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Human infection by Schistosoma mansoni affects more than 100 million people worldwide, most often in populations of developing
countries of Africa, Asia, and Latin America. The transmission of S. mansoni in human populations depends on the presence of
some species of Biomphalaria that act as an intermediate host. The compatibility between S. mansoni and its intermediate host is
influenced by behavioral, physiological, and genetical factors of the mollusc and the parasite. The susceptibility level of the mollusc
has been attributed to the capacity of internal defense system (IDS)—hemocytes and soluble components of the hemolymph—to
recognize and destroy the parasite, and this will be the center of interest of this paper. The schistosome-resistant Biomphalaria can
be an alternative strategy for the control of schistosomiasis.

1. Introduction

Schistosomiasis is an important health problem that affects
over 200 million people worldwide. Among the schistosome
species that infect humans, Schistosoma mansoni is the most
prevalent species causing intestinal and hepatic schistosomi-
asis in more than 100 million people living mainly in sub-
Saharan Africa, the Caribbean, and South America, including
Brazil [1, 2]. Although campaigns for schistosomiasis control
based on chemotherapy have reduced the morbidity and
prevalence of this disease, transmission continues in almost
all the areas in which interventions has been attempted.
The transmission of S. mansoni in human populations has
been associated with environmental and socioeconomic con-
ditions, but the presence of susceptible intermediate hosts,
consisting of some species of Biomphalaria, is obligatory. In
Brazil, out of the eleven species Biomphalaria [3], only three
were found naturally infected by S. mansoni: B. glabrata, B.
tenagophila, and B. straminea [4].

The development of S. mansoni inside the intermediate
host starts immediately after the active penetration of the

snail by the miracidium, a swimming ciliated larva, through
the exposed snail tegument. After penetration, the parasite
undergoes morphological and physiological changes, being
transformed into primary sporocyst (or mother sporocyst)
that remains in the fibromuscular tissue of the host’s
cephalopodal region, near the penetration site. After 2-
3 weeks, primary sporocysts generate secondary ones (or
daughter sporocysts), which migrate from the cephalopodal
musculature to the digestive glands or hepatopancreas of
the mollusc, where their germinative cells can generate
the cercariae [5–7]. The susceptibility level of different
Biomphalaria species or strains to infection with the same
lineage of S. mansoni can be very diverse, and it is a
determinant of vectorial competence.

The compatibility between S. mansoni and its inter-
mediate host is influenced by behavioral and physiological
factors of the mollusc. However, the susceptibility level
of Biomphalaria to S. mansoni is also determined by the
genetic differences of the molluscs, as well as by the
genetic constitution of Schistosoma [8, 9]. Newton [10, 11]
demonstrated that the susceptibility of B. glabrata snail
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to S. mansoni depends largely upon genetic factors. Later,
these results were corroborated by Richards [12], who
demonstrated that the resistance character, acquired at the
maturity phase, is determined by a single dominant gene
with mendelian inheritance. The genetic dominance of the
resistance character was also confirmed in crossbreeding with
the susceptible and resistant strain of B. tenagophila [13, 14].
One of the factors that influence susceptibility, and that may
be genetically determined, is the activity of the snail internal
defense system (IDS).

The Biomphalaria IDS is composed of soluble compo-
nents of hemolymph and circulating cells, termed hemo-
cytes, which work in association during the snail responses
against infectious agents [15]. In snails, circulating hemo-
cytes, especially the phagocytic cell population, are the
principal line of cellular defense involved in destruction
of S. mansoni larvae inside the intermediate host [16–
23]. However, there is experimental evidence that soluble
elements of the hemolymph participate in the protective
mechanism against pathogens in many invertebrates [24–
27]. Soluble components of the hemolymph can interact
directly with pathogenic agents producing toxic substances
or lytic peptides, or indirectly through mediator molecules
for recognition of the pathogen or hemocyte activators
[22, 28–32]. In Biomphalaria, hemocytes circulating in
hemolymph or fixed in tissues are mainly produced by a
well-defined region located between the pericardium and
the posterior epithelium of the mantle cavity, called the
amebocyte producing organ (APO) [33]. However, there is
some evidence [34–37] that B. glabrata hemocytes may have
multicentric origin and sites with proliferation of hemocytes
were detected also at the saccular portion of the renal tubules
and in the ventricular cavity of the heart.

The existence of a cellular defense mechanism deployed
by molluscs against trematode infection was initially sug-
gested by the finding of histological reactions around parasite
sporocysts [10]. Histopathological analysis of S. mansoni-
infected Biomphalaria showed that hemocyte infiltration
around parasite larvae was faster and stronger in snail strains
that are more resistant to parasite infection [23, 38]. The con-
firmation of hemocyte participation in S. mansoni-sporocyst
control was provided by experiments that transferred the
APO from resistant to susceptible snail strains. In these
experiments the APO recipient snails were able to control S.
mansoni infection better than the respective controls [39, 40].

The effector mechanisms by which hemocytes are able to
kill trematode larvae are partially dependent on the capabil-
ity of these cells to recognize sporocyst tegument molecules,
leading to parasite encapsulation and cellular activation, that
result in production of highly toxic metabolites of oxygen
and nitrogen associated with parasite killing [41–45]. In
this context, a better knowledge of the interactions between
the parasite tegument and snail hemocytes is essential
for understanding the snail susceptibility to S. mansoni
infection. This is needed in order to propose new strategies
for parasite transmission control. During the last few years,
our research group has used the experimental model of
S. mansoni infection in B. tenagophila of Taim strain to
explore this interaction and the results are discussed below.

2. Schistosoma mansoni Infection in
Biomphalaria tenagophila of Taim Strain

Biomphalaria tenagophila is the second major intermediate
host of S. mansoni in Brazil. Snails of this species are
well distributed through the southeast and south states of
Brazil, from Bahia to Rio Grande do Sul, being responsible
for disease transmission in the state of São Paulo and for
several disease foci in the states of Santa Catarina, Minas
Gerais, Rio de Janeiro, and Rio Grande do Sul [4, 46, 47].
Besides Brazil, B. tenagophila also occurs in Argentina, Peru,
Bolivia, Paraguay, and Uruguay [4]. The susceptibility levels
of B. tenagophila collected from different geographic areas
to infection with the same lineage of S. mansoni are diverse.
As far as B. tenagophila is concerned, the geographic lineage
isolated at the biological reservoir in Taim (Rio Grande
do Sul, Brazil), designated as Taim strain, is absolutely
resistant to S. mansoni [13, 48, 49], and the resistance of this
B. tenagophila lineage has been explored in our laboratory,
where we study the possible mechanisms of the parasite’s
destruction. Experimental infections in B. tenagophila Taim
have shown that S. mansoni miracidia are able to penetrate
this snail strain; however the parasites induce an intense
cellular infiltration in the infection site leading to parasite
destruction within a few hours of infection [23], suggesting
an important participation of the IDS on determination of
resistance to S. mansoni in B. tenagophila Taim. The impor-
tance of hemocytes in the parasite control was confirmed by
experiments that transferred the hematopoietic organ (APO)
from snail of Taim strain to B. tenagophila susceptible to
S. mansoni infection. The transference resulted in an absolute
resistance against the challenge with S. mansoni in receptor
snail whose APO transplant was successful [40].

The process of destruction of S. mansoni larvae by
hemocytes starts with the recognition and encapsulation
of the newly penetrated sporocyst. The tegument of
S. mansoni transforming miracidium is an important inter-
face for molecular communication between the parasite
and Biomphalaria [50]. In this context, the first step in
the activation of this defense mechanism is the recogni-
tion of the parasite presence by hemocytes. The tegument
of S. mansoni sporocyst is composed of highly glycosy-
lated [50–52] molecules that bind to soluble proteins of
B. glabrata hemolymph in a carbohydrate-dependent man-
ner [50]. Furthermore, it was demonstrated that excretory-
secretory glycoproteins from S. mansoni sporocysts also
bind to hemocytes via carbohydrate binding receptors [53].
Therefore, lectin-carbohydrate binding could mediate the
association of hemocytes with the trematode tegument [15,
44, 53], and consequently it could be a determinant factor of
Biomphalaria susceptibility to S. mansoni infection.

To better understand the interaction of hemocytes with
parasite larvae, we used the in vitro assay first developed
by Bayne et al. [16]. Using this procedure we tested
the effect of purified circulating hemocytes plus soluble
hemolymph from different Biomphalaria species or strain on
the axenically transformed primary or secondary sporocysts
of S. mansoni.
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The data clearly showed that addition of purified hemo-
cytes from resistant snail strains, such as B. tenagophila
Taim, into culture with primary sporocysts resulted in
higher levels of parasite mortality compared to sporocysts
cultured with hemocytes from susceptible snail strains, such
as B. tenagophila Cabo Frio [54]. Moreover, in primary
sporocyst cultures containing hemocytes from B. tenagophila
Cabo Frio, the addition of cell-free hemolymph from
B. tenagophila Taim resulted in increase of hemocyte binding
to parasite tegument and higher mortality rates [54]. There-
fore, we demonstrated that high levels of sporocyst mortality
were associated with higher number of hemocytes bound to
parasite tegument leading to parasite encapsulation [32, 54],
experimentally confirming that the ability of hemocytes to
recognize the primary sporocyst is related to the resistance of
B. tenagophila Taim.

Finally, we investigated if lectin-carbohydrate bind-
ing could mediate the association of hemocytes from
B. tenagophila Taim with S. mansoni primary sporocysts. Pre-
vious work [31] with S. mansoni infection in B. tenagophila
Taim showed that most of the circulating hemocytes recov-
ered from B. tenagophila Taim, but not from B. glabrata BH
or B. tenagophila Cabo Frio that are susceptible to S. mansoni
infection, were intensively labeled by FITC-conjugated PNA
and WGA lectins, and these labeled cells almost disap-
peared from the circulation during the first few hours after
S. mansoni infection. Based on these data we tested, in vitro,
the participation of N-acetyl-D-glucosamine carbohydrate
moieties on the adhesion and destruction of S. mansoni
sporocysts by hemocytes of B. tenagophila Taim. Similarly
to the previous data, cultures containing hemocytes plus
hemolymph from B. tenagophila Taim encapsulated and
destroyed over 30% of the S. mansoni sporocysts in culture.
Interestingly, the addition of N-acetyl-D-glucosamine to
culture medium, but not mannose, resulted in significant
inhibition of cellular adhesion to the parasite tegument and
reduction of parasite mortality to 5% [32]. In conclusion,
the data indicate that N-acetyl-D-glucosamine moieties
influence the recognition of schistosome primary sporocysts
by hemocytes of B. tenagophila Taim and implies the
mechanism is a determinant of snail resistance against
S. mansoni infection.

According to Lodes and Yoshino [55]; the general pattern
of synthesis and release of protein by primary and secondary
sporocysts in culture is quite different, showing that the two
sporocyst stages are metabolically different. The study of
gene expression profiles of S. mansoni daughter sporocysts
identified different stage-specific genes, several of which are
related to adaptation and development of the parasite in
the host [56, 57]. The in vitro interaction of axenically
transformed S. mansoni primary sporocysts or secondary
sporocysts obtained from infected snails with IDS compo-
nents of B. glabrata (susceptible) and B. tenagophila Taim
(resistant) revealed that the secondary sporocysts are less
affected by the IDS, mainly of the resistant snail. Secondary
sporocysts had fewer cells adhered to the surface, lower
mortality, and less surface damage. These results suggest
higher resistance of secondary sporocysts to the effector
mechanisms of Biomphalaria when compared to the primary

sporocyst. However, the secondary sporocysts were unable to
grow when inoculated into B. tenagophila Taim but were able
to develop into B. glabrata [58].

Many authors have found that sporocysts can inter-
fere with snail host reproductive physiology and alter
other aspects of the parasite-host interaction, secreting
molecules (excretory/secretory products (ESP)), adsorbing
Biomphalaria antigens when cultivated in the presence of
snail molecules, and synthesizing molecules similar to host
molecules even in the absence of Biomphalaria compo-
nents [55, 59–65]. Recently, experiments with molecular
and biochemistry approaches using ESP or sporocysts and
hemocytes from schistosome-susceptible and schistosome-
resistant B. glabrata demonstrated that the parasite is
able to interfere with extracellular signal-regulated kinase
(ERK) pathway in susceptible B. glabrata [66–68]. Moreover,
resistant B. glabrata presented differential expression of genes
potentially associated with the snail IDS after infection with
S. mansoni when compared with susceptible strain [69].

The hemocytes from resistant Biomphalaria species can
recognize, encapsulate, and destroy the sporocysts soon after
S. mansoni invasion. On the other hand, the ability of the
parasite to avoid or disrupt the immune response of the
host is fundamental to the establishment of parasite-host
compatibility [70]. Similar molecules have been found in
S. mansoni and Biomphalaria, suggesting an evolutionary
convergence of molecular expression between parasite and
snail host [8, 59, 70–72]. This similarity is important for the
escape process of the parasite: molecular mimicry [72–74].
According to Salzet et al. [75], this mechanism can prevent
the recognition of the parasite by the host IDS.

These data help us to understand why the snails defense
in particular its destruction of primary sporocysts, occurs
in the first hours after miracidia penetration. Furthermore,
van Die and Cummings [71] and Lehr et al. [72] have
suggested that glycans play a role in the parasite molecular
mimicry process. Although the evolutionary advantages of
this adaptive process for the parasite are well understood,
it is not known how this process interferes with schistoso-
miasis [75] or whether this mechanism could interfere with
the snail’s resistance mechanisms. Thus, more experiments
using daughter sporocysts must be performed to clarify
aspects involved with molecular mimicry in the S. man-
soni/Biomphalaria (susceptible and resistant) interaction.
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