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Broadband seismic deployments have been carried out in the Liitzow-Holm Bay region (LHB), Dronning Maud Land, East
Antarctica. The recorded teleseismic and local events are of sufficient quality to image the structure and dynamics of the crust and
mantle of the terrain. Passive seismic studies by receiver functions and shear wave splitting suggest a heterogeneous upper mantle.
Depth variations in topography for upper mantle discontinuities were derived from long period receiver function, indicating a
shallow depth discontinuity at 660 km beneath the continental area of LHB. These results provide evidence of paleo upwelling of
the mantle plume associated with Gondwana break-up. SKS splitting analysis anticipated a relationship between “fossil” anisotropy
in lithospheric mantle and past tectonics. Moreover, active source surveys (DSSs) imaged lithospheric mantle reflections involving
regional tectonic stress during Pan-African and succeeding extension regime at the break-up. By combining the active and passive

source studies of the mantle structure, we propose an evolution model of LHB for constructing the present mantle structure.

1. Introduction

Deployments of broadband seismic arrays on the Antarctic
continent have often been the ambitious dreams of dedicated
Earth scientists. Existing seismic stations belonging to the
Federation Digital Seismographic Network (FDSN) allow
resolution of the structure beneath the Antarctic continent
at a horizontal scale of 1000km, which is sufficient to
detect fundamental differences in the lithosphere beneath
East and West Antarctica, but not to clearly define the
structure within each sector. In addition, seismicity around
the Antarctic region is limited by sparse station distribution,
and the detection level for earthquakes remains inadequate
for full evaluation of tectonic activity [2]. A strategy of
attaining a sufficient density of seismic stations on the
Antarctic continent will allow for optimal ray path coverage
across Antarctica and improvement of seismic tomography
resolution [3-5].

Polar field deployments have been carried out in the
past decades around several regions withinin the continental
margins of Antarctica [6-9] including the “TransAntarc-
tic Mountain SEISmic experiment (TAMSEIS; [10, 11]).”

Discussions at the working group of the Antarctic Neo-
tectonics program (ANTEC) under the Science Committee
on Antarctic Research (SCAR) (Siena, Italy, 2001) and
the workshop on the “Structure and Evolution of the
Antarctic Plate (SEAP)” (Boulder, Colorado, 2003) have led
to Antarctic seismic array deployments. The principle ideas
of the Antarctic arrays were derived from components of
the “Regional Leapfrogging Arrays (RLA)” and the “Program
Oriented Experiments (POE)”.

The resultant seismic stations in Antarctica were installed
as a part of several international programs initiated during
the International Polar Year (IPY 2007-2008; http://classic
.ipy.org/; Figure 1). Followed by the successful TAMSEIS
deployment held in 2000-2002, several big geoscience
projects were contacted regarding a collaborative effort to
reach the interior of the Antarctic continent and surrounding
region. The “Antarctica’s GAmburtsev Province (AGAP;
http://www.ldeo.columbia.edu/~mstuding/AGAP/)”,  the
“GAmburtsev Mountain SEISmic experiment (GAMSEIS;
http://epsc.wustl.edu/seismology/GAMSELS/,  [12, 13])”
under AGAP, as well as the “Polar Earth Observing Network
(POLENET; http://www.polenet.org/)” were major contrib-
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FIGURE 1: Distribution map of seismic and the other geophysical stations planned for deployed during IPY 2007-2008. The GARNET-JARE
project regions are shown, as well as those of AGAP/GAMSEIS and TAMSEIS. All stations in Antarctica contribute to the POLENET program

in the bipolar region. The LHB map is extended in Figure 2.

utors in establishing a geophysical network inside the
Antarctic continent during the IPY.

Similar to other regions in Antarctica, monitoring obser-
vations have been conducted in the last decade by the
Japanese Antarctic Research Expedition (JARE) around the
Litzow-Holm Bay region (hereafter LHB), Dronning Maud
Land (Figure 1). The obtained seismic data are utilized to
clarify the heterogeneous structure of the Earth, particularly
around the Antarctic region. Seismic deployments can effi-
ciently study the crust and upper mantle, as well as the Earth’s
deep interior, including features such as the Core-Mantle-
Boundary (CMB) and the lowermost mantle layer (D" zone)
[14, 15]. The broadband arrays in LHB make a significant
contribution not only to the permanent global network of
FDSN, but also to such projects as the Global Alliance of
Regional Networks (GARNET), RLA, POE, POLENET, and
IPY.

In this paper, data from broadband seismological studies
are reviewed in order to provide clear images of the upper
mantle structure and dynamics beneath LHB. By combining
the passive and active source results, a regional evolution
model of LHB is presented to explain the formation of the
present mantle structure. Regional tectonic history such as
the Pan-African orogenic event, together with the break-up
process of Gondwana supercontinent in mid-Mesozoic age,
could be the plausible cause of present upper mantle struc-
ture. The multidisciplinary seismic investigations reviewed in

this paper supply fruitful information for understanding the
regional tectonic evolution of this area.

2. Broadband Deployments in LHB

Broadband seismic deployments in LHB have been carried
out since 1996 until present, including deployment dur-
ing IPY 2007-2008 as one of the major contributions to
GARNET. The stations were established on the outcrops
and ice sheet around the continental margins of LHB
(Figure 2). Seismic array response functions were calculated
in dominant frequency of 0.03 Hz and 0.1 Hz for receiver
space distribution of all the GARNET stations (Figure 3).
It is expected that both the short period body waves and
long period surface waves are detected and space resolution
from the analyses by using the detected waveform data
could evaluate the area. Except for power supply failure of
some stations during winter seasons, observations have been
conducted fairly well and a significant number of events were
recorded of global earthquakes, local earthquakes, as well
as ice-related events within close proximity to the stations
(Figure 4). During the IPY period, a total number of seven
stations (TOT, LNG, SKV, SKL, S16, RDV, and BTN) were
continuously operated. The last three stations (S16, RDV,
and BTN) were started simultaneously at the beginning of
the IPY.
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FIGURE 2: Broadband seismic stations in LHB including IPY period. Monitoring stations (red open circles), IPY stations (green solid circles),
and future planned stations (blue double-open circles) are indicated, respectively.

The observation systems consisted of a portable broad-
band seismometer and a data-recorder (type LS8000-WD,
-XT by Hakusan Co.), combined with lead-acid and solar
batteries. The CMG-40T portable seismometers (Guralp
System LTD.) were used with a three-component velocity-
response (flat frequency response for velocity in 0.05-10 Hz).
The velocity signal was digitized at a sampling frequency
of 10-100 Hz with a dynamic range of 90dB (16 bits), and
stored in a hard-disk (2GB) or compact flash (CF) card
(10 GB). Total solar panel power was 250-270 W with 12V
DC output, and the capacity of the lead batteries was more
than 500 Ah for each station. The systems operated continu-
ously except in very dark and cold periods during Antarctic
winters. Details of the observation systems in the first few
years were described in [19, 20]. More detailed information
for the GARNET stations in LHB and operational details are
available from the website of the National Institute of Polar
Research (NIPR) (http://polaris.nipr.ac.jp/~pseis/garnet/).

The GARNET data are initially stored and accessible to
cooperative researchers through the data library server of
NIPR (POLARIS; http://polaris.nipr.ac.jp/~pseis/garnet/).
After a defined period, the data are made available to
world data centers of seismology, such as Incorporated
Research Institute of Seismology/Data Management System
(IRIS/DMS). The global data centers provide data to seismol-
ogists studying the polar regions, the Standing Committee on
Antarctic Data Management (SCADM) under the Scientific

Committee on Antarctic Research (SCAR), as well as the
Antarctic Master Directory (AMD) in the Global Change
Master Directory (GCMD) of NASA.

During the IPY, broadband seismic deployments in
LHB were conducted under the endorsed JARE project.
By combining with the other big IPY projects such as the
AGAP/GAMSEIS [13], moreover, the deployments in LHB
could provide constraints on the origin of the Gamburtsev
Subglacial Mountains in terms of understanding the broader
structure of Antarctic Pre-Cambrian craton and the sub-
glacial environment. Detection of seismic signals from basal
sliding of the ice sheet and ice streams [10, 21] would be
expected from the future study, as well as the detection of
outburst floods from subglacial lakes.

3. Seismic Velocity Discontinuities

Interesting seismic evidence related to the structure and
dynamics of LHB was obtained in the last decade by JARE
geoscientific activities. The recorded teleseismic data in LHB
are of sufficient quality for usage of various analyses to clarify
the heterogeneous features of the Antarctic lithosphere-
asthenosphere system, as well as deep interiors [5, 14, 15,
22-24]. In recent years, moreover, glacial-related seismic
events were detected by the LHB array stations [25, 26].
Seismic signals involving ice-related phenomena, also known
as “ice-quakes (ice-shocks)”, have been associated with
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F1GURE 3: Simulated seismic array response functions in dominant frequency of 0.03 Hz and 0.1 Hz for receiver distribution for all GARNET

stations as shown in Figure 2.

glacially related mass movements of ice-sheets, sea-ice, tide-
cracks and icebergs in the polar areas [10, 25]. Despite the
development of local networks in the last two decades, we can
hardly distinguish a difference between waveforms by local
tectonic earthquakes and those of ice-related phenomena
(e.g., the unknown X-phases reported by [26]). The ice-
related signals can provide unique information for local
impact on Antarctic region involving global climate change.

The recorded waveforms are of sufficient quality to
analyze the crust-upper mantle structure and tectonic
evolution of the region. Passive seismic source studies of
receiver functions, shear wave splitting, and surface wave
tomography were carried out by using the data recorded
from systems located on outcrops in LHB. Shear wave

velocity models were inverted by fitting synthetic receiver
functions to the observed data in short-period ranges. The
obtained model investigated from azimuthal variations of
the receiver functions represents a slightly dipping crust-
mantle boundary toward the coast [27]. Moreover, a gradual
thickened structure of the crust in LHB was identified
from the north toward the south [28]. Variations in crustal
thickness along the coast may reflect the tectonic history,
with increasing metamorphic grade in crystalline crust
towards the south in LHB [29].

The long period receiver functions reveal depth vari-
ations in seismic discontinuities of the upper mantle
(for 410km and 660km) beneath the LHB [1]. Long
period receiver functions (after 0.2 Hz low-pass filter) were
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GARNET stations. The number of receiver functions for each 15
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generated using 62 teleseismic events recorded by the local
broadband arrays (Figure 5, left). Variations in depth distri-
bution of P-S conversion points were identified particularly
about the 660 km discontinuity (Figure 5, right). Shallow
depths in topography for the 660 km discontinuity were
found beneath the continental ice sheet area, that is, SE part
from the GARNET stations along the coast. The evidence
might reflect the paleo upwelling of the mantle plume
associated with supercontinent break-up in Mid-Mesozoic
age.

Back azimuth distribution for depth-converted receiver
functions was compiled for all the GARNET stations
(Figure 6). The back azimuths were defined as directions
of depth conversion points calculated for all the hypo-
center-station pairs from Syowa Station (SYO) as a cen-
ter. Back azimuth distribution for the depth variations
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in the upper mantle discontinuities was compiled for all
stations (Figure 7). The color contours in Figure 6 indicate
the smoothed amplitudes of the receiver functions. The
heterogeneities were observed in both 410 and 660km
discontinuities in both azimuth ranges of 20-50° and 200-
260°. The two back azimuth groups are almost parallel with
the coast and may indicate the relationship with the break-up
process of Gondwana. The evidence of break-up supported
by other studies from teleseismic shear wave anisotropy
and reflection imaging by active sources is shown in the
succeeding chapter.

4. Upper Mantle Anisotropy

Seismic wave anisotropy provides information on recent
and/or fossil mantle flows reflecting tectonic evolution of the
study region. The seismic anisotropy in the upper mantle of
LHB was derived from SKS splitting analysis for teleseismic
events recorded on the GARNET stations (Figure 8; [16]).
Averaged delay times of SKS wave splitting for all analyzed
stations were obtained as 1.3 s, which were almost equal to
the global average. A two-layer model was assumed to model
the upper mantle anisotropy; the upper layer is generally
considered to correspond to the “lithosphere” and the lower
layer to the “asthenosphere”. For six stations in LHB, we can
recognize the azimuthal variation of the splitting parameters
(Figure 9).

The fast polarization directions of SKS waves were com-
pared with the directions of Absolute Plate Motion (APM),
which reflects recent mantle flow [30]. The directions of
APM around LHB are about N145°E, and the velocity is
about 1.1 cm/yr based on the HS3-NUVEL1 model [31]
(Figure 10). Since the fast polarization directions of the
lower layer were generally parallel to the directions of APM,
it was considered that the lower layer anisotropy reflected
asthenospheric anomalies due to the horizontal mantle flow
along the APM.

In contrast, the fast polarization directions of the upper
layers never coincide with the APM direction (the difference
is up to 100°). We offer an idea that the anisotropic structure
could be involved with past tectonic events and the origin
of anisotropy is “frozen” in the lithosphere. Gondwana
assembly in Early Paleozoic was one of the major events
in LHB [32]. The LHB experienced regional high-grade
metamorphism during the Pan-African orogeny [33]. The
metamorphic grade increases progressively from north to
south along the coast and the maximum thermal axis lies in
the southernmost part of LHB [34].

A “fossil” anisotropy in the lithospheric mantle can be
estimated as caused by the past regional tectonics. The
majority of the fast polarization directions in the upper
layer, corresponding to the “lithosphere”, were orientated
in an NE-SW direction (Figure 10). This is consistent with
the direction of the paleo compression stress during the
Pan-African age and the conversion stage between East and
West Gondwana supraterrains. We proposed that the mantle
anisotropy was created by lithological orientation of mantle
minerals during the amalgamation process of Gondwana,
rather than in current asthenospheric flow parallel to APM.
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5. Seismic Reflection Imaging

Besides the broadband passive studies, deep crust and upper
mantle in LHB were investigated by active source studies (the
Deep Seismic Surveys; DSS) by JARE [35-37] (Figure 11).
DSS was conducted on the continental ice sheet of LHB in
austral summers in 2000 and 2002 as one of the “Structure
and Evolution of the East Antarctic Lithosphere (SEAL)”
program. The deployments required significant logistical
efforts, including the explosion of large dynamite shots along
the seismic profiles on the ice sheet plateau in LHB.

Sophisticated DSS processing demonstrated pronounced
reflection images of the crust-upper mantle boundary

(Moho discontinuity) and of the lithospheric mantle struc-
ture [17, 38]. A laminated layering around the crust-mantle
boundary was well imaged using coherency enhancement
processing after the Normal Move Out (NMO) corrections
applied to far-offset data of the SEAL-2000, -2002 profiles.
For the SEAL-2000 profile, the single coverage CDP section
with only far offset shots was shown in the upper part of
Figure 12(a) and the single coverage CDP only with nearer
traces could be identified in the lower part. Figure 12(b)
shows a single-fold CDP section using only far offset shots
for the SEAL-2002 profile (upper), and the CDP stack section
with offsets less than 120 km is depicted for the same profile
(lower), respectively.
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reflections are indicated by black solid arrow. (lower) CDP stack section offset linked to near traces for the SEAL-2000 profile. Several
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identified by red- and black-colored broken lines. In addition, reflections from the bottom of the ice sheet are traced by the light-blue broken

line. All the figures are after Kanao et al. [17].

Laminated layers of the lower crust in LHB, moreover,
were numerically modeled by comparing synthetic receiver
functions with those of observed waveforms in short period
bands (0.1-1.0 Hz) [39]. The repetitive crust-mantle tran-
sition zone imaged by the SEAL-2002 profile suggests the
presence of compression stress in an NE-SW orientation
during the Pan-African age, in the last formation stage of
a broad mobile belt between East and West Gondwana
terrains. Successive break-up processes of Gondwana in
the mid-Mesozoic could account for the formation of the
stretched reflection structure around the Moho discontinuity
as imaged on the SEAL-2000 profile (Figure 12(a)).

These seismic reflections were considered to represent
multigenetic origins, including igneous intrusions, lithologic
and metamorphic layering, mylonite zones, shear zones,
seismic anisotropy, or fluid layers [40, 41]. Though the cause

of reflectivity may have a multigenetic origin, we suggest that
metamorphic layering could be the principal cause in the
case of LHB. A strong reflectivity in the deeper crust-upper
mantle can be expected to result from layered sequences of
mafic and felsic rocks [42]. In addition, such a reflectivity
can be created where mafic rocks are interlayered with
upper amphibolite and lower granulite facies metapelites
[43].

In any continental terrains on Earth, the primary causes
for reflectivity might be enhanced by ductile stretching dur-
ing a late tectonic extensional process [44]. In particular, the
reflecting layers near the Moho were predominantly found in
crustally thinned tectonic areas. Accordingly, the reflectivity
in the lower crust and lithospheric mantle beneath LHB
might have been enhanced under extensional conditions
caused by the last breakup of the Gondwana supercontinent.
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6. Discussion

In this section, a regional evolution model of LHB is
presented to explain the formation process of the present
structure as reviewed in the previous sections. A summary
of evolution history, including major tectonic events in LHB,
is demonstrated in Figure 14.

Geological studies by JARE revealed the regional meta-
morphism of LHB during the Pan-African orogeny [33].
Metamorphic grade increases progressively from amphibo-
lite facies in the NE to granulite facies in the SW of LHB.
The maximum thermal axis runs through the southern LHB
with an NNW-SSE striking direction [29]. From geolog-
ical evidence, the LHB terrain experienced deformation r
compression stress-oriented perpendicular to the thermal
axis, almost parallel to the coast, during the last stage of
the deformation process of a mobile belt located between
the East- and West-Gondwana [32]. The high-amplitude
magnetic anomalies occurring in LHB compared to those in
the surrounding terrains ([45]; Figure 13) indicate the LHB
may be located in one of the major suture zones of the Pan-
African mobile belt. This has been pointed out in recent
studies in East Africa and in East Antarctica. These major
suture zones appear to continue from LHB to the Shackleton
Range of West Antarctica [32, 46].

The lower crust and upper mantle beneath LHB were
characterized to have lateral and vertical variations as
shown in seismological studies reviewed in this paper.
The gently inland dipping Moho discontinuity (38—42 km)
beneath the SEAL-2000 profile was inverted by travel-time
analysis from refraction and wide-angle reflection surveys
[18]. The present structure is attributed to hold the past
regional tectonics, particularly metamorphic and orogenic
activities in Pan-African age. Inferred thrust duplicated
(similar to the wedge shaped) lower crust-upper mantle
transition structures interpreted on the SEAL-2002 profile
(Figure 12(b), [17]) also imply a compressive stress regime
along the profile oriented in an NE-SW direction during
the Pan-African. Through consideration with geophysical
and lithologic information, LHB is considered to be formed
under convergence, perpendicular to the thermal axis, during
the collision between supraterrains of Gondwana during
the last stage of supercontinent formation [39, 47]. If LHB
underwent NE-SW compression, related paleo-mantle flow
along this direction could produce the seismic anisotropy
associated with the thermal axis of progressive metamor-
phism. Since the direction of paleo-compression is consistent
with the resultant fast polarization by SKS splitting [16],
anisotropy in the upper layer in Figure 9 can be explained
by “lithospheric” deformation during the formation of LHB
at Pan-African.

During the break-up between Antarctica and Australia-
India at ~150 Ma [48], the LHB experienced extensional
stress, which caused thinning at the continental margins
of East Antarctica. The flat lying reflectors above the
crust-mantle boundary recognized in the SEAL-2000 profile
(Figure 12(a)) suggest the presence of an extensional stress
regime in the NW-SE direction resulting from break-up. The
seismic reflective layers at the crust-mantle boundary and
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lithospheric mantle may have been enhanced by extensional
conditions during the final stages of break-up. The Lattice
Preferred Orientation (LPO) induced mechanical anisotropy
developed along the direction of preexisting lithospheric
structure during continental rifting [49]. The origin of
anisotropy beneath Western Dronning Maud Land was
pointed out as the ancient lithospheric structure modified
by rifting processes during break-up [50]. As the spreading
direction off the Enderby Land was NW-SE initial stage
of break-up [51], a strike of the rift was generally parallel
to the continental margin of LHB. The fast polarization
directions of the upper layer (“lithosphere”) in SKS analysis
were roughly parallel to the continental margin. Therefore,
it is plausible that break-up affected the formation of
anisotropy in the lithosphere. The preexisting lithospheric
structure might also influence the formation of anisotropy
in succeeding break-up processes.

Finally, besides the studies for the crust and upper
mantle, the recorded teleseismic waveforms have advantages
to investigate the deep Earth’s interiors such as the lower
mantle, D" zones [15], Core-Mantle-Boundary (CMB), and
the Inner Core [14, 52]. The GARNET data in LHB can
be utilized to study the deep Earth interior of the southern
high latitudes. Further, these data can be combined with data
from other projects in the region, such as AGAP/GAMSEIS
and projects from collaborating nations in Antarctica. The
broadband deployments in LHB offer effective contributions
to GARNET, international Antarctic Array program, FDSN,
POLENET, and the broader goals of the IPY and beyond.

7. Conclusions

Broadband seismic deployments around the Pan-African
terrain of LHB, East Antarctica, provided clear images of
characteristic structure of the upper mantle. Passive source
studies using teleseismic events such as receiver functions
and shear wave splitting demonstrated heterogeneous struc-
ture along the coast in the region. Depth variations of the
upper mantle discontinuities (410km and 660 km) were
derived from long-period receiver functions recorded at LHB
array stations. Shallow depths in topography of the upper
mantle discontinuity particularly about 660 km depths were
cleared beneath the continental ice sheet area where SE apart
from the stations. These results may reflect paleo upwelling
of the mantle plume associated with Gondwana break-up.
Lithospheric mantle anisotropy derived by SKS splitting
anticipated relationship between “fossil” anisotropy and past
tectonics. Fast polarization directions, mainly in NE-SW,
were consistent with paleo compression during the Pan-
African. The origin of mantle anisotropy might be caused
chiefly by LPO involving supercontinent assembly, rather
than present asthenospheric flow parallel with Absolute Plate
Motion. In addition, multidisciplinary lithospheric mantle
images were combined by both active and passive sources
conducted at LHB. DSS was carried out on the continental
ice-sheet in 2000 and 2002 and provided clear information
on the crust-mantle boundary, together with inner crustal
and lithospheric mantle reflections. After processing of NMO
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FIGURE 13: Aeromagnetic anomalies (by Golynsky et al., 1996 [18]) around LHB with GARNET stations and DSS profiles (modified after
Kanao et al., 2010 [17]). Tectonic interpretation is illustrated with associated interpretations of reflection cross sections by DSS.
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be the major two events affecting the formation of the present upper mantle structure.
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corrections and CDP stacking, the DSS extracted lithospheric
images imply tectonic influence of compressive stress during
the Pan-African.

The broadband deployments in LHB, accordingly, could
give rise to an effective contribution to regional and global
seismic networks, international Antarctic Array programs,
together with POLENET during IPY.
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