝑖
< Δ
𝛼
, 𝑖 = 1, 12,

then 𝐸∗(𝑝∗
1
, 𝑧∗
1
) and 𝐸∗(𝑝∗

12
, 𝑧∗
12
) are unstable; if 𝑝∗

𝑖
= Δ
𝛼
,

𝑖 = 1, 12, then 𝐸∗(𝑝∗
1
, 𝑧∗
1
) and 𝐸∗(𝑝∗

12
, 𝑧∗
12
) are nonhyperbolic

equilibria; 𝐸∗(𝑝∗
21
, 𝑧∗
21
) is unstable; 𝐸∗(𝑝∗

2
, 𝑧∗
2
) is a critical

case.
Suppose that 𝜆 = 𝑖𝜔, 𝜔 > 0, is a root of (19) for some

𝜏 > 0. Substituting 𝜆 = 𝑖𝜔 in the characteristic equation (19),
and separating real and imaginary parts, then we get

−𝜔
2

+ 𝑎
1
+ 𝑎
2
cos (𝜔𝜏) − 𝜔𝐷 sin (𝜔𝜏) = 0,

𝑎
0
𝜔 − 𝜔𝐷 cos (𝜔𝜏) − 𝑎

2
sin (𝜔𝜏) = 0.

(26)

Eliminating 𝜏 from (26), we get a biquadratic equation in 𝜏 as

𝜔
4

+ (𝑎
2

0
− 2𝑎
1
− 𝐷
2

) 𝜔
2

+ 𝑎
2

1
− 𝑎
2

2
= 0. (27)

Its roots are

𝜔
2

±
=
1

2
{𝐷
2

+ 2𝑎
1
− 𝑎
2

0
± √(𝑎2

0
− 2𝑎
1
− 𝐷2)

2

− 4 (𝑎2
1
− 𝑎2
2
)} .

(28)

By (20) we obtain

𝑎
2

0
− 2𝑎
1
− 𝐷
2

= (𝐷 −
𝑝∗
𝑖

𝛼 + 𝑝∗
𝑖

𝐻(𝑝
∗

𝑖
))

2

+ 2𝐷
𝑝∗
𝑖

𝛼 + 𝑝∗
𝑖

𝐻(𝑝
∗

𝑖
) − 𝐷
2

= (
𝑝∗
𝑖

𝛼 + 𝑝∗
𝑖

𝐻(𝑝
∗

𝑖
))

2

> 0,

𝑎
2

1
− 𝑎
2

2
= −𝐷
2
1 − 𝑝∗
𝑖

(𝛼 + 𝑝∗
𝑖
)
2

𝐺 (𝑝
∗

𝑖
)

⋅ {2𝑝
∗

𝐻(𝑝
∗

𝑖
) + (1 − 𝑝

∗

𝑖
) 𝐺 (𝑝

∗

𝑖
)} ,

𝑖 = 1, 2, 12, 21.

(29)

(1)We consider the stability of 𝐸∗(𝑝∗
𝑖
, 𝑧∗
𝑖
), 𝑖 = 1, 12.

Since 𝐺(𝑝∗
𝑖
) > 0, if 2𝑝∗𝐻(𝑝∗

𝑖
) + (1 − 𝑃

∗

𝑖
)𝐺(𝑝
∗

𝑖
) > 0, 𝑖 =

1, 12, then there is only one root, 𝜔 = 𝜔
+
, 𝜔
+
> 0, such that

𝜔
2

±
=
1

2
{𝐷
2

+ 2𝑎
1
− 𝑎
2

0
+ √(𝑎2

0
− 2𝑎
1
− 𝐷2)

2

− 4 (𝑎2
1
− 𝑎2
2
)} .

(30)

That is, (19) has one imaginary solution, 𝜆 = 𝑖𝜔
+
, 𝜔
+
> 0.

From (26), we obtain the following set of 𝜏 for which there
are imaginary root:

𝜏
(𝑖)

𝑛
=
𝜃

𝜔
+

+
2𝑛𝜋

𝜔
+

, (𝑖 = 1, 12, 𝑛 = 0, 1, 2 . . .) , (31)

where 0 ≤ 𝜃 ≤ 2𝜋 and

sin 𝜃 =
−𝐷𝜔
2

+
+ 𝑎
0
𝑎
2
𝜔
+
+ 𝑎
1
𝐷

𝑎2
2
+ 𝐷2

,

cos 𝜃 =
𝜔2
+
𝑎
2
− 𝐷𝑎
0
𝜔
+
− 𝑎
1
𝑎
2

𝑎2
2
+ 𝐷2

.

(32)

If 𝑝∗
𝑖
> Δ
𝛼
, then 𝐻(𝑝∗

𝑖
) < 0, when 𝜏 = 0, 𝐸∗(𝑝∗

𝑖
, 𝑧∗
𝑖
), 𝑖 =

1, 12 are locally asymptotically stable. Hence, if 𝑝∗
𝑖
> Δ
𝛼
and

2𝑝∗𝐻(𝑝∗
𝑖
) + (1 − 𝑝∗

𝑖
)𝐺(𝑝∗
𝑖
) > 0, then 𝐸∗(𝑝∗

𝑖
, 𝑧∗
𝑖
) are locally

asymptotically stable for 𝜏 < 𝜏(𝑖)
0

(𝑛 = 0, 𝑖 = 1, 12).
Differentiating (19) with respect to 𝜏, we obtain

[2𝜆 + 𝑎
0
− 𝐷𝑒
−𝜆𝜏

− (𝑎
2
− 𝐷𝜆) 𝜏𝑒

−𝜆𝜏

]
𝑑𝜆

𝑑𝜏

− (𝑎
2
− 𝐷𝜆) 𝜆𝑒

−𝜆𝜏

= 0.

(33)
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It follows that

𝑑𝜆

𝑑𝜏
=

(𝑎
2
− 𝐷𝜆) 𝜆𝑒−𝜆𝜏

2𝜆 + 𝑎
0
− 𝐷𝑒−𝜆𝜏 − (𝑎

2
− 𝐷𝜆) 𝜏𝑒−𝜆𝜏

, (34)

[
𝑑𝜆

𝑑𝜏
]

−1

=
(𝑎
0
+ 2𝜆) 𝑒𝜆𝜏 − 𝐷

(𝑎
2
− 𝐷𝜆) 𝜆

−
𝜏

𝜆
. (35)

From (35), we have

Re[(𝑑𝜆
𝑑𝜏
)

−1

]
𝜆=𝑖𝜔
+

= Re[
(𝑎
0
+ 2𝜆) 𝑒

𝜆𝜏

− 𝐷

(𝑎
2
− 𝐷𝜆) 𝜆

]
𝜆=𝑖𝜔
+

=
1

𝐷2𝜔4
+
+ 𝑎2
2
𝜔2
+

{𝑎
2
𝜔
+
[2𝜔
+
cos (𝜔

+
𝜏) + 𝑎

0
sin (𝜔

+
𝜏)]

+ 𝐷𝜔
2

+
[𝑎
0
cos (𝜔

+
𝜏)

− 2𝜔
+
sin (𝜔

+
𝜏) − 𝐷]}

=
1

𝐷2𝜔4
+
+ 𝑎2
2
𝜔2
+

(2𝜔
4

+
− 2𝑎
1
𝜔
2

+
+ 𝑎
2

0
𝜔
2

+
− 𝐷
2

𝜔
2

+
)

=
𝜔2
+

𝐷2𝜔4
+
+ 𝑎2
2
𝜔2
+

(2𝜔
2

+
+ 𝑎
2

0
− 2𝑎
1
− 𝐷
2

) .

(36)

Thus, we have

sign[Re(𝑑𝜆
𝑑𝜏
)
𝜆=𝑖𝜔
+

] = sign{Re[(𝑑𝜆
𝑑𝜏
)

−1

]
𝜆=𝑖𝜔
+

} > 0.

(37)

Hence, there is a Hopf bifurcation at 𝜔 = 𝜔
+
, 𝜏 = 𝜏

(𝑖)

0
.

Therefore, if 𝑝∗
𝑖
> Δ
𝛼
and 2𝑝∗𝐻(𝑝∗

𝑖
) + (1 − 𝑝∗

𝑖
)𝐺(𝑝∗
𝑖
) > 0,

then 𝐸∗(𝑝∗
𝑖
, 𝑧∗
𝑖
) is locally asymptotically stable for 𝜏 < 𝜏(𝑖)

0
,

𝐸
∗

(𝑝
∗

𝑖
, 𝑧
∗

𝑖
) is unstable for 𝜏 > 𝜏(𝑖)

0
, and there is a periodic

solution around 𝐸∗(𝑝∗
𝑖
, 𝑧∗
𝑖
) for 𝜏 = 𝜏

(𝑖)

0
. If 𝑝∗
𝑖
> Δ
𝛼
and

2𝑃∗𝐻(𝑝∗
𝑖
) + (1 − 𝑝∗

𝑖
)𝐺(𝑝∗
𝑖
) < 0 or 0 < 𝑝∗

𝑖
< Δ
𝛼
, then

𝐸∗(𝑝∗
𝑖
, 𝑧∗
𝑖
) is unstable for any 𝜏 ≥ 0, 𝑖 = 1, 12.

(2)We consider the stability of 𝐸∗(𝑝∗
21
, 𝑧∗
21
).

Since 𝐺(𝑝∗
21
) < 0, if 𝑝∗

21
> Δ

𝛼
, then (19) has

only one imaginary solution. From proof of 𝐸∗(𝑝∗
1
, 𝑧∗
1
),

sign[Re(𝑑𝜆/𝑑𝜏)
𝜆=𝑖𝜔
+

] > 0. Hence, 𝐸∗(𝑝∗
21
, 𝑧∗
21
) is unstable for

any 𝜏 ≥ 0. If 0 < 𝑝∗
21
< Δ
𝛼
and 2𝑝∗𝐻(𝑝∗

21
)+(1−𝑝∗

21
)𝐺(𝑝∗
21
) <

0, then (19) has only one imaginary solution. If 0 < 𝑝∗
21
< Δ
𝛼

and 2𝑃∗𝐻(𝑝∗
21
)+ (1−𝑝∗

21
)𝐺(𝑝∗
21
) > 0, then (19) does not have

imaginary solution. Wnen 𝜏 = 0, 𝐸∗(𝑝∗
21
, 𝑧∗
21
) is unstable.

Therefore, 𝐸∗(𝑝∗
21
, 𝑧∗
21
) is unstable for any 𝜏 ≥ 0.

(3)We consider the stability of 𝐸∗(𝑝∗
2
, 𝑧∗
2
).

Consider the characteristic equation (19). 𝜆(𝜏) = 0 is a
root of (19) for all 𝜏 ≥ 0. Suppose 𝜆 = 𝑢 + 𝑖V is a root of (19),
then substituting 𝜆 = 𝑢+ 𝑖V in the characteristic equation, we
have

(𝑢 + 𝑖V)2 + 𝑎
0
(𝑢 + 𝑖V) + 𝑎

1
+ (𝑎
2
− 𝐷 (𝑢 + 𝑖V)) 𝑒−(𝑢+𝑖V)𝜏 = 0

(38)

and separating real and imaginary parts, then we get

𝑢
2

− V2 + 𝑎
0
𝑢 + 𝑎
1

+ 𝑒
−𝑢𝜏

[(𝑎
2
− 𝐷𝑢) cos (V𝜏) − 𝐷V sin (V𝜏)] = 0,

2𝑢V + 𝑎
0
V − 𝑒−𝑢𝜏 [𝐷V cos (V𝜏) + (𝑎

2
− 𝐷𝑢) sin (V𝜏)] = 0.

(39)

From (39), we obtain

[𝑢
2

− V2 + 𝑎
0
𝑢 + 𝑎
1
]
2

+ V2 (2𝑢 + 𝑎
0
)
2

= 𝑒
−2𝑢𝜏

[𝐷
2V2 + (𝑎

1
+ 𝐷𝑢)

2

] .

(40)

(i) Assume 𝑝∗
2
≥ Δ
𝛼
. Suppose (19) has a root 𝜆 = 𝑢+𝑖V, 𝑢 > 0

for all 𝜏 ≥ 0. Then, from (40), we have

[𝑢
2

− V2 + 𝑎
0
𝑢 + 𝑎
1
]
2

+ V2 [2𝑢 + 𝑎
0
]
2

− [𝐷
2V2 + (𝑎

1
+ 𝐷𝑢)

2

]

= (𝑒
−2𝑢𝜏

− 1) [𝐷
2V2 + (𝑎

1
+ 𝐷𝑢)

2

] .

(41)

The left-hand size of (41) is equal to

(𝑢
2

− V2)
2

+ 4𝑢
2V2 + V2 (𝑎2

0
− 2𝑎
1
− 𝐷
2

)

+ 2𝑎
1
𝑢 (𝑎
0
− 𝐷) + 𝑢

2

(𝑎
2

0
+ 2𝑎
1
− 𝐷
2

) .

(42)

Obviously,

𝑎
2

0
− 2𝑎
1
− 𝐷
2

= (
𝑝∗
2

𝛼 + 𝑝∗
2

𝐻(𝑝
∗

2
))

2

> 0,

2𝑎
1
𝑢 (𝑎
0
− 𝐷) > 0,

(43)

and by assumption,

𝑎
2

0
+ 2𝑎
1
− 𝐷
2

=
𝑝∗
2

𝛼 + 𝑝∗
2

𝐻(𝑝
∗

2
) [

𝑝∗
2

𝛼 + 𝑝∗
2

𝐻(𝑝
∗

2
) − 4𝐷] > 0.

(44)

Therefore,

[𝑢
2

− V2 + 𝑎
0
𝑢 + 𝑎
1
]
2

+ V2 [2𝑢 + 𝑎
0
]
2

− [𝐷
2V2 + (𝑎

1
+ 𝐷𝑢)

2

] < 0.

(45)

According to (41), this is impossible, since we are assuming
𝑢 > 0. Hence, all roots of (19) have nonpositive real parts, and
this implies that the trivial solutions of the linearized system
of (4) about 𝐸∗(𝑝∗

2
, 𝑧∗
2
) are stable.

(ii) Assume 0 < 𝑝∗
2
< Δ
𝛼
. Consider the following real

function:

𝑓 (𝜆, 𝜏) = 𝜆
2

+ 𝑎
0
𝜆 + 𝑎
1
+ (𝑎
2
− 𝐷𝜆) 𝑒

−𝜆𝜏

. (46)

It is clear that 𝑓(0, 𝜏) = 0 and lim
𝜆→+∞

𝑓(𝜆, 𝜏) = +∞. There
exists a 𝜆

0
> 0 such that if 𝜆 ≥ 𝜆

0
, 𝑓(𝜆, 𝜏) ≥ 0, we also have

𝜕𝑓 (𝜆, 𝜏)

𝜕𝜆
= 2𝜆 + 𝑎

0
− [𝜏 (𝑎

2
− 𝐷𝜆) + 𝐷] 𝑒

−𝜆𝜏

,

𝜕𝑓 (0, 𝜏)

𝜕𝜆
= 𝑎
0
− 𝜏𝑎
2
− 𝐷 = −

𝑃∗
2

𝛼 + 𝑝∗
2

(𝐻 (𝑝
∗

2
) + 𝐷𝜏) .

(47)
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Figure 2: ((a)-(b)) Behavior and phase portrait of system (4) with 𝜏 = 0.1 < 𝜏
0
. The positive equilibrium 𝐸∗

1
(0.3315, 3.1025) is stable. (c)The

oscillations of 𝑃 and 𝑍 versus time 𝑡 when 𝜏 = 3.57 > 𝜏
0
show that the positive equilibrium 𝐸∗

1
is unstable. Here 𝜏

0
= 3.5 and the initial value

is (𝜙(0), 𝜑(0)) = (0.7, 3).

Since 0 < 𝑝∗
2
< Δ
𝛼
yields 𝐻(𝑝∗

2
) > 0, which gives

𝜕𝑓(0, 𝜏)/𝜕𝜆 < 0 (𝜏 ≥ 0), hence, there exists a 𝛿(𝜏) > 0 such
that when 0 < 𝜆 ≤ 𝛿(𝜏), 𝑓(𝜆, 𝜏) < 0. Therefore, there exists at
least one 𝜆∗, 𝛿 < 𝜆∗ ≤ 𝜆

0
, such that 𝑓(𝜆∗, 𝜏) = 0, that is, (19)

has at least a positive root. This indicates that trivial solution
of the linearized system of (18) about 𝐸∗(𝑝∗

2
, 𝑧∗
2
) is unsta-

ble.

4.3. Numerical Simulation. For numerical simulation, let us
first consider case (i) in Theorem 4. We choose parameter
values as 𝛼 = 3, 𝛽 = 1, 𝜌 = 0.3, and 𝐷 = 0.05. For this
choice, 𝐹(𝑝

2
) ≈ 0, 0630 > 0, 𝐹(1) ≈ 0, 0144 > 0. The stability

of the interior equilibrium point 𝐸∗
1
(0.3315, 3.1025) depends

upon the magnitude of delay 𝜏. From (30) and (31) we obtain
𝜔2
+
= 0.3486, 𝜏

0
= 3.5. Consider Δ

𝛼
≈ 0.2361 < 0.3315,

2𝑃∗𝐻(𝑝∗
1
)+(1−𝑝∗

1
)𝐺(𝑝∗
1
) ≈ 0.97932 > 0.When 𝜏 = 0.1 < 𝜏

0
,

Figures 2(a) and 2(b) show that the system is approaching
the equilibrium point 𝐸∗

1
. When 𝜏 increases to 𝜏 = 3.57,

𝐸∗
1
becomes unstable (Figure 2(c)). Stable oscillations appear

when 𝜏 = 3.5 and the Hopf bifurcation periodic solutions are
depicted in Figure 3.

For case (ii) in Theorem 4, consider the following set of
parametric values: 𝛼 = 1, 𝛽 = 1, 𝜌 = 0.1, and 𝐷 = 0.179.

Then we have 𝐹(𝑝
2
) = 0.0063 > 0, 𝐹(1) = −0.0135 < 0.

ByTheorem 4, the system (4) has two equilibria 𝐸∗
12
(𝑝∗
12
, 𝑧∗
12
)

and 𝐸∗
21
(𝑝∗
21
, 𝑧∗
21
). From direct calculation, we get that 𝑝∗

12
=

0.4599, 𝑧∗
12
= 1.2489, 𝑝∗

21
= 0.8128, 𝑧∗

21
= 0.7650, 𝜏

0
= 5.11,

Δ
𝛼
= 0.414, and 2𝑝∗𝐻(𝑝∗

12
) + (1 − 𝑝∗

12
)𝐺(𝑝∗
12
) ≈ 0.0567 > 0.

For 𝜏 = 1 < 𝜏
0
, the numerical simulation shows that equi-

librium point 𝐸∗
12
(0.4599, 1.2489) is stable (Figure 4). When

𝜏 increases to 𝜏 = 8 > 𝜏
0
, the equilibrium 𝐸∗

12
(0.4599, 1.2489)

becomes unstable (Figure 6). There is a periodic solution
around the equilibrium𝐸∗

12
= (0.4599, 1.2489)when 𝜏 = 5.11

(Figure 5).
For case (iii) inTheorem 4, let us take the parametric val-

ues 𝛼 = 1,𝛽 = 1, 𝜌 = 0.1, and𝐷 = 0.1853. For these set of val-
ues, by direct calculation, we get 𝐹(𝑝

2
) = 0, 𝑝∗

2
= 𝑝
2
= 0.618,

and 𝑧∗
2
= 1.1467 𝑝∗

2
> Δ
𝛼
= 0.414. By Theorem 1, system (4)

has only one equilibrium𝐸∗
2
(𝑝∗
2
, 𝑧∗
2
), and fromTheorem 4we

know that the equilibrium 𝐸∗
2
(𝑝∗
2
, 𝑧∗
2
) is stable (Figure 7(a)).

Take parametric values as 𝛼 = 0.4, 𝛽 = 1, 𝜌 = 0.1, and
𝐷 = 0.2724. Then we have 𝐹(𝑝

2
) = 0, 𝑃∗

2
= 𝑝
2
= 0.4633,

𝑍∗
2
= 0.7374, and 𝑃∗

2
< Δ
𝛼
= 0.5207. By Theorem 2, sys-

tem (4) has only one equilibrium 𝐸∗
2
(0.4633, 0.7374). The

numerical simulation shows 𝐸∗
2
(0.4633, 0.7374) is unstable

(Figure 7(b)).
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Figure 3: Behavior and phase portrait of system (4) when 𝜏 = 𝜏
0
= 3.5. Hopf bifurcation occurs from the interior equilibrium 𝐸∗

1
. The initial

value is (𝜙(0), 𝜑(0)) = (0.33, 3.1).
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Figure 4: Behavior and phase portrait of system (4) with 𝜏 = 1 < 𝜏
0
shows the equilibrium 𝐸∗

12
(0.4599, 1.2489) is stable. Here 𝜏

0
= 5.11 and

the initial value is (𝜙(0), 𝜑(0)) = (0.41, 1.25).
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Figure 5: Behavior and phase portrait of system (4) with 𝜏 = 5.11 = 𝜏
0
. Hopf bifurcation occurs from the interior equilibrium 𝐸∗

12
. The initial

value is (𝜙(0), 𝜑(0)) = (0.45, 1.23).
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Figure 7: Behavior and phase portrait of system (4). (a)The equilibrium 𝐸∗
2
(0.618, 1.1467) is stable for any 𝜏 > 0 when 𝑝∗

2
> Δ
𝛼
= 0.414. (b)

The equilibrium 𝐸∗
2
(0.4633, 0.5207) is unstable for any 𝜏 > 0 when 𝑝∗

2
< Δ
𝛼
= 0.414. The initial value is (𝜙(0), 𝜑(0)) = (0.41, 1.25).

5. Permanence

In this section, we will use the same methods as [35] to prove
the permanence of system (4).

Theorem 5. Suppose that 𝛽 < 𝜌 + 4𝛼𝐷/(1 + 𝐷)2, 𝐷 > 1,
and 𝐹(1) > 0. Then, for any time delay 𝜏 ≥ 0, system (4) is
permanent.

Proof. From Theorem 1, we see that it is enough to consider
the solution (𝑃(𝑡), 𝑍(𝑡)) with initial condition 𝜓 = (𝜙, 𝜑) ∈
Γ. Theorem 1 implies that the omega limit set 𝜔(𝜓) of (𝑃(𝑡),
𝑍(𝑡)) (𝑡 ≥ 0) is nonempty, compact, and invariant and𝜔(𝜓) ⊂
Γ. It follows from definition of permanence and Theorem 1,
that we only need to show

lim inf
𝑡→∞

𝑍 (𝑡) ≥ 𝜐. (48)

Here 𝜐 is some positive constant which dose not depend on
the initial function 𝜓.

Let us first show

lim inf
𝑡→∞

𝑍 (𝑡) > 0. (49)

In fact, if (49) is not true, then, from lim inf
𝑡→∞

𝑍(𝑡) = 0,
we see that there exists a positive time sequence {𝑡

𝑛
} : 𝑡
𝑛
→

+∞ (𝑛 → +∞) such that

lim
𝑡
𝑛
→+∞

𝑍 (𝑡
𝑛
) = 0, 𝑍̇ (𝑡

𝑛
) ≤ 0, 𝑍 (𝑡) ≥ 𝑍 (𝑡

𝑛
)

(𝑡
𝑛
− 𝜏 ≤ 𝑡 ≤ 𝑡

𝑛
) .

(50)

Note that the solution (𝑃(𝑡), 𝑍(𝑡)) is bounded on [0, +∞) by
Theorem 1. It follows from (4) that (𝑃(𝑡), 𝑍(𝑡)) is uniformly
continuous on [0, +∞). Hence, from Ascoli’s theorem there
is a subsequence of {𝑡

𝑛
}, still denoted by {𝑡

𝑛
}, such that

lim
𝑡
𝑛
→+∞

(𝑃 (𝑡
𝑛
) , 𝑍 (𝑡

𝑛
)) = (𝑃̃ (𝑡) , 𝑍 (𝑡)) (51)

holds uniformly on 𝑅 in the wide sense. FromTheorem 1, we
have that (𝑃̃(𝑡), 𝑍(𝑡)) ∈ Γ for any 𝑡 ∈ 𝑅 and that, for any 𝜏 ∈ 𝑅,
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the function (𝑃̃(𝑡 + 𝜏), 𝑍(𝑡 + 𝜏)) of 𝑡 is the solution of (4) with
the initial function (𝑃̃(𝜏), 𝑍(𝜏)). Here we note that 𝑍(0) = 0
and𝑚

0
≤ 𝑃̃(𝑡) ≤ 1 for any 𝑡 ∈ 𝑅.

We claim that (𝑃̃(𝑡), 𝑍(𝑡)) = (1, 0) for any 𝑡 ∈ 𝑅. From
Theorem 1, we know that if 𝜙(0) > 0, then the solution (𝑃(𝑡),
𝑍(𝑡)) of (4) exists and 𝑃(𝑡) > 0 and 𝑍(𝑡) > 0 (𝑡 ≥ 0). Thus,
from 𝑍(0) = 0, we have that 𝑍(𝑡) = 0 for any 𝑡 < 0. Then,
it follows from (4) that 𝑍(𝑡) ≡ 0 for any 𝑡 ∈ 𝑅, and 𝑃󸀠(𝑡) =
𝑃̃(𝑡)(1 − 𝑃̃(𝑡)) for any 𝑡 ≥ 𝜏. Hence,

𝑃̃ (𝑡) =
1

1 + (1/𝑃 (0) − 1) 𝑒−𝑡
. (52)

Since 𝑃̃(𝑡) is bounded for 𝑡 ∈ 𝑅, we must have 𝑃̃(0) = 1,
which implies that 𝑃̃(𝑡) = 1 for 𝑡 ∈ 𝑅. It follows from (4) and
the invariant of Γ that (𝑃̃(𝑡), 𝑍(𝑡)) = (1, 0) for any 𝑡 ∈ 𝑅. This
shows that above claim holds. In particular, we have that

lim
𝑛→+∞

𝑍 (𝑡
𝑛
− 𝜏) = 𝑍 (−𝜏) = 0,

lim
𝑛→+∞

𝑃 (𝑡
𝑛
− 𝜏) = 𝑃̃ (−𝜏) = 1,

lim
𝑛→+∞

(𝛽 − 𝜌) 𝑃 (𝑡
𝑛
− 𝜏)

(𝛼 + 𝑃 (𝑡
𝑛
− 𝜏)) 𝑒𝑃(𝑡𝑛−𝜏)

=
𝛽 − 𝜌

(𝛼 + 1) 𝑒
> 𝐷.

(53)

For sufficiently small 𝜀 > 0 and sufficiently large 𝑁, 𝑛 > 𝑁,
we have

(𝛽 − 𝜌) 𝑃 (𝑡
𝑛
− 𝜏)

(𝛼 + 𝑃 (𝑡
𝑛
− 𝜏)) 𝑒𝑃(𝑡𝑛−𝜏)

>
𝛽 − 𝜌

(𝛼 + 1) 𝑒
− 𝜀 > 𝐷. (54)

Hence, for large 𝑛, from (50) and above inequality, we obtain

𝑍̇
𝑛
(𝑡) =

(𝛽 − 𝜌) 𝑃 (𝑡
𝑛
− 𝜏)

(𝛼 + 𝑃 (𝑡
𝑛
− 𝜏)) 𝑒𝑃(𝑡𝑛−𝜏)

𝑍 (𝑡
𝑛
− 𝜏) − 𝑍 (𝑡

𝑛
)

≥ (
(𝛽 − 𝜌) 𝑃 (𝑡

𝑛
− 𝜏)

(𝛼 + 𝑃 (𝑡
𝑛
− 𝜏)) 𝑒𝑃(𝑡𝑛−𝜏)

− 1)𝑍 (𝑡
𝑛
)

> (
(𝛽 − 𝜌)

(𝛼 + 1) 𝑒
− 𝜀 − 1)𝑍 (𝑡

𝑛
) > 0

(55)

which is a contradiction to 𝑍̇
𝑛
(𝑡) ≤ 0. This completes the

proof of lim inf
𝑡→∞

𝑍(𝑡) > 0.
Next, let us show

lim inf
𝑡→∞

𝑍 (𝑡) ≥ 𝜐 > 0. (56)

For any initial functions sequence 𝜓
𝑛
= {(𝜙(𝑛), 𝜑(𝑛))} ⊂ Γ, let

(𝑃(𝑛)(𝑡), 𝑍(𝑛)(𝑡)) be the solution of (4) with the initial function
𝜓
𝑛
. Let 𝜔

𝑛
(𝜓
𝑛
) be the omega limit set of (𝑃(𝑛)(𝑡), 𝑍(𝑛)(𝑡)).

We have that there exists some compact and invariant set
𝜔
∗ ⊂ Γ such that dist(𝜔

𝑛
(𝜓
𝑛
), 𝜔∗) → 0 as 𝑛 → +∞. Here,

dist(𝜔
𝑛
(𝜓
𝑛
), 𝜔∗)means Hausdor 𝑓𝑓 distance [35, 36].

If (48) does not hold, for some initial function sequence
𝜓
𝑛
= {(𝜙(𝑛), 𝜑(𝑛))} ⊂ Γ such that𝜑(𝑛)(0) > 0, we have that there

is some 𝜓̃ = (𝜙, 𝜑) ∈ 𝜔∗ such that 𝜑(𝜃
0
) = 0 for some 𝜃

0
∈

[−𝜏, 0]. Now, let (𝑃̃(𝑡), 𝑍(𝑡)) be the solution of (4) with the

initial function 𝜓̃. Then, by the invariant of 𝜔∗, we have that
(𝑃̃(𝑡 + 𝜃), 𝑍(𝑡 + 𝜃)) ∈ 𝜔∗ for all 𝑡 ∈ 𝑅 and 𝜃 ∈ [−𝜏, 0]. Note
𝜑(𝜃
0
) = 0 and the positivity of all solutions, we easily have

that 𝑍(𝑡) = 0 for all 𝑡 ≤ 𝜃
0
. Hence, it follows from (4) that

𝑍(𝜃) = 0, 𝜃 ∈ [−𝜏, 0], and 𝑍(𝑡) = 0 for all 𝑡 ∈ 𝑅. This implies
that 𝑃̃(𝑡) = [1 + (𝑃−1(0) − 1)𝑒−𝑡]−1, 𝑍(𝑡) = 0, for all 𝑡 ∈ 𝑅. If
𝑃̃(0) < 1, we see that the negative semiorbit (𝑃̃(𝑡 + 𝜃), 𝑍(𝑡 +
𝜃)) ∈ 𝜔∗ (𝑡 ≤ 0) is unbounded. This is contradiction.

If 𝑃̃(0) = 1, we have that 𝑃̃(𝑡) = 1, 𝑍(𝑡) = 0 for all
𝑡 ∈ 𝑅. This shows that 𝜓̃ = (1, 0) = 𝐸

0
∈ 𝜔∗. Let us

show 𝐸
0
is factually isolated [35, 36]. that is, there exists some

neighborhood𝑈 of𝐸
0
in Γ such that𝐸

0
is the largest invariant

set in 𝑈. In fact, let us choose

𝑈 = {𝜓 = (𝜙, 𝜑) ∈ Γ,
󵄩󵄩󵄩󵄩𝜓 − 𝐸0

󵄩󵄩󵄩󵄩 < 𝜀} (57)

for some sufficiently small positive constant 𝜀 and 𝜀 < 1 −
𝐷(𝛼+1)𝑒/(𝛽−𝜌). We will show that𝐸

0
is the largest invariant

set in 𝑈 for some 𝜀.
If not, for any sufficiently small 𝜀, there exists some inva-

riant set Ω (Ω ⊂ 𝑈) such that Ω \ 𝐸
0
is not empty. Let 𝜓 =

(𝜙, 𝜑) ∈ Ω \ 𝐸
0
and (𝑃(𝑡 + 𝜃), 𝑍(𝑡 + 𝜃)) be the solution of (4)

with the initial function 𝜓. Then, (𝑃(𝑡 + 𝜃), 𝑍(𝑡 + 𝜃)) ∈ Ω for
all 𝑡 ∈ 𝑅.

If 𝜑(0) = 0, by the invariance of Ω and Theorem 1, we
also have the contradiction that 𝜓 = 𝐸

0
or that the negative

semiorbit (𝑃(𝑡 + 𝜃), 𝑍(𝑡 + 𝜃)) (𝑡 < 0) of (4) through 𝜓 is
unbounded.

If 𝜑(0) > 0, from the Theorem 1, we see that 𝑍(𝑡) > 0 for
all 𝑡 ≥ 0. Now, let us consider the continuous function:

𝑄 (𝑡) = 𝑍 (𝑡) + 𝜂∫
𝑡

𝑡−𝜏

𝑍 (𝜃) 𝑑𝜃, (58)

for some constant 𝜂 > 1. Because of (𝑃(𝑡 + 𝜃), 𝑍(𝑡 + 𝜃)) ∈
𝑈 (𝑡 ∈ 𝑅), we have 1 − 𝜀 ≤ 𝑃(𝑡) ≤ 1 (𝑡 ∈ 𝑅). The time
derivative of 𝑄(𝑡) along the solution (𝑃(𝑡), 𝑍(𝑡)) satisfies

𝑄̇ (𝑡) = 𝑍̇ (𝑡) + 𝜂 (𝑍 (𝑡) − 𝑍 (𝑡 − 𝜏))

= (𝜂 − 𝐷)𝑍 (𝑡) + [
(𝛽 − 𝜌) 𝑃 (𝑡 − 𝜏)

(𝛼 + 𝑃 (𝑡 − 𝜏)) 𝑒𝑃(𝑡−𝜏)
− 𝜂]𝑍 (𝑡 − 𝜏)

≥ (𝜂 − 𝐷)𝑍 (𝑡) + [
(𝛽 − 𝜌) (1 − 𝜀)

(𝛼 + 1) 𝑒
− 𝜂]𝑍 (𝑡 − 𝜏) .

(59)

Since 𝜀 < 1 − 𝐷(𝛼 + 1)𝑒/(𝛽 − 𝜌) and 𝐹(1) > 0, we have that
(𝛽 − 𝜌)(1 − 𝜀)/(𝛼 + 1)𝑒 > 𝐷. We can choose 𝜂 > 𝐷, such that
𝐷 < 𝜂 < (𝛽 − 𝜌)(1 − 𝜀)/(𝛼 + 1)𝑒. From (49), there exists a
constant 𝑡

1
> 0 such that 𝑍(𝑡) ≥ 𝛿 > 0 for some constant 𝛿

and 𝑡 ≥ 𝑡
1
. Hence, it follows from (59)

𝑄̇ (𝑡) ≥ (𝜂 − 𝐷) 𝛿 > 0, (60)

for all 𝑡 ≥ 𝑡
1
. Thus, 𝑄(𝑡) → +∞ as 𝑡 → +∞. This

contradicts Theorem 1 and shows that 𝐸
0
is isolated.

We easily see that the semigroup defined by the solution
of (4) satisfies the conditions of Lemma 4.3 in [36] with Ω =
𝐸
0
. Thus, by Lemma 4.3 in [36], we have that there is some
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𝜉 = (𝜉
1
, 𝜉
2
), such that 𝜉 ∈ 𝜔∗⋂(Ω𝑠(𝐸

0
) \ 𝐸
0
). Here, Ω𝑠(𝐸

0
)

denotes the stable set of 𝐸
0
.

If 𝜉
2
(0) = 0, again by the invariant of Ω and Theorem 1,

we also have the contradiction that 𝜉 = 𝐸
0
or that the negative

semiorbit (𝑃̃(𝑡+𝜃), 𝑍(𝑡+𝜃) (𝑡 < 0, 𝜃 ∈ [−𝜏, 0])) of (4) through
𝜉 is unbounded.

If 𝜉
2
(0) > 0, fromTheorem 1, we see that 𝑃̃(𝑡) > 0, 𝑍(𝑡) >

0 for all 𝑡 > 0. It follows from 𝜉 ∈ 𝜔∗⋂(Ω𝑠(𝐸
0
) \ 𝐸
0
) that

lim
𝑡→+∞

𝑃̃(𝑡) = 1, lim
𝑡→+∞

𝑍(𝑡) = 0, which contradicts (49).
This shows that (48) holds. Thus, (4) is permanent. This
completes the proof of Theorem 5.

6. Discussion

In a real ecological context, the interaction between phy-
toplankton and zooplankton will not be essentially instan-
taneous. Instead, the response of zooplankton to contact
with phytoplankton is likely to be delayed due to a gestation
period. Another fact, during the interaction between phy-
toplankton and zooplankton, is that the liberation of toxic
substances by phytoplanktonmust bemediated by some time
lag which is required for thematurity of toxic-phytoplankton.
And in some cases, very high substrate concentrations
in the lakes actually inhabit the growth of phytoplankton
cells. Moreover, with the substrate concentrations increasing
unlimitedly, some kind of microorganism will die eventually
[32]. Based on the above fact, in this paper, we introduce time
delay to a phytoplankton-zooplankton interaction model
with exponential substrate uptake and exponential distribu-
tion of toxic substance term. The model (4) accounts for
some natural phenomenon. By using comparison principle
for functional differential equations and traditional analy-
sis technique for transcendental equations [34], we give a
detailed analysis on boundedness of solutions of system (4)
and local asymptotic stability of the equilibria of system (4).
Our results show that time delay is factually harmless for the
local asymptotic stability of the zooplankton free equilibrium
of (4), but it is not always harmless for the positive equilib-
rium; that is to say, because of the time delay the positive
equilibrium becomes unstable (Theorem 4). Based on some
known techniques on limit sets of differential dynamical
systems, we show that, for any time delay, the phytoplankton-
zooplankton interaction model is permanent if and only if
one positive equilibrium exists.

Under the aids of the numerical simulation we further
investigate the delayed model system (4). Figures 1–6 illus-
trate that the delay 𝜏 plays crucial role in determining the
asymptotic behavior of solutions of model (4). The stability
or oscillatory coexistence depends upon not only the para-
metric restriction but also upon the gestation delay (libera-
tion delay). Our system exhibits stable behavior when 𝜏 <
𝜏
0
, where 𝜏

0
is the threshold value of the parameter 𝜏. This

threshold value of 𝜏
0
is determined by our numerical simula-

tions.This value of 𝜏
0
is 3.5 for case (i) ofTheorem 4 and is 5.1

for case (ii). These stable solutions are shown in Figures 2(a),
2(b), and 4. When 𝜏 crosses 𝜏

0
, there is a delay induced insta-

bility demonstrated in Figures 2(c) and 5 for 𝜏 > 𝜏
0
. Stable

oscillations appear when 𝜏 = 𝜏
0
and the Hopf bifurcation

periodic solution occurs (see Figures 3 and 5). Thus, there
is a range of gestation delay (liberation delay) which initially
imparts stability, then induces instability, and ultimately leads
to periodic behavior.
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