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Mental accounting is a far-reaching concept, which is often used to explain various kinds of irrational behaviors in human decision
making process.This paper investigates dynamic pricing problems for single-flight andmultiple flights settings, respectively, where
passengers may be affected by mental accounting. We analyze dynamic pricing problems by means of the dynamic programming
method and obtain the optimal pricing strategies. Further, we analytically show that the passenger mental accounting depth has a
positive effect on the flight’s expected revenue for the single flight and numerically illustrate that the passenger mental accounting
depth has a positive effect on the optimal prices for the multiple flights.

1. Introduction

In airline revenue management, revenue maximization could
be attained by dynamic pricing and capacity control [1–6], in
which dynamic pricing is regarded as the engine and core
technique of airline revenue management and plays a very
important role in improving airline’s revenue. Obviously, the
rapid development of Internet has enabled airlines to collect
enormous pieces of market information. Therefore, airlines
could timely change flight prices to increase their revenue
according to the market demand and the remaining seat level
of flight.The success of dynamic pricing depends on whether
the passengers’ response to price change can be anticipated
properly.

Most classical dynamic pricing models suppose that
passenger behavior is rational [7]; that is, a passenger
chooses the flight as soon as the flight price is below his/her
valuation. However, in the practical condition, passengers
usually exhibit some irrationality; for example, passenger
couldmentally aggregate or segregate purchase systematically
in view of factors such as time or some uncertain events
before making valuations. Thus, it is important to examine
passengers’ decision processes and then set the correspond-
ing flight price for the airline. Mental accounting first studied
by Thaler has a far-reaching impact on finance and behavior

economics [8], which is often used to interpret all kinds of
irrational behaviors in the decision making process. It refers
to the tendency that people divide their assets into several
independent accounts based on various subjective criteria,
such as the source of the assets and the intention of every
account. In the light of mental accounting, different levels of
the utility are allocated to every account by individuals, which
influences their spending decisions.

In recent years, as the customer behavior issue has been
introduced into the operations management field, modeling
customer behavior increasingly attracts extensive attention in
the area of dynamic pricing and revenuemanagement [9–12].

In the customer choice behavior model, dynamic pricing
ofmultiple products is studied extensively. Zhang andCooper
[13] develop a Markov decision process formulation of a
dynamic pricing problemwithmultiple parallel flights, taking
into account customer choice among the flights. Akçay et
al. [14] use stochastic dynamic programming method to
approach the joint dynamic pricing issue of multiple ver-
tically differentiated products and characterize the optimal
prices. Lin and Sibdari [15] establish a gamemodel to describe
the dynamic pricing competition between companies that
sell substitutable products and prove the existence of the
Nash equilibrium prices. Suh and Aydin [16] investigate the
dynamic pricing problem of two substitutable products based
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on multinomial logit (MNL) choice model, and the results
indicate that, under the optimal pricing strategy, themarginal
revenue function increases with the remaining time and
decreases with the inventory of each product. Dong et al.
[17] apply MNL choice model to study dynamic pricing and
inventory control of substitutable products.

In the strategic customer model, dynamic pricing prob-
lems are still under development. Aviv and Pazgal [18] focus
on the dynamic pricing problem of seasonal goods in the
presence of strategic customer. Levin et al. [19, 20] study
the influence of strategic customer behavior on the dynamic
pricing policies in the case of monopoly and oligopoly,
respectively. Levina et al. [21] consider dynamic pricing
based on online learning and strategic customers. Chen and
Zhang [22] solve the dynamic targeted pricing problem with
strategic customers and show that the dynamic targeted
pricing can get more profits for competing firms, if they
actively pursue customer recognition on the basis of customer
purchase records.

The concept of customer mental accounting has been
widely studied in the operations management literature. Liao
and Chu [23] utilize the mental accounting theory to study
how customers’ economic psychology associated with pur-
chasing a new product is influenced when a consciousness of
the possibility of online retail is aroused. The result indicates
that customers’ consciousness of the retail value of already
possessed product can affect their decision to buy a new
product. Erat and Bhaskaran [24] formulate a simple model
to investigate how mental accounting associated with a base
product influences a customer’s add-on purchase decision.
Chen et al. [25] study the inventory order quantity problem
based on the principle of mental accounting. In the existing
literatures related to mental accounting, researchers have
paid less attention to dynamic pricing problem.

In this paper, we investigate the multiperiod dynamic
pricing problems for a single flight and multiple flights in
the case of a monopoly airline selling the ticket to passengers
who could be affected by mental accounting. We explicitly
model the passenger dynamic choice process by MNL choice
model, in which the probability of purchasing a ticket is
specified as a function of mental accounting depth. At each
decision period, airline dynamically determines the flight
price in order to maximize the expected revenue over the
booking horizon. Given the passenger choice model, we
formulate the dynamic pricing problems using the dynamic
programming method for a single flight and multiple flights
in the presence of passenger mental accounting. Then we
obtain the optimal pricing strategies. The optimal prices are
significantly affected by the depth of mental accounting.
Furthermore, we numerically demonstrate the positive effect
of passenger mental accounting on airline’s dynamic pricing
strategies.

The model of passenger mental accounting in this paper
complements the related research on behavioral operations,
and the aim of this paper is to establish a manageable
modeling framework that embodies mental accounting. The
remainder of this paper is organized as follows. In Section 2,
we present a single-flightmodel formulation and characterize
the optimal price. In Section 3, we make further discussion

on the dynamic pricing problem of multiple flights followed
by a numerical study presented in Section 4. Finally, we
summarize this paper in Section 5.

2. Dynamic Pricing for a Single Flight

In this section, we investigate a single-flight dynamic pricing
problem. The model can be regarded as a building block
of the multiple-flight case. Consider a single-leg flight with
capacity 𝐶. We divide the booking horizon into 𝑇 discrete
time periods such that there is at most one passenger arrival
in each time period and suppose that each passenger books
nomore than one ticket.The time period is counted in reverse
chronological order. Therefore, the first time period is 𝑇 and
the last time period is 1. In each time period, passengers
arrive independently, and there is one passenger arrival with
probability 𝜆. The airline’s goal is to maximize the expected
revenue from the booking horizon subject to the capacity
constraint.

2.1. Dynamic Pricing Formulation. We first present a single-
flight decision framework to capture passenger’s mental
accounting. Consider a potential passenger deciding whether
to purchase a flight ticket or not to buy at all. Suppose that
payment of purchasing the flight ticket is classified in mental
accounting, such as travel mental accounting. Let 𝛾 (≥ 0) be
the trigger increment of mental accounting. When 𝛾 > 0,
a passenger possesses this mental accounting; otherwise, a
passenger does not possess this mental accounting. We could
interpret 𝛾 as the depth of mental accounting, because it
captures how strongly each passenger is influenced bymental
accounting.

Assume that the utility from passenger’s purchasing is 𝑈
and the utility fromnonpurchasing is𝑈

0
. In detail,𝑈 depends

on the ticket price and passenger’s valuation for the ticket,
and 𝑈

0
depends on the passenger’s external option such as

the future purchase and the change of travel plans. Given
𝑈 and 𝑈

0
, the perfectly rational passenger will purchase the

flight ticket if and only if 𝑈 ≥ 𝑈
0
[2]. However, when mental

accounting is considered, the passenger will purchase the
flight ticket if and only if

𝑈 + 𝛾 ≥ 𝑈
0
. (1)

We describe the passenger choice process by MNL choice
model. The MNL choice model has a wide range of appli-
cations in the marketing literature, since it is analytically
tractable, considerably accurate, and could be estimated
easily by standard statistical methods [26]. The distinction of
application is that passenger mental accounting is captured
in our model. At the beginning of each period, airline sets its
flight price, and then a passenger decideswhether to purchase
one or not to purchase at all. When facing a price 𝑝

𝑡
, for each

passenger, the utility from purchasing a flight ticket is equal
to

𝑈
𝑡
= 𝑎 − 𝑝

𝑡
+ 𝛾 + 𝜁, (2)

where 𝑎 is the quality index of the flight, which describes the
service level, brand image, and the popularity of the flight,



Mathematical Problems in Engineering 3

and 𝜁 is a Gumbel random variable with shift parameter
zero and scale parameter one.The utility fromnonpurchasing
is 𝑈
0
; without loss of generality, we suppose that 𝑈

0
is

normalized to zero.
Let 𝑞
𝑡
be the probability that a passenger chooses to

purchase the flight ticket at price 𝑝
𝑡
in each period 𝑡. Based

onMNL choice model, we can write the purchase probability
𝑞
𝑡
as

𝑞
𝑡
=
𝑒
𝑎−𝑝
𝑡
+𝛾

1 + 𝑒𝑎−𝑝𝑡+𝛾
; (3)

therefore, in each period 𝑡, the probability that a passenger
decides not to purchase any flight ticket is 𝑞

0𝑡
= 1 − 𝑞

𝑡
.

Given the remaining seat level 𝑥
𝑡
, let𝑉
𝑡
(𝑥
𝑡
) be the optimal

expected revenue from period 𝑡 to the last period. Then we
formulate the single-flight dynamic pricing problem as in the
following Bellman equation:

𝑉
𝑡
(𝑥
𝑡
) = max
𝑝∈𝑅
+

{𝜆 [𝑞
𝑡
(𝑝
𝑡
+ 𝑉
𝑡−1
(𝑥
𝑡
− 1)) + 𝑞

0𝑡
𝑉
𝑡−1
(𝑥
𝑡
)]

+ (1 − 𝜆)𝑉𝑡−1 (𝑥𝑡)}

= max
𝑝∈𝑅
+

{𝜆 [𝑞
𝑡
(𝑝
𝑡
+ 𝑉
𝑡−1
(𝑥
𝑡
− 1) − 𝑉

𝑡−1
(𝑥
𝑡
))]

+ 𝑉
𝑡−1
(𝑥
𝑡
)}

(4)

with boundary conditions𝑉
0
(𝑥
𝑡
) = 0, for all𝑥

𝑡
, and𝑉

𝑡
(0) = 0,

for 𝑡 = 1, 2, . . . , 𝑇.
LetΔ𝑉

𝑡−1
(𝑥) = 𝑉

𝑡−1
(𝑥)−𝑉

𝑡−1
(𝑥−1) represent themarginal

expected revenue with remaining seat level 𝑥 in period 𝑡 − 1.
Using this notation, we can rewrite (4) as follows:

𝑉
𝑡
(𝑥
𝑡
) = max
𝑝∈𝑅
+

{𝜆𝑞
𝑡
[𝑝
𝑡
− Δ𝑉
𝑡−1
(𝑥
𝑡
)] + 𝑉

𝑡−1
(𝑥
𝑡
)} . (5)

2.2. Optimal Pricing Strategy. In the following section, we
describe the optimal pricing strategy. Before obtaining the
optimal price and expected revenue, we first rewrite 𝑝

𝑡
as a

function of the purchase probability 𝑞
𝑡
. From (3), we have

𝑝
𝑡
= 𝑎 + 𝛾 − ln (𝑞

𝑡
) + ln (1 − 𝑞

𝑡
) . (6)

Then we can reformulate the expected revenue function as

𝑉
𝑡
(𝑥
𝑡
)=max
𝑝∈𝑅
+

{𝜆𝑞
𝑡
[𝑎 + 𝛾 − ln (𝑞

𝑡
) + ln (1 − 𝑞

𝑡
) − Δ𝑉

𝑡−1
(𝑥
𝑡
)]

+𝑉
𝑡−1
(𝑥
𝑡
)} .

(7)

Next, we define function

𝜑 (𝑥
𝑡
, 𝑝
𝑡
) = 𝜆𝑞

𝑡
[𝑝
𝑡
− Δ𝑉
𝑡−1
(𝑥
𝑡
)]

= 𝜆𝑞
𝑡
[𝑎 + 𝛾 − ln (𝑞

𝑡
) + ln (1 − 𝑞

𝑡
) − Δ𝑉

𝑡−1
(𝑥
𝑡
)] .

(8)

InTheorem 1, we can show that𝜑(𝑥
𝑡
, 𝑝
𝑡
) is a concave function

of 𝑞
𝑡
in the case of a single flight.

Theorem 1. Function 𝜑(𝑥
𝑡
, 𝑝
𝑡
) is concave in 𝑞

𝑡
.

Proof. BecauseΔ𝑉
𝑡−1
(𝑥
𝑡
) is not influenced by 𝑞

𝑡
, we view it as

a constant. Taking the first derivative of 𝜑(𝑥
𝑡
, 𝑝
𝑡
)with respect

to 𝑞
𝑡
yields

𝜕𝜑 (𝑥
𝑡
, 𝑝
𝑡
)

𝜕𝑞
𝑡

= 𝜆 [𝑎 + 𝛾 − ln (𝑞
𝑡
) + ln (1 − 𝑞

𝑡
) − Δ𝑉

𝑡−1
(𝑥
𝑡
) −

1

1 − 𝑞
𝑡

] .

(9)

In order to derive the concavity of 𝜑(𝑥
𝑡
, 𝑝
𝑡
), we take the

second derivative of 𝜑(𝑥
𝑡
, 𝑝
𝑡
) with respect to 𝑞

𝑡
, which leads

to

𝜕
2
𝜑 (𝑥
𝑡
, 𝑝
𝑡
)

𝜕𝑞
2

𝑡

= −𝜆
1

𝑞
𝑡
(1 − 𝑞

𝑡
)
2
< 0. (10)

It then follows that 𝜑(𝑥
𝑡
, 𝑝
𝑡
) is concave in 𝑞

𝑡
.

FromTheorem 1, we can also conclude that the expected
revenue function𝑉

𝑡
(𝑥
𝑡
) is concave in 𝑞

𝑡
. InTheorem 2,we can

derive the optimal price 𝑝∗
𝑡
(𝑥
𝑡
) to problem (5).

Theorem 2. For a given remaining seat level 𝑥
𝑡
in period 𝑡, the

optimal price is set to

𝑝
∗

𝑡
(𝑥
𝑡
) = Δ𝑉

𝑡−1
(𝑥
𝑡
) + 𝜔 (𝑡, 𝑥

𝑡
) , (11)

where 𝜔(𝑡, 𝑥
𝑡
) is the unique solution such that

[𝜔 (𝑡, 𝑥
𝑡
) − 1] 𝑒

𝜔(𝑡,𝑥
𝑡
)
− 𝑒
𝑎+𝛾−Δ𝑉

𝑡−1
(𝑥
𝑡
)
= 0. (12)

Furthermore, the optimal expected revenue is given by

𝑉
∗

𝑡
(𝑥
𝑡
) = 𝜆

𝑡

∑

ℎ=1

[𝜔 (ℎ, 𝑥
𝑡
) − 1] . (13)

Proof. From Theorem 1, we have known the concavity of
𝜑(𝑥
𝑡
, 𝑝
𝑡
). In order to obtain the optimal price 𝑝∗

𝑡
(𝑥
𝑡
), we

compute the first derivative of 𝜑(𝑥
𝑡
, 𝑝
𝑡
)with respect to 𝑞

𝑡
.The

first-order condition yields

𝜕𝜑 (𝑥
𝑡
, 𝑝
𝑡
)

𝜕𝑞
𝑡

= 𝜆 [𝑎 + 𝛾 − ln (𝑞
𝑡
) + ln (1 − 𝑞

𝑡
) − Δ𝑉

𝑡−1
(𝑥
𝑡
) −

1

1 − 𝑞
𝑡

] = 0.

(14)

Defining 𝜔(𝑡, 𝑥
𝑡
) = 1/(1 − 𝑞

𝑡
) and then substituting 𝜔(𝑡, 𝑥

𝑡
)

into (14), we have

𝑞
𝑡
=

1

𝜔 (𝑡, 𝑥
𝑡
)
𝑒
𝑎+𝛾−Δ𝑉

𝑡−1
(𝑥
𝑡
)−𝜔(𝑡,𝑥

𝑡
)
. (15)

Since 𝑞
𝑡
= 1 − 1/𝜔(𝑡, 𝑥

𝑡
), we can get

1 −
1

𝜔 (𝑡, 𝑥
𝑡
)
=

1

𝜔 (𝑡, 𝑥
𝑡
)
𝑒
𝑎+𝛾−Δ𝑉

𝑡−1
(𝑥
𝑡
)−𝜔(𝑡,𝑥

𝑡
)
. (16)



4 Mathematical Problems in Engineering

This means that 𝜔(𝑡, 𝑥
𝑡
) is one solution to

[𝜔 (𝑡, 𝑥
𝑡
) − 1] 𝑒

𝜔(𝑡,𝑥
𝑡
)
− 𝑒
𝑎+𝛾−Δ𝑉

𝑡−1
(𝑥
𝑡
)
= 0. (17)

We then show that 𝜔(𝑡, 𝑥
𝑡
) is the unique solution to (17).

Let Φ(𝜉) = (𝜉 − 1)𝑒𝜉 − 𝑒𝑎+𝛾−Δ𝑉𝑡−1(𝑥𝑡); we immediately get
Φ(1) < 0, Φ(+∞) = +∞. Since 𝜕Φ(𝜉)/𝜕𝜉 = 𝜉𝑒𝜉 > 0 for any
𝜉 ∈ (1, +∞), it follows that Φ(𝜉) is monotonically increasing
in 𝜉 for 𝜉 ∈ (1, +∞). This indicates that 𝜔(𝑡, 𝑥

𝑡
) ∈ (1, +∞)

is the unique solution to (17). We then obtain the optimal
solution 𝑝∗

𝑡
(𝑥
𝑡
) from 𝜔(𝑡, 𝑥

𝑡
). Substituting 𝑞

𝑡
= 1 − 1/𝜔(𝑡, 𝑥

𝑡
)

into (6), we can derive 𝑝∗
𝑡
(𝑥
𝑡
) = 𝑎 + 𝛾 − ln[𝜔(𝑡, 𝑥

𝑡
) − 1].

Rewriting the above expression, we have 𝜔(𝑡, 𝑥
𝑡
) − 1 =

𝑒
𝑎+𝛾−𝑝

∗

𝑡
(𝑥
𝑡
). From (17), we then get

𝑝
∗

𝑡
(𝑥
𝑡
) = Δ𝑉

𝑡−1
(𝑥
𝑡
) + 𝜔 (𝑡, 𝑥

𝑡
) . (18)

Substituting (18) into (5), we have

𝑉
∗

𝑡
(𝑥
𝑡
) = 𝜆 [𝜔 (𝑡, 𝑥

𝑡
) − 1] + 𝑉

𝑡−1
(𝑥
𝑡
) . (19)

Applying the boundary conditions, we can get

𝑉
∗

𝑡
(𝑥
𝑡
) = 𝜆

𝑡

∑

ℎ=1

[𝜔 (ℎ, 𝑥
𝑡
) − 1] . (20)

Theorem 2 describes the evolution of optimal prices. For
convenience of exposition, 𝜔(𝑡, 𝑥

𝑡
) is defined as the revenue

margin of selling one seat in period 𝑡; namely, 𝜔(𝑡, 𝑥
𝑡
)

denotes the immediate contribution from selling one seat,
and Δ𝑉

𝑡−1
(𝑥
𝑡
) denotes the future value of one remaining seat

to the overall revenue. From (18), we can observe that the
optimal price 𝑝∗

𝑡
(𝑥
𝑡
) depends on the interaction between

the immediate contribution and the future value of one
remaining seat. From (17), it is clear that an increase of𝜔(𝑡, 𝑥

𝑡
)

leads to a decrease of Δ𝑉
𝑡−1
(𝑥
𝑡
), which leads to complicated

optimal price patterns.
Theorem 3 provides the effect ofmental accounting depth

on flight’s expected revenue, considering no seat scarcity.

Theorem 3. Let 𝑥
𝑡
denote the remaining seat level in period 𝑡;

if 𝑥
𝑡
≥ 𝑡, then 𝑉

𝑡
(𝑥
𝑡
) is nondecreasing with respect to mental

accounting depth 𝛾.

Proof. To prove this theorem, we need to show that, for all
𝑖 ≤ 𝑡, Δ𝑉

𝑖
(𝑥
𝑡
) = 0 given that 𝑥

𝑡
> 𝑡.

First, let us consider 𝑡 = 1. Since Δ𝑉
0
(𝑥) = 0 for all 𝑥,

𝜔(1, 𝑥
1
) is determined by solving

[𝜔 (1, 𝑥
1
) − 1] 𝑒

𝜔(1,𝑥
1
)
− 𝑒
𝑎+𝛾
= 0. (21)

This implies that 𝜔(1, 𝑥
1
) is independent of 𝑥

1
. So all 𝑉

1
(𝑥
1
)

are equal for any 𝑥
1
> 0. It follows that Δ𝑉

1
(𝑥
1
) = 𝑉

1
(𝑥
1
) −

𝑉
1
(𝑥
1
−1) = 0, if 𝑥

1
> 1;Δ𝑉

1
(1) = 𝑉

1
(1)−0 = 𝑉

1
(1), if 𝑥

1
= 1.

Next, we consider 𝑡 = 2. Note that since Δ𝑉
1
(𝑥
2
) = 0 for

𝑥
2
≥ 2, 𝜔(2, 𝑥

2
) for 𝑥

2
≥ 2 is determined by solving

[𝜔 (2, 𝑥
2
) − 1] 𝑒

𝜔(2,𝑥
2
)
− 𝑒
𝑎+𝛾
= 0. (22)

This means that all 𝜔(2, 𝑥
2
) are equal for any 𝑥

2
≥ 2.

Therefore, if 𝑥
2
≥ 2, all 𝑉

2
(𝑥
2
) values are the same and

Δ𝑉
2
(𝑥
2
) = 𝑉

2
(𝑥
2
) − 𝑉
2
(𝑥
2
− 1) = 0 for any 𝑥

2
> 2. But if

𝑥
2
= 2, Δ𝑉

2
(2) = 𝑉

2
(2) − 𝑉

2
(1) ̸= 0.

Similarly, we can deduce that all 𝑉
𝑡
(𝑥
𝑡
) are equal for any

𝑥
𝑡
≥ 𝑡, and Δ𝑉

𝑡
(𝑥
𝑡
) = 0, if 𝑥

𝑡
> 𝑡. It follows that for all 𝑖 ≤

𝑡Δ𝑉
𝑖
(𝑥
𝑡
) = 0 given that 𝑥

𝑡
> 𝑡. From the above derivation

process, we can conclude that all𝜔(𝑖, 𝑥
𝑡
) are equal for all 𝑖 ≤ 𝑡,

if 𝑥
𝑡
≥ 𝑡. We then prove the theorem.
Consider 𝑡 = 1. Since 𝑉

1
(𝑥
1
) is independent of 𝛾, 𝑉

1
(𝑥
1
)

is nondecreasing with respect to 𝛾.
Consider 𝑡 ≥ 2 and 𝑥

𝑡
> 𝑡. The corresponding 𝜔(𝑡, 𝑥

𝑡
) is

determined by the equation

[𝜔 (𝑡, 𝑥
𝑡
) − 1] 𝑒

𝜔(𝑡,𝑥
𝑡
)
− 𝑒
𝑎+𝛾−Δ𝑉

𝑡−1
(𝑥
𝑡
)
= 0. (23)

Let 𝑔
1
= [𝜔(𝑡, 𝑥

𝑡
) − 1]𝑒

𝜔(𝑡,𝑥
𝑡
), 𝑔
2
= 𝑒
𝑎
𝑡
+𝛾−Δ𝑉

𝑡−1
(𝑥
𝑡
). Obviously,

𝑔
1
is monotonically increasing with respect to 𝜔(𝑡, 𝑥

𝑡
), and

𝑔
2
is monotonically increasing with respect to 𝛾. Therefore,

𝜔(𝑡, 𝑥
𝑡
) is monotonically nondecreasing with respect to 𝛾.

Because all 𝜔(𝑖, 𝑥
𝑡
) are equal for any 𝑖 ≤ 𝑡, if 𝑥

𝑡
≥ 𝑡, we can

easily verify that 𝑉
𝑡
(𝑥
𝑡
) is monotonically nondecreasing with

respect to 𝛾 from (20).

3. Dynamic Pricing for Multiple Flights

In this section, we deal with amultiple-flight dynamic pricing
problem. The airline’s goal is to maximize the expected
revenue from the booking horizon by setting the appropriate
price for each flight in each period; in other words, in
every period 𝑡, for each current remaining seat level 𝑥

𝑡
=

(𝑥
1𝑡
, 𝑥
2𝑡
, . . . , 𝑥

𝑚𝑡
), the airline must determine the price vector

𝑝
𝑡
= (𝑝
1𝑡
, 𝑝
2𝑡
, . . . , 𝑝

𝑚𝑡
).

3.1. Dynamic Programming Formulation. There are𝑚 substi-
tutable flights in a single origin-destination pairwith capacity
𝑐
𝑖
of flight 𝑖. The payments of different flights are classified

among different mental accounts. The booking horizon is
discrete and is divided into𝑇 time periods such that there is at
most one passenger arrival in each time period, and suppose
that each passenger books no more than one ticket, and the
time period runs backwards. Passengers arrive independently
across time periods. Let 𝜆 be the probability of a passenger
arrival in each period.The utility that passenger would obtain
from the purchase of flight 𝑗 is 𝑈

𝑗
(𝑗 = 1, 2, . . . , 𝑚) and the

utility from nonpurchasing is 𝑈
0
; without loss of generality,

we suppose that 𝑈
0
is normalized to zero.

Passengers choose among the substitutable flights or
choose nothing; the probability that a passenger chooses
flight 𝑗 is 𝑞

𝑗
(𝑝
𝑡
); 𝑞
0
(𝑝
𝑡
) represents the probability that an

arriving passenger does not make any purchase. In period 𝑡,
we define passenger’s utility from the purchase of flight 𝑗 at
price 𝑝

𝑗𝑡
as

𝑈
𝑗𝑡
= 𝑎
𝑗
− 𝑝
𝑗𝑡
+ 𝑏
𝑗
𝛾
𝑗
+ 𝜁
𝑗
, (24)

where 𝑎
𝑗
represents the quality level of flight 𝑗, 𝑏

𝑗
is the men-

tal accounting coefficient, which represents the satisfaction
degree that a passenger derives from choosing flight 𝑗 and



Mathematical Problems in Engineering 5

∑
𝑚

𝑗=1
𝑏
𝑗
= 1, and 𝜁

𝑗
is a Gumbel random variable with shift

parameter zero and scale parameter one. Defining 𝑏
𝑗
𝛾
𝑗
= Λ
𝑗
,

based on MNL choice model, we conclude that a passenger
will choose flight 𝑗 with probability

𝑞
𝑗𝑡
=

𝑒
𝑎
𝑗
−𝑝
𝑗𝑡
+Λ
𝑗

1 + ∑
𝑚

𝑘=1
𝑒𝑎𝑘−𝑝𝑘𝑡+Λ 𝑘

, (25)

and the passenger will decide to purchase nothing with
probability 𝑞

0𝑡
= 1/(1 + ∑

𝑚

𝑘=1
𝑒
𝑎
𝑘
−𝑝
𝑘𝑡
+Λ
𝑘).

Let 𝑉
𝑡
(𝑥
𝑡
) be the optimal expected revenue from period

𝑡 to the last period. Then we can use the following dynamic
programming to formulate the multiple-flight dynamic pric-
ing problem:

𝑉
𝑡
(𝑥
𝑡
)

= max
𝑝
𝑡
∈𝑅
+

𝑚

{

{

{

𝜆[

[

𝑚

∑

𝑗=1

𝑞
𝑗𝑡
(𝑝
𝑗𝑡
+ 𝑉
𝑡−1
(𝑥
𝑡
− 𝜀
𝑗
)) + 𝑞

0𝑡
𝑉
𝑡−1
(𝑥
𝑡
)]

]

+ (1 − 𝜆
𝑡
) 𝑉
𝑡−1
(𝑥
𝑡
)
}

}

}

= max
𝑝
𝑡
∈𝑅
+

𝑚

{

{

{

𝜆[

[

𝑚

∑

𝑗=1

𝑞
𝑗𝑡
(𝑝
𝑗𝑡
+ 𝑉
𝑡−1
(𝑥
𝑡
− 𝜀
𝑗
) − 𝑉
𝑡−1
(𝑥
𝑡
))]

]

+ 𝑉
𝑡−1
(𝑥
𝑡
)
}

}

}

,

(26)

with boundary conditions 𝑉
0
(𝑥
𝑡
) = 0, 𝑉

𝑡
(0) = 0 for

𝑡 = 1, 2, . . . , 𝑇, where 𝜀
𝑗
denotes a 𝑛-vector with the 𝑗th

component 1 and zeros elsewhere.
For the expected revenue function 𝑉

𝑡
(𝑥
𝑡
), define the

marginal revenue of flight 𝑗 by

Δ
𝑥
𝑗

𝑉
𝑡−1
(𝑥
𝑡
) = 𝑉
𝑡−1
(𝑥
𝑡
) − 𝑉
𝑡−1
(𝑥
𝑡
− 𝜀
𝑗
)

for 𝑡 = 1, 2, . . . , 𝑇, 𝑗 = 1, 2, . . . , 𝑚.
(27)

Using this notation, we can rewrite (26) as follows:

𝑉
𝑡
(𝑥
𝑡
) = max
𝑝
𝑡
∈𝑅
+

𝑚

{

{

{

𝜆[

[

𝑚

∑

𝑗=1

𝑞
𝑗𝑡
(𝑝
𝑗𝑡
− Δ
𝑥
𝑗

𝑉
𝑡−1
(𝑥
𝑡
))]

]

+ 𝑉
𝑡−1
(𝑥
𝑡
)
}

}

}

.

(28)

3.2. Optimal Pricing Strategy. Wenext investigate the optimal
pricing strategy. Before obtaining the optimal price, we first
rewrite the price of each flight as a function of passenger’s

choice probability. From 𝑞
0𝑡
/𝑞
𝑗𝑡
= 1/𝑒
𝑎
𝑗
−𝑝
𝑗𝑡
+Λ
𝑗 , we have 𝑝

𝑗𝑡
=

𝑎
𝑗
+Λ
𝑗
− ln(𝑞

𝑗𝑡
/𝑞
0𝑡
); substituting 𝑝

𝑗𝑡
into (28), we can derive

𝑉
𝑡
(𝑥
𝑡
)

= max
𝑝
𝑡
∈𝑅
+

𝑚

{

{

{

𝜆[

[

𝑚

∑

𝑗=1

𝑞
𝑗𝑡
(𝑎
𝑗
+ Λ
𝑗
− ln
𝑞
𝑗𝑡

𝑞
0𝑡

− Δ
𝑥
𝑗

𝑉
𝑡−1
(𝑥
𝑡
))]

]

+ 𝑉
𝑡−1
(𝑥
𝑡
)
}

}

}

.

(29)

To facilitate description of structural properties, we define

𝜓 (𝑥
𝑡
, 𝑝
𝑡
) = 𝜆[

[

𝑚

∑

𝑗=1

𝑞
𝑗𝑡
(𝑝
𝑗𝑡
− Δ
𝑥
𝑗

𝑉
𝑡−1
(𝑥
𝑡
))]

]

= 𝜆[

[

𝑚

∑

𝑗=1

𝑞
𝑗𝑡
(𝑎
𝑗
+ Λ
𝑗
− ln
𝑞
𝑗𝑡

𝑞
0𝑡

− Δ
𝑥
𝑗

𝑉
𝑡−1
(𝑥
𝑡
))]

]

,

(30)

which can be proved to be concave in 𝑞
𝑡
= (𝑞
0𝑡
, 𝑞
1𝑡
, 𝑞
2𝑡
, . . . ,

𝑞
𝑚𝑡
) in Theorem 4. Intuitively, 𝜓(𝑥

𝑡
, 𝑝
𝑡
) is the expected

additional revenue realized in period 𝑡 by booking a single
unit of remaining seat level 𝑥

𝑡
at price 𝑝

𝑡
. We can interpret

𝜓(𝑥
𝑡
, 𝑝
𝑡
) as the marginal revenue of time at the remaining

seat level 𝑥
𝑡
in period 𝑡 when flight prices are set at 𝑝

𝑡
.

Consequently, we set the optimal prices in order to maximize
𝜓(𝑥
𝑡
, 𝑝
𝑡
). Therefore, exploring the structural properties of

𝜓(𝑥
𝑡
, 𝑝
𝑡
) is the key to find the optimal prices. We discuss the

structural properties of 𝜓(𝑥
𝑡
, 𝑝
𝑡
) as follows.

Theorem 4. Function 𝜓(𝑥
𝑡
, 𝑝
𝑡
) is concave in 𝑞

𝑡
.

Proof. Taking the second derivatives of 𝜓(𝑥
𝑡
, 𝑝
𝑡
), we can

derive

𝜕
2
𝜓 (𝑥
𝑡
, 𝑝
𝑡
)

𝜕𝑞
2

0𝑡

= −𝜆

𝑚

∑

𝑗=1

𝑞
𝑗𝑡

(𝑞
0𝑡
)
2
,

𝜕
2
𝜓 (𝑥
𝑡
, 𝑝
𝑡
)

𝜕𝑞
0𝑡
𝜕𝑞
𝑘𝑡

=
𝜕
2
𝜓 (𝑥
𝑡
)

𝜕𝑞
𝑘𝑡
𝜕𝑞
0𝑡

=
𝜆

𝑞
0𝑡

,

for 𝑘 = 1, 2, . . . , 𝑚.

𝜕
2
𝜓 (𝑥
𝑡
, 𝑝
𝑡
)

𝜕𝑞
2

𝑘𝑡

= −
𝜆

𝑞
𝑘𝑡

, for 𝑘 = 1, 2, . . . , 𝑚,

𝜕
2
𝜓 (𝑥
𝑡
, 𝑝
𝑡
)

𝜕𝑞
𝑙𝑡
𝜕𝑞
𝑘𝑡

=
𝜕
2
𝜓 (𝑥
𝑡
, 𝑝
𝑡
)

𝜕𝑞
𝑘𝑡
𝜕𝑞
𝑙𝑡

= 0, for 𝑙 ̸= 𝑘.

(31)
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Then the Hessian matrix of 𝜓(𝑥
𝑡
, 𝑝
𝑡
) follows as

𝐻(𝜓 (𝑥
𝑡
, 𝑝
𝑡
))

=

(
(
(
(
(
(
(
(

(

−𝜆

𝑚

∑

𝑗=1

𝑞
𝑗𝑡

(𝑞
0𝑡
)
2

𝜆

𝑞
0𝑡

𝜆

𝑞
0𝑡

⋅ ⋅ ⋅
𝜆

𝑞
0𝑡

𝜆

𝑞
0𝑡

−
𝜆

𝑞
1𝑡

0 ⋅ ⋅ ⋅ 0

𝜆

𝑞
0𝑡

0 −
𝜆

𝑞
2𝑡

⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝜆

𝑞
0𝑡

0 0 ⋅ ⋅ ⋅ −
𝜆

𝑞
𝑚𝑡

)
)
)
)
)
)
)
)

)

.

(32)

Next, we show that the Hessian matrix 𝐻(𝜓(𝑥
𝑡
, 𝑝
𝑡
)) is

negative semidefinite. Let 𝑍 = (𝑧
0
, 𝑧
1
, . . . , 𝑧

𝑚
) ̸= 0; then

𝑍
𝑇
𝐻(𝜓 (𝑥

𝑡
, 𝑝
𝑡
)) 𝑍

= −𝜆[

[

𝑧
2

0

𝑚

∑

𝑗=1

𝑞
𝑗𝑡

(𝑞
0𝑡
)
2
+

𝑚

∑

𝑗=1

𝑧
2

𝑗

𝑞
𝑗𝑡

−
2

𝑞
0𝑡

𝑧
0

𝑚

∑

𝑗=1

𝑧
𝑗
]

]

.

(33)

If 𝑧
0
∑
𝑚

𝑗=1
𝑧
𝑗
≤ 0, then 𝑍𝑇𝐻(𝜓(𝑥

𝑡
, 𝑝
𝑡
))𝑍 ≤ 0. This implies

that 𝐻(𝜓(𝑥
𝑡
, 𝑝
𝑡
)) is negative semidefinite. Therefore, we let

𝑧
0
∑
𝑚

𝑗=1
𝑧
𝑗
> 0. If 𝑧

0
> 0 and ∑𝑚

𝑗=1
𝑧
𝑗
> 0, then

− 𝑍
𝑇
𝐻(𝜓 (𝑥

𝑡
, 𝑝
𝑡
)) 𝑍

≥
2𝜆𝑧
0

𝑞
0𝑡

[

[

√(

𝑚

∑

𝑗=1

𝑞
𝑗𝑡
)(

𝑚

∑

𝑗=1

𝑧
2

𝑗

𝑞
𝑗𝑡

) −

𝑚

∑

𝑗=1

𝑧
𝑗
]

]

.

(34)

Since

√(

𝑚

∑

𝑗=1

𝑞
𝑗𝑡
)(

𝑚

∑

𝑗=1

𝑧
2

𝑗

𝑞
𝑗𝑡

)

= √

𝑚

∑

𝑗=1

𝑧
2

𝑗
+ 2∑

𝑖 ̸=𝑗

(
𝑞
𝑖𝑡

𝑞
𝑗𝑡

𝑧
2

𝑗
+
𝑞
𝑗𝑡

𝑞
𝑖𝑡

𝑧
2

𝑖
)

≥ √

𝑚

∑

𝑗=1

𝑧
2

𝑗
+ 2∑

𝑖 ̸=𝑗

𝑧
𝑖
𝑧
𝑗
=

𝑚

∑

𝑗=1

𝑧
𝑗
,

(35)

it follows that −𝑍𝑇𝐻(𝜓(𝑥
𝑡
, 𝑝
𝑡
))𝑍 ≥ 0. This implies that

𝐻(𝜓(𝑥
𝑡
, 𝑝
𝑡
)) is negative semidefinite.

Similarly, we can conclude that 𝐻(𝜓(𝑥
𝑡
, 𝑝
𝑡
)) is negative

semidefinite, if 𝑧
0
< 0 and∑𝑚

𝑗=1
𝑧
𝑗
< 0. It directly follows that

𝜓(𝑥
𝑡
, 𝑝
𝑡
) is concave in 𝑞

𝑡
.

Here we show that 𝜓(𝑥
𝑡
, 𝑝
𝑡
) is concave in 𝑞

𝑡
so that we

can investigate the property of optimal pricing strategy in the
easier way.We proceed to analyze the property of the optimal
prices.

Theorem 5. For a given remaining seat level 𝑥
𝑡
in period 𝑡, the

optimal price of flight 𝑖 is set to

𝑝
∗

𝑖𝑡
(𝑥
𝑡
) = Δ

𝑥
𝑖

𝑉
𝑡−1
(𝑥
𝑡
) + 𝜂 (𝑡, 𝑥

𝑡
) , (36)

where 𝜂(𝑡, 𝑥
𝑡
) is the unique solution to [𝜂(𝑡, 𝑥

𝑡
) − 1]𝑒

𝜂(𝑡,𝑥
𝑡
)
−

∑
𝑚

𝑗=1
𝑒
𝑎
𝑗
+Λ
𝑗
−Δ
𝑥𝑗
𝑉
𝑡−1
(𝑥
𝑡
)
= 0.

Furthermore, the optimal expected revenue is given by

𝑉
∗

𝑡
(𝑥
𝑡
) = 𝜆

𝑡

∑

ℎ=1

[𝜂 (ℎ, 𝑥
𝑡
) − 1] . (37)

Proof. FromTheorem 4,𝜓(𝑥
𝑡
, 𝑝
𝑡
) is concave in 𝑞

𝑡
. In order to

obtain the optimal price 𝑝
𝑗𝑡
, we use the first-order condition

𝜕𝜓(𝑥
𝑡
, 𝑝
𝑡
)/𝜕𝑞
𝑗𝑡
= 0; that is,

𝜕𝜓 (𝑥
𝑡
, 𝑝
𝑡
)

𝜕𝑞
𝑗𝑡

= 𝜆[𝑎
𝑗
+ Λ
𝑗
− ln (𝑞

𝑗𝑡
) + ln(1 −

𝑚

∑

𝑘=1

𝑞
𝑘𝑡
)

−Δ
𝑥
𝑗

𝑉
𝑡−1
(𝑥
𝑡
) −

1

1 − ∑
𝑚

𝑘=1
𝑞
𝑘𝑡

] = 0.

(38)

Substituting 𝜂(𝑡, 𝑥
𝑡
) = 1/(1 − ∑

𝑚

𝑘=1
𝑞
𝑘𝑡
) into (38), we can get

𝑞
𝑗𝑡
=

1

𝜂 (𝑡, 𝑥
𝑡
)
𝑒
𝑎
𝑗
+Λ
𝑗
−𝜂(𝑡,𝑥

𝑡
)−Δ
𝑥𝑗
𝑉
𝑡−1
(𝑥
𝑡
)
. (39)

Therefore, ∑𝑚
𝑗=1
𝑞
𝑗𝑡
= (1/𝜂(𝑡, 𝑥

𝑡
)) ∑
𝑚

𝑗=1
𝑒
𝑎
𝑗
+Λ
𝑗
−𝜂(𝑡,𝑥

𝑡
)−Δ
𝑥𝑗
𝑉
𝑡−1
(𝑥
𝑡
).

It follows that

[𝜂 (𝑡, 𝑥
𝑡
) − 1] 𝑒

𝜂(𝑡,𝑥
𝑡
)
−

𝑚

∑

𝑗=1

𝑒
𝑎
𝑗
+Λ
𝑗
−Δ
𝑥𝑗
𝑉
𝑡−1
(𝑥
𝑡
)
= 0, (40)

due to ∑𝑚
𝑗=1
𝑞
𝑗𝑡
= 1 − 1/𝜂(𝑡, 𝑥

𝑡
). Next, we show that 𝜂(𝑡, 𝑥

𝑡
) is

the unique solution to (40).
Let Ω(𝜉) = (𝜉 − 1)𝑒𝜉 − ∑𝑚

𝑗=1
𝑒
𝑎
𝑗
+Λ
𝑗
−Δ
𝑥𝑗
𝑉
𝑡−1
(𝑥
𝑡
); then we

can conclude that Ω(1) < 0 and Ω(+∞) = +∞. Since
𝜕Ω(𝜉)/𝜕𝜉 = 𝜉𝑒

𝜉
> 0 for any 𝜉 ∈ (1, +∞), it follows thatΩ(𝜉) is

monotonically increasing in 𝜉 for 𝜉 ∈ (1, +∞). This indicates
that 𝜂(𝑡, 𝑥

𝑡
) ∈ (1, +∞) is the unique solution to (40); that is,

∑
𝑚

𝑘=1
𝑞
𝑘𝑡
< 1. From (25) and (39), we can derive

𝑝
∗

𝑖𝑡
= 𝜂 (𝑡, 𝑥

𝑡
) + Δ
𝑥
𝑖

𝑉
𝑡−1
(𝑥
𝑡
) , (41)

where 𝜂(𝑡, 𝑥
𝑡
) is the unique solution to [𝜂(𝑡, 𝑥

𝑡
) − 1]𝑒

𝜂(𝑡,𝑥
𝑡
)
−

∑
𝑚

𝑗=1
𝑒
𝑎
𝑗
+Λ
𝑗
−Δ
𝑥𝑗
𝑉
𝑡−1
(𝑥
𝑡
)
= 0.

Substituting (41) into (28), we have

𝑉
∗

𝑡
(𝑥
𝑡
) = 𝜆 [𝜂 (𝑡, 𝑥

𝑡
) − 1] + 𝑉

𝑡−1
(𝑥
𝑡
) . (42)

Applying the boundary conditions, we can get

𝑉
∗

𝑡
(𝑥
𝑡
) = 𝜆

𝑡

∑

ℎ=1

[𝜂 (ℎ, 𝑥
𝑡
) − 1] . (43)
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P

Flight 1
Flight 2
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Figure 1: Optimal prices of both flights in time remaining 𝑡.

4. Numerical Examples

In this section, we numerically illustrate the effect of pas-
senger mental accounting on the optimal pricing of flights.
We examine sets of examples with two substitutable flights in
which 𝑎

1
= 10, 𝑎

2
= 6, 𝜆 = 0.7, initial seat levels 𝑐

1
= 4, 𝑐
2
= 6,

and corresponding mental accounting depths 𝛾
1
= 8 and

𝛾
2
= 6. The mental accounting coefficients that a passenger

derives from choosing flights 1 and 2 are 𝑏
1
= 0.4 and 𝑏

2
= 0.6,

respectively.
Figure 1 depicts the optimal prices for both flights with

respect to remaining time, at fixed seat levels 𝑐
1
= 4, 𝑐

2
= 6.

In Figure 1, we observe time monotonicity, the optimal price
of flight 1 increases in remaining time 𝑡, and the optimal
price of flight 2 decreases in remaining time 𝑡. Moreover, the
optimal prices of both flights converge to the identical value.
This means that the uniform pricing strategy begins to take
effect when the remaining seat level is abundant relative to
passenger demand.

Figure 2 illustrates the optimal prices of both flights as a
function of the remaining seat level of flight 1 in period 10,
with the remaining seat level of flight 2 fixed as 𝑐

2
= 6. The

optimal price of flight 1 is nonincreasing with respect to its
own remaining seat level, and the optimal price of flight 2 is
nonmonotonic in the remaining seat level of flight 1.

Next, we examine how the mental accounting depth
affects the optimal prices of both flights. Specifically, we want
to depict the change in the optimal prices of both flights
over mental accounting depth when 𝑡 = 10, 𝑐

1
= 4, and

𝑐
2
= 6. In this numerical simulation, we keep the depth of

mental accounting 2 constant; that is, 𝛾
2
= 6. The depth of

mental accounting 1 can be chosen from 1 to 10. Figure 3
gives the optimal prices of both flights for each depth level of
mental accounting 1. From Figure 3, we observe that mental
accounting depth significantly affects the optimal prices of
both flights. Given the remaining seat level and remaining

P

1 2 3 4 5 6 7 8 9 10

X1 (the remaining seat level of flight 1)

14

13.5

13

12.5

12

11.5

11

10.5

10

9.5

9

Flight 1
Flight 2

Figure 2: Optimal prices of both flights in the remaining seat level
of flight 1.

P

Flight 1
Flight 2

1 2 3 4 5 6 7 8 9 10

12.5

12

11.5

11

10.5

10

9.5

9

8.5

8

𝛾1 (the depth of mental accounting 1)

Figure 3: Effect of mental accounting on the optimal prices.

time, the optimal prices of both flights are nondecreasingwith
the depth level of mental accounting 1.

5. Conclusion

In this paper, we study the dynamic pricing problems for a
single flight and multiple flights over finite booking horizon
in the presence of mental accounting. We use Bellman equa-
tion to obtain the optimal prices. Furthermore, we present the
numerical simulation to investigate how mental accounting
depth affects the optimal prices. According to the numerical
example, we derive that passenger’s mental accounting has a
positive impact on the optimal prices.
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In the future study, we can incorporate the batch demand
into dynamic pricing instead of unit purchase. Of course, it
is also useful to incorporate competition into the dynamic
pricing problem or consider demand learning in our model.
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