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A polynomial rooting direction of arrival (DOA) algorithm for multiple plane waves incident on an arbitrary array structure
that combines the multipolynomial resultants and matrix computations is proposed in this paper. Firstly, a new auxiliary-
variable manifold separation technique (AV-MST) is used to model the steering vector of arbitrary array structure as the product
of a sampling matrix (dependent only on the array structure) and two Vandermonde-structured wavefield coefficient vectors
(dependent on the wavefield). Then the propagator operator is calculated and used to form a system of bivariate polynomial
equations. Finally, the automatically paired azimuth and elevation estimates are derived by polynomial rooting. The presented
algorithm employs the concept of auxiliary-variable manifold separation technique which requires no sector by sector array
interpolation and thus does not suffer from any mapping errors. In addition, the new algorithm does not need any eigenvalue
decomposition of the covariance matrix and exhausted search over the two-dimensional parameter space. Moreover, the algorithm
gives automatically paired estimates, thus avoiding the complex pairing procedure. Therefore, the proposed algorithm shows low
computational complexity and high robustness performance. Simulation results are shown to validate the effectiveness of the
proposed method.

1. Introduction

Direction finding of the propagating planewaves has received
much attention in a variety of applications, including radar,
sonar, seismology, and mobile communication. Uniform lin-
ear array is often exploited in direction of arrival estimation as
it has a steering vector matrix with a Vandermonde structure.
Some fast direction finding estimators designed for uniform
linear array, root-MUSIC, and root-WSF [1–4], for example,
can then be applied to give estimates of source bearings
relative to the array axis. In [5] a variant of ESPRIT called
unitary ESPRIT is proposed for uniform rectangular arrays.

A planar array is often employed if the estimates of both
source azimuth and elevation are required.The techniques of
beamspace transform [6] and array interpolation [7–10] have
been developed tomap the steering vector of any planar array
onto a steering vector of a virtual uniform linear array. The

two preprocessing techniques that are mentioned above may
introduce mapping errors [11] in the form of bias [3, 12] and
excess variance [13]. Hence, the estimates are not statistically
optimal.

Manifold separation technique (MST) [14] exploits the
wavefield modeling formalism [15, 16] to model the steer-
ing vector of any array configurations as the product of
a sampling matrix and a Vandermonde-structured angular
vector. By using MST, conventional root-MUSIC originally
designed for ULA can now be applied to arbitrary array
configurations. Compared to mapping and interpolation
techniques, MST does not require any sector by sector
interpolation or transformation, andmapping errors can thus
be avoided. Besides, MST can provide smaller fitting errors
over the whole coverage area. Fourier-domain root-MUSIC
[17] can also extend the root-MUSIC to arbitrary array
configurations with improved performance to computational
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complexity tradeoffs at the cost of increasing the degree of
the polynomial. All of the twomentioned algorithms can only
provide one-dimensional estimate of the source bearing. As
for the two-dimensional (azimuth and elevation) estimation
problem, spherical harmonics [15, 18] have to be introduced.

Here, a new computationally efficient direction finding
algorithm for arbitrary array structure was developed. Firstly,
a variant of MST called auxiliary-variable manifold separa-
tion technique (AV-MST) is proposed. AV-MST employs a
combination of product-to-sum formula and Jacobi-Anger
expansion [19] to model the steering vector of arbitrary
array structure as the product of a sampling matrix and
two Vandermonde-structured wavefield coefficient vectors.
This contribution replaces complicated spherical harmonics
computations by the Bessel functions of the first kind and
allows fast direction finding estimators to be applied in
element space. Then propagator operator [20] is introduced
and a system of bivariate polynomial equations is formed;
this procedure requires no eigenvalue decomposition of the
covariance matrix; thus the computational complexity is
reduced. Finally, by using resultants [21, 22], the problem
of finding the roots of a polynomial system reduces to a
matrix computation of generalized eigenvalue problemwhich
involves no iterative procedure and exhausted 2D searching,
a closed-form automatically paired two-dimensional angle
estimates are eventually derived.

The rest of this paper is organized as follows. In Section 2,
key assumptions are made and the signal model is defined. In
Section 3, the novel AV-MST was presented. In Section 4, the
proposed root propagator method (root-PM) algorithm for
2D direction finding was derived. In Section 5, simulation
results are given to verify the efficiency of the proposed
algorithm. In Section 6, conclusions were made in the paper.

Throughout the paper, scalar quantities are denoted by
regular lowercase letters and lowercase bold type faces are
for vectors. Regular uppercase letters are used for matrices.
Superscripts𝑇,𝐻,∗, and † in this paper denote the transpose,
conjugate transpose, complex conjugate, and pseudoinverse,
respectively. ⊗ symbolizes the Kronecker-product operator.
0
𝑚,𝑛

and I
𝑚
denote the𝑚× 𝑛 zero matrix and𝑚×𝑚 identity

matrix, respectively.

2. Signal Model

Consider that 𝐾 noncoherent narrowband planer wave
source signals, parameterized by {𝜃

1
, 𝜙
1
}, {𝜃
2
, 𝜙
2
}, . . .,

{𝜃
𝐾
, 𝜙
𝐾
}, impinge upon an array of 𝑁 (𝑁 ≥ 𝐾) sensors.

Source elevation angles 𝜃 ∈ [0, 𝜋/2], and azimuth angles
𝜙 ∈ [0, 2𝜋]. It was assumed that 𝐿 snapshots are observed by
the array. The𝑁 × 𝐿 array output matrix X can be written as

X = As + N (1)
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(3)

where {𝜃
𝑛
, 𝜙
𝑛
} is the bearing of 𝑛th source and A is the𝑁× 𝐿

matrix of the steering vector a(𝜃
𝑛
, 𝜙
𝑛
). s is 𝐿-dimensional

vector complex amplitude of the sources and N is 𝑁 × 𝐿

noisematrix, and the noise ismodeled as a stationary, second-
order, ergodic, zero-mean, spatially and temporally white,
and circular Gaussian process.

3. Auxiliary-Variable Manifold
Separation Technique

In this section, a novel variant of MST called auxiliary-
variable manifold separation technique (AV-MST) is pro-
posed. By using AV-MST, the steering vector can be modeled
as the product of a sampling matrix and two Vandermonde-
structured wavefield coefficient vectors. The proposed array
modeling technology is based on the wavefield modeling
method can be expressed in formula [16]. Here an array
formed with omnidirectional sensors was considered. This
assumption does not restrict the generality of the discussion.
In (2), the 𝑘th element of the steering vector corresponds to
the 𝑘th sensor for arrays with arbitrary structure. Using the
product-to-sum formula, it can be written as

[a (𝜃, 𝜙)]
𝑘
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;

(4)

here put

𝜃
∗

= 𝜃 − 𝜙, 𝜙
∗

= 𝜃 + 𝜙; (5)

substituting (5) into (4), which gives
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by using Jacobi-Anger expansion [19], (6) can be written as
the following
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where G
𝑚
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the array configurations only and they are independent of the
wavefield. 𝐽

𝑚
(⋅) and 𝐽

𝑛
(⋅) represent the Bessel functions of the

first kind of orders 𝑚 and 𝑛, respectively. For 𝑚 = [−𝑀,𝑀]

and 𝑛 = [−𝑀,𝑀], 𝑀 is the maximum mode number and
it is proposed that 𝑀 ≈ 2𝜅𝑟, where 𝑟 is the radius of the
smallest circle centered at the origin of the array, enclosing
all the physical components. Then we can define

G
𝑘
= G
1𝑘
⊗ G
2𝑘
, V (𝜙

∗

, 𝜃
∗

) = k (𝜙∗) ⊗ k (𝜃∗) , (8)

where
G
1𝑘

= G
2𝑘

= [G
−𝑀

(𝑟
𝑘
, 𝛾
𝑘
) ,G
1−𝑀

(𝑟
𝑘
, 𝛾
𝑘
) , . . . ,

G
𝑀−1

(𝑟
𝑘
, 𝛾
𝑘
) ,G
𝑀
(𝑟
𝑘
, 𝛾
𝑘
)] ,

v (𝜙∗) = [𝑒
−𝑗𝑀𝜙

∗

, 𝑒
−𝑗(𝑀−1)𝜙

∗

, . . . , 𝑒
𝑗(𝑀−1)𝜙

∗

, 𝑒
−𝑗𝑀𝜙

∗

] ,

v (𝜃∗) = [𝑒
−𝑗𝑀𝜃

∗

, 𝑒
−𝑗(𝑀−1)𝜃

∗

, . . . , 𝑒
𝑗(𝑀−1)𝜃

∗

, 𝑒
−𝑗𝑀𝜃

∗

] ;

(9)

substituting (8) into (7), the 𝑘th element of the steering vector
can be modelled by

a (𝜙, 𝜃)
𝑘
= G
𝑘
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∗

, 𝜃
∗

) + 𝜀 (𝑀) ; (10)
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The quantities 𝜀(𝑀) and 𝜀
∗

(𝑀,𝑀) represent the modeling
error due to truncation. Ideally, the resulting truncation error
can be made arbitrary small as the maximum number mode
𝑀 increases. Note that all the modeling procedure that is
listed above needs to be done only once and can be done
offline; then the direction finding algorithm can be applied
to give the 2D source bearing estimates.

4. Element-Space 2D Root-PM

4.1. Construction of a System of Two Bivariate Polynomial
Equations. On the assumption that the incoming signals are
noncoherent, the steering matrix 𝐴 is of full rank which
is common for all the subspace-based techniques. So there
exists a unique linear propagator operator 𝑃 and a matrix
𝑄 can then be formed whose columns are orthogonal to the
steering vector [20], and the DOAs are the solutions of

a (𝜙∗, 𝜃∗)𝐻QQ𝐻a (𝜙∗, 𝜃∗) = 0, (12)

whereQ ∈ C𝑁×(𝑁−𝐾); from (11) and (12), one can equivalently
construct the following DOA estimator:
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In order to find the unique solutions about {𝜙, 𝜃}, a system
of two bivariate polynomial equations can be constructed by
decomposing the spanned subspace, then the matrix 𝑄 has
been divided into two submatrices 𝑄

1
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Using the two submatrixes 𝑄
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2
, a system of bivariate

polynomial equations related to the DOA of the incoming
signals is given by
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Define two complex variables 𝑧 and 𝑤 such that

𝑧 = 𝑒
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∗

, 𝑤 = 𝑒
𝑗𝜃
∗

. (16)

Viewing (15) as polynomials in 𝑧 with coefficients that are
polynomials in 𝑤 [21], it can be written as

f (𝑧)𝑇 E
1
g (𝑤) = 0,

f (𝑧)𝑇 E
2
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Here f(𝑧) = [𝑧
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∈ 𝐶
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∈ 𝐶
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1
and E

2
which contain the

coefficients of the bivariate polynomial in (15) can be obtained
as

E
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2
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(18)

Here, ∑ diag{E, 𝑥} symbolizes the sum of the block element
of the 𝑥th block diagonal of matrix E.

4.2. Azimuth-Elevation Angles Estimation. In order to find
the solutions to the systems of bivariate polynomial equations
in (17), [22] provides a computationally efficient technique
by using a combination of multipolynomial resultants and
generalized eigenvalue decomposition. The multipolynomial
resultantR(𝑤) can be obtained using the Sylvestermatrix [21]
and it is a polynomial in 𝑤. R(𝑤) linearizes (15) and reduces
it to a linear system of the form [22]

R (𝑤) t (𝑧) = (0, 0, . . . , 0)
𝑇

, (19)

where t(𝑧) = [𝑧
8𝑀−1

, 𝑧
8𝑀−2

, . . . , 1] ∈ 𝐶
8𝑀×1. The solutions of

(17) correspond to the roots of the determinant of multipoly-
nomial resultant R(𝑤), and R(𝑤) in matrix polynomial form
[22] can be expressed as

R (𝑤) = R
0
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1
𝑤 + R

2
𝑤
2

+ ⋅ ⋅ ⋅ + R
4𝑀

𝑤
4𝑀
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Given the matrix polynomial form of R(𝑤), the roots of
the polynomial corresponding to its determinant are the
generalized eigenvalues [23] of the matrixes C

1
and C

2
[22];

that is,

C
2
v = 𝑤C

1
v, (21)
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Figure 1: Histograms of DOA estimates for two signals with parameters 𝜃
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Figure 2: Histograms of DOA estimates for two signals with parameters 𝜃
1
= 72.7

∘, 𝜙
1
= 90.0

∘, 𝜃
2
= 50.4

∘, and 𝜙
2
= 78.0

∘: elevation (a);
azimuth (b), SNR = 20 dB.

where C
1
and C

2
are obtained by using the coefficient matrix

of R(𝑤). If 𝑤
𝑖
is a generalized eigenvalue of matrixes C

1
and

C
2
, the corresponding root 𝑧

𝑖
can be derived as

𝑧
𝑖
=
v
𝑖
(1)

v
𝑖
(2)

, (22)

where v
𝑖
is the 𝑖th element of the generalized eigenvector

corresponding to the eigenvalue 𝑤
𝑖
. Note also that the pro-

posed algorithm provides automatically paired roots which
are obtained from (21) and (22); it is assumed that they are
[w, z]. The 𝐾 auxiliary roots relating to the virtual DOAs
can be selected roughly by choosing the paired ones with
∠𝑧 = 𝜙

∗

= 𝜃+𝜙 > 0 first; further the paired roots are selected
with magnitude that are simultaneously closest to both unit

circles. If [𝑤
𝑖
, 𝑧
𝑖
] is the 𝑖th of the paired𝐾 roots, then the true

DOAs can be obtained according to (5) by

𝜃
𝑖
=
𝜙
∗

𝑖
+ 𝜃
∗

𝑖

2
=
∠𝑧
𝑖
+ ∠𝑤
𝑖

2
,

𝜙
𝑖
=
𝜙
∗

𝑖
− 𝜃
∗

𝑖

2
=
∠𝑧
𝑖
− ∠𝑤
𝑖

2
.

(23)

4.3. Implementation of the Proposed Method. Assuming that
the number of signals is known or correctly estimated, the
proposed element-space 2D root-PM algorithm for arbitrary
structure arrays can be implemented via the following steps.

(1) Using AV-MST to model the steering vector as the
product of an array sampling matrixG dependent on
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the array structure and wavefield coefficient vector
V(𝜙∗, 𝜃∗).

(2) Form the received data covariance matrix to com-
pute the propagator operator and a matrix Q [20]
whose columns are orthogonal to the steering vector
a(𝜙∗, 𝜃∗) can then be formed. Using (11)–(14), a
system of two bivariate polynomial equations can
then be constructed in the form of (15).

(3) By using Sylvestermatrix [21],multipolynomial resul-
tants R(𝑤) can be computed in the form of matrix
polynomial to linearize (15) to the form of (19).

(4) Then the polynomial rooting problem can be reduced
to the generalized eigenvalue problem.

(5) After the paired roots of [w, z] are obtained, by using
(23), the true DOAs can be estimated by the phase
angles of these paired roots.

5. Simulations

This section will verify the effectiveness of the proposed
auxiliary-variable manifold separation technique and 2D
root-PM algorithm for two-dimensional direction finding.
In particular, a uniform circular array of radius 𝑟 = 0.5 𝜆

consisting of 𝑁 = 19 elements is employed, with the
maximum mode number being 𝑀 = 6, and the reference
point is at the center of the circle. The number of snapshots
per trial was𝐿 = 512 and 1000 independent trials in total were
simulated.
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Figures 1 and 2 show the corresponding histograms of
the joint elevation and azimuth DOA estimation for two
(𝐾 = 2) uncorrelated equipowered signals with arrival angles
(𝜃
1
, 𝜙
1
) = (72.7

∘

, 90
∘

) and (𝜃
2
, 𝜙
2
) = (50.4

∘

, 78
∘

). Figure 1
was simulated at signal-to-noise ratio (SNR) = 5 dB and
Figure 2 was simulated at SNR = 20 dB. In Figure 1, it was
observed that the histograms spread around the true DOAs,
while Figure 2 gives very sharp histograms and two dominant
peaks can be seen compared to curves that in Figure 1. It
can be concluded that the proposed algorithm gives more
accurate DOA estimates when the SNR increases.

Figures 3 and 4 show the rootmean squared error (RMSE)
of the joint elevation and azimuth DOA estimates versus
the SNR in dB for the two sources. It was observed from
Figures 3 and 4 that the RMSE of the joint elevation and
azimuth DOA estimates decreases as the SNR increasing.
The two figures demonstrated that the proposed algorithm
provides asymptotically similar performance to the Cramer
Rao Bound.

6. Conclusions

In this paper, the problem of azimuth and elevation direction
finding for multiple plane waves employing an arbitrary
array structure was considered. The presented algorithm
requires no sector by sector array interpolation and thus
does not suffer from any mapping errors. In addition, the
new algorithm does not need any eigenvalue decomposition
of the covariance matrix and exhausted search over the
two-dimensional parameter space. Moreover, the algorithm
gives automatically paired estimates, thus avoiding the com-
plex pairing procedure. Above all, the proposed algorithm
shows low computational complexity and performswith high
robustness. The simulation results show the accuracy of the
proposed algorithm.
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