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By exploiting the spatial diversity of multiple wireless nodes, cooperative communication technique is a promising technique for
spectrum sharing to improve spectrum efficiency. In this paper, the incentive issue between relay nodes’ (RNs’) service and source’s
relay selection is investigated in the presence of the asymmetric information scenario. Multiuser cooperative communication is
modelled as a labour market, where the source designs a contract and each relay node decides to select a contract item according
to hidden information in order to obtain the best profit. The optimal contract design under both symmetric information and
asymmetric information is presented based on contract theory. The contract-theoretic model for ability discrimination relay
selection is formulated as an optimization problem tomaximize the source’s utility. A sequential optimization algorithm is proposed
to obtain the optimal relay-reward strategy. Simulation results show that the optimal contract design scheme is effective in improving
system performance for cooperative communication. This paper establishes a valuable cooperative communication mechanism in
cognitive radio networks.

1. Introduction

Due to the steadily increasing number of wireless devices
and applications, the demand for wireless spectrum has
increased dramatically. However, a great number of licensed
spectra are not effectively utilized, resulting in spectrum
wastage [1]. To cope with such a dilemma, cognitive radio
[2, 3] has been introduced by enabling the secondary users
to opportunistically use the vacant spectrum unharmfully,
which is assigned to the primary users. By obtaining spa-
tial diversity and combating detrimental effects of wireless
channels, cooperative communications technique [4–6] is
considered as an effective method to improve spectrum
efficiency.

Designing a cooperative communication mechanism in
cognitive radio networks (CRNs) is considerably challenging.
First, relay nodes (RNs) are selfish [7] and may compete

for the limited spectrum resources (e.g., battery, power, and
bandwidth) and only aim at maximizing their own benefit
[8].Thus, the potential relays may not be willing to cooperate
without any additional incentives, which bring about a much
more challenging problem to cooperative communication.
Secondly, various relay selection algorithms require near-
complete network information to select potential RNs effec-
tively. However, due to the mobility of wireless users and
the effects of shadowing and fading of the wireless channels,
network information (e.g., locations, channel conditions, and
QoS requirements) may not be available to all users [9].
Moreover, this network information may belong to users pri-
vately and users may not be willing to share this information,
which results in asymmetry information between the source
and RNs [10]. In this paper, we intentionally concentrate on
robust cooperative communication mechanism to address
these challenging issues.
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The above cooperative incentive issues in relay selection
have been investigated recently, the most often used being
the auction mechanism [11–13]. However, when PUs own
spectrum demands are high or the condition of the source’s
wireless channel is poor, there will be hardly any spectrum
left for auction. Therefore, in this study, we intentionally
concentrate on an alternative approach, based on contracts,
towards the cooperative communication between one source
and multiple RNs under asymmetric information scenario.
Contract theory [14, 15] investigates how to design the
mutually agreeable contract among economic players in the
presence of asymmetric or incomplete information scenarios
[16]. A principal-agent model for the source and RNs is
utilized, where the source acts as the principal and each SU is
an agent [17]. Contract-based solutions have been suggested
for cooperative systems that are either resource exchange
based, integrated contraction based, profit incentive based,
or dynamic trading based [9, 18–20]. Unlike the existing
literature, in this paper, considering the different ability of
RNs, the source pays different basic wage to RNs for their
different relay efforts. Moreover, the source offers RNs a fixed
bonus coefficient related to relay performance in order to
motivate them to work hard. Furthermore, potential RNs
are classified into multiple user types according to their
hidden information (e.g., channel condition, battery technol-
ogy). We refer to this as ability discrimination relay selec-
tion.

In this paper, the incentive issue between RNs’ relay
service and source’s relay selection is exploited in CRNs and
an efficient contract-theoretic model for ability discrimina-
tion relay selection is developed under asymmetric informa-
tion scenario. The main contributions of this paper are as
follows:

(i) By exploiting the cooperation mechanisms and
design challenges in cooperative communication, the
contract-theoretic model for ability discrimination
relay selection is proposed to describe collaborative
schemes in CRNs. A parameter named bonus ratio
is introduced in this model to motivate RNs to work
hard. RNs’ basic wage paid by the source is various
with their different relay efforts. And multiple RNs
are classified into different types according to their
hidden information.

(ii) On the shoulder of contract theory, the optimal con-
tract design in the presence of both symmetric infor-
mation and asymmetric information is presented.
Under symmetric information, the optimal contract
is feasible if and only if it is individually rational (IR)
for eachRN.And, under asymmetric information, the
necessary and sufficient conditions for a contract to
be incentive compatible (IC) and IR are systematically
characterized.

(iii) To effectively select potential RNs to participate in
cooperative communication, an optimization prob-
lem is formulated, which maximizes the source’s
utility while meeting the IC and IR conditions of
each RN. A sequential optimization algorithm is pro-
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Figure 1: Cognitive radio network.

posed to obtain the optimal relay-reward strategy.The
performance of optimal contract-based cooperative
communicationmechanism is demonstrated through
simulations.

The remainder of the paper is organized as follows. The
system model and problem formulation for contract-based
CSS is introduced in Section 2. Then, the optimal contract
designs under both symmetric information and asymmetric
information are presented in Sections 3 and 4, respectively.
Numerical simulation results are given and discussed in
Section 5, and Section 6 concludes the paper.

2. System Model and Problem Formulation

Figure 1 shows a typical CRN with a particular wireless node
acting as a source and multiple RNs. The source consists of
a source transmitter (ST) and a source receiver (SR). In this
cooperative communication scheme, the distributed space-
time-coded protocol [21] is considered and relay selection
is conceptually like the labor market. The employer, the
source, recruits some RNs to cooperatively relay the traffic
at high power levels, which is against RNs interests. And the
employee, RN, chooses one of the contract items tomaximize
his/her utility. To deal with the problem of conflicting objec-
tives between the source and RNs, a contract with several
different items related to different combinations of effort level
(e.g., relay power) and salary is utilized. With proper choice
of space-time codes, RNs’ simultaneous relay signals do not
interfere with each other at the source receiver (SR). By
motivating RNs to truthfully reveal their hidden information,
not only can the source enjoy a significant throughput gain
due to the cooperation, but also the RNs obtain certain
reward, resulting in a win-win situation.

2.1. Source Modeling. In this subsection, the source model
related to RNs’ relay powers 𝑝

𝑖
, 𝑖 ∈ 𝐼, and source’s reward
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allocations is considered. The source’s total achievable rate
due to cooperative relay of the RNs [21] can be written as

𝑅
𝑆
= log(1 +∑

𝑖∈𝐼

𝑝
𝑖

𝑛
0

) , (1)

where 𝑝
𝑖
is the 𝑖th RN’s transmitting power at SR side and 𝑛

0

is the noise power.
Without loss of generality, the payment 𝑤

𝑖
to the 𝑖th RN

with a linear sharing scheme [22] is defined as

𝑤
𝑖
= 𝛼
𝑖
+ 𝛽𝑝
𝑖
, (2)

where 𝛼
𝑖
is the basic wage of the 𝑖th RN and 𝛽 (𝛽 ∈ [0, 1])

is the performance-based bonus coefficient. RNs obtain the
different basic wage due to the different ability.

Then, the source’s objective is to design a contract to
maximize its utility as follows:

𝑈
𝑆
= 𝜌𝑅
𝑆
−

𝑁

∑

𝑖=1

𝑤
𝑖

= 𝜌 log(1 +∑
𝑖∈𝐼

𝑝
𝑖

𝑛
0

) −∑

𝑖∈𝐼

(𝛼
𝑖
+ 𝛽𝑝
𝑖
) ,

(3)

where 𝜌 > 0 is the equivalent profit per unit channel capacity,
which is identical for all the RNs.

2.2. Relay Node Modeling. Considering that the 𝑖th RN has
the relay channel gain (ℎST𝑖 ,SR) between its transmitter ST

𝑖

and the source’s receiver SR, if the 𝑖th RN wants to reach
received power 𝑝

𝑖
at SR, RN needs to transmit with power

𝑝
𝑖
/ℎST,SR. Then, the relay communication cost of the 𝑖th RN

can be represented as

𝐶
𝑖
(𝑝
𝑖
) =

𝑝
𝑖

ℎST,SR
𝛾
𝑖
, (4)

where 𝛾
𝑖
is the relay cost per unit transmission power of the

𝑖th RN.
To facilitate the following discussions, the 𝑖th RN’s type is

defined as

𝜃
𝑖
=

𝛾
𝑖

ℎST,SR
, (5)

which describes all the hidden information of this RN. Lower
𝜃
𝑖
means that the RN has a better relay channel condition (a

larger channel gain ℎST,SR), or it has a lower relay cost (smaller
𝛾
𝑖
).
Then, the 𝑖th RN’s utility can simply be given by

𝑈RN𝑖 = 𝑤𝑖 − 𝐶𝑖 (𝑝𝑖) = 𝛼𝑖 + 𝛽𝑝𝑖 − 𝜃𝑖𝑝𝑖. (6)

To facilitate later discussions, by making 𝑉(𝜃
𝑖
, 𝑝
𝑖
) = (𝜃

𝑖
−

𝛽)𝑝
𝑖
, the 𝑖th RN’s utility can be defined as

𝑈RN𝑖 = 𝛼𝑖 − 𝑉 (𝜃𝑖, 𝑝𝑖) , (7)

where 𝑉(𝜃
𝑖
, 𝑝
𝑖
) is increasing in the private type 𝜃

𝑖
and the

relay power 𝑝
𝑖
(received at SR).

2.3. Contract Formulation. In this subsection, the contract
mechanism is investigated to resolve the conflicting objec-
tives between the source and RNs in the presence of hidden
information. Due to the hidden information of RN’s private
type, the source needs to design a contract to incentivize the
RNs to participate in relay communications to improve the
source’s utility. The contract items describe the RNs’ relay
performance and source’s relay reward.

Essentially, RN’s private type can be divided into two
categories: continuous and discrete. Considering the prac-
tical application, the contracts can be easily and efficiently
broadcasted as a finite number of values. Therefore, in this
paper, 𝑁 RN types are considered, which are denoted by set
Θ = {𝜃

1
, 𝜃
2
, . . . , 𝜃

𝑁
}. Without loss of generality, it is assumed

that 0 ≤ 𝜃
1
< 𝜃
2
< ⋅ ⋅ ⋅ < 𝜃

𝑁
. The total number of type-

𝜃
𝑖
RNs is 𝑁

𝑖
. According to the revelation principle [23], in

order to attract the RNs to truthfully reveal their types, it is
necessary to design a contract comprised of𝑁 contract items,
one for each RN type. Then, the contract can be written as
Φ = {𝑝

𝑖
, 𝛼
𝑖
, ∀𝑖 ∈ Ω}, whereΩ = 1, 2, . . . , 𝑁.

The optimal contract design for the symmetric and
asymmetric information scenario is investigated in Sections 3
and 4, respectively. And the symmetric information scenario
is considered as a benchmark. Without loss of generality, the
values of 𝑛

0
are normalized to be 1 for simplification in the

following analysis.

3. Optimal Contract Design under Symmetric
Information

In the symmetric information scenario, the source knows
precisely each RN’s type information. The source only needs
to make sure that each RN accepts only the contract item
designed for its type with nonnegative utility. In particular,
the contract needs to satisfy the following IR constraint to
ensure that each type-𝜃

𝑖
RN obtains nonnegative utility by

accepting the contract item for 𝜃
𝑖
:

(IR:) 𝛼𝑖 − 𝑉 (𝜃𝑖, 𝑝𝑖) ≥ 0, ∀𝑖 ∈ Ω. (8)

Then, tomaximize the source’s utility, an optimal contract
under symmetric information can be designed as follows:

max
{{𝑝𝑖 ,𝛼𝑖}≥0,∀𝑖∈Ω}

𝜌 log(1 + ∑
𝑖∈Ω

𝑁
𝑖
𝑝
𝑖
) − ∑

𝑖∈Ω

𝑁
𝑖
(𝛼
𝑖
+ 𝛽𝑝
𝑖
) ,

s.t. 𝛼
𝑖
− 𝑉 (𝜃

𝑖
, 𝑝
𝑖
) ≥ 0, ∀𝑖 ∈ Ω.

(9)

Lemma 1. To obtain the source’s maximum utility, each RN
achieves zero utility; that is, 𝛼

𝑖
= 𝑉(𝜃

𝑖
, 𝑝
𝑖
), ∀𝑖 ∈ Ω.

Proof. By contradiction, suppose there exists an optimal
contract item (𝑝

𝑖
, 𝛼
𝑖
) with 𝛼

𝑖
−𝑉(𝜃
𝑖
, 𝑝
𝑖
) > 0. Since the source’s

utility in (3) is increasing in 𝑝
𝑖
and decreasing in 𝛼

𝑖
, the

source can obtain its maximum utility by decreasing 𝛼
𝑖
until
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𝛼
𝑖
−𝑉(𝜃

𝑖
, 𝑝
𝑖
) = 0. This contradicts the above assumption and

thus completes the proof.

Based on Lemma 1, the source’s utility maximization
problem in (9) can be simplified as

max
{𝑝𝑖≥0,∀𝑖∈Ω}

𝜌 log(1 + ∑
𝑖∈Ω

𝑁
𝑖
𝑝
𝑖
) − ∑

𝑖∈Ω

𝑁
𝑖
𝜃
𝑖
𝑝
𝑖
. (10)

Since 𝑁
𝑖
and 𝑝

𝑖
always appear together in (10), we can

redefine the optimization variable as 𝑝
𝑖
= 𝑁
𝑖
𝑝
𝑖
and rewrite

(10) as

max
{𝑝𝑖≥0,∀𝑖∈Ω}

𝜌 log(1 + ∑
𝑖∈Ω

𝑝
𝑖
) − ∑

𝑖∈Ω

𝜃
𝑖
𝑝
𝑖
. (11)

Lemma 2. To obtain the source’s maximum utility, only the
contract item for the lowest type 𝜃

1
is positive and all other

contract items are zero; that is, (𝑝
1
, 𝛼
1
) > 0 and (𝑝

𝑖
, 𝛼
𝑖
) = 0,

1 < 𝑖 ≤ 𝑁.

Proof. This theorem can be proved by contradiction. Suppose
there exists an optimal contract itemwith𝑝

𝑖
> 0, for 𝑖 > 1 (for

type-𝜃
𝑖
RNs).

The source’s utility achieved by allocating positive relay
power only to the lowest type RNs can be denoted by

𝑈
1
= 𝜌 log (1 + 𝑝

1
) − 𝜃
1
𝑝
1
. (12)

Since 0 ≤ 𝜃
1
< 𝜃
2
< ⋅ ⋅ ⋅ < 𝜃

𝑁
, we have ∑

𝑖∈Ω
𝜃
𝑖
𝑝
𝑖
>

𝜃
1
∑
𝑖∈Ω
𝑝
𝑖
; then the source’s utility is

𝑈
2
= 𝜌 log(1 + ∑

𝑖∈Ω

𝑝
𝑖
) − ∑

𝑖∈Ω

𝜃
𝑖
𝑝
𝑖

< 𝜌 log(1 + ∑
𝑖∈Ω

𝑝
𝑖
) − 𝜃
1
∑

𝑖∈Ω

𝑝
𝑖
.

(13)

By setting 𝑃󸀠 = ∑
𝑖∈Ω
𝑝
𝑖
, (13) can be simplified as

𝑈
2
< 𝜌 log (1 + 𝑃󸀠) − 𝜃

1
𝑃
󸀠
. (14)

Obviously, the right inequality of (14) is exactly equal to
𝑈1; then we have

𝑈
2
< 𝜌 log (1 + 𝑃󸀠) − 𝜃

1
𝑃
󸀠
= 𝑈
1
. (15)

This contradicts the above assumption and thus com-
pletes the proof.

Using Lemma 2, the optimization problem in (11) can be
further simplified as

max
𝑝1≥0

𝜌 log (1 + 𝑝
1
) − 𝜃
1
𝑝
1
. (16)

At this point, the source’s optimization problem from
involving 2𝑁 variables (𝑝

𝑖
, 𝛼
𝑖
), ∀𝑖 ∈ Ω, in (9) is simplified to a

single variable𝑝
1
in (16). Any local optimal solution (denoted

by 𝑝
1
) to problem (16) satisfies

𝑑𝑈
𝑆
(𝑝
1
)

𝑑𝑝
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝1=𝑝1

=
𝜌

1 + 𝑝
1

− 𝜃
1
= 0. (17)

Then, the second-order derivative of problem (16) is

𝜕
2
𝑈
𝑆
(𝑝
1
)

𝜕𝑝2
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝1=𝑝1

=
−𝜌

(1 + 𝑝
1
)
2
< 0, (18)

which means that the local optimal solution to (16) is unique
and globally optimal.Thus,𝑝∗

1
= max((𝜌−𝜃

1
)/𝜃
1
, 0) and𝛼∗

1
=

max((𝜌 − 𝜃
1
)(𝜃
1
− 𝛽)/𝜃

1
, 0).

4. Optimal Contract Design under
Asymmetric Information

In this section, the optimal contract design under asymmetric
information scenario is presented. Assume that the types of
RNs are discrete and belong to a setΘ = {𝜃

1
, 𝜃
2
, . . . , 𝜃

𝑁
}. And,

due to the asymmetry of network information, we assume
the source has some statistical information about the RN’s
private type, for example, the total number of RNs 𝐾 and
the prior probability distribution 𝑞

𝑖
of type-𝜃

𝑖
RN. Obviously

𝑞
𝑖
∈ [0, 1] and ∑

𝑖∈Ω
𝑞
𝑖
= 1. A feasible contract should satisfy

both the IR constraint in (8) and the incentive compatibility
(IC) constraint defined as follows:

𝛼
𝑖
− 𝑉 (𝜃

𝑖
, 𝑝
𝑖
) ≥ 𝛼
𝑗
− 𝑉 (𝜃

𝑖
, 𝑝
𝑗
) , ∀𝑖, 𝑗 ∈ Ω. (19)

IC constraint ensures that each type-𝜃
𝑖
RN gets the maxi-

mum utility by choosing the contract item (𝑝
𝑖
, 𝛼
𝑖
) designed

for its type. In other words, based on the IC constraint,
the source attracts RNs to truthfully reveal their private
types.

Since the source knows the total number of RNs 𝐾, the
probability density function of the number of RNs𝑁

𝑖
can be

written as

𝑄 (𝑛
2
, . . . , 𝑛

𝑁
)

= Pr(𝑁
2
= 𝑛
2
, . . . , 𝑁

𝑁
= 𝑛
𝑁
, 𝑁
1
= 𝐾 −

𝑁

∑

𝑖=2

𝑛
𝑖
)

=
𝐾!

𝑛
2
! ⋅ ⋅ ⋅ 𝑛
𝑁
! (𝐾 − ∑

𝑁

𝑖=2
𝑛
𝑖
)!
𝑞
𝐾−∑
𝑁

𝑖=2
𝑛𝑖

1
𝑞
𝑛2

2
⋅ ⋅ ⋅ 𝑞
𝑛𝑁

𝑁
.

(20)

Then, the contract design optimization problem under
asymmetric information is to maximize the source’s expected
utility subject to the IC and IR constraints; that is,
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max
{{𝑝𝑖,𝛼𝑖}≥0}

𝐾

∑

𝑛𝑁=0

𝐾−𝑛𝑁

∑

𝑛𝑁−1=0

⋅ ⋅ ⋅

𝐾−∑
𝑁

𝑘=3
𝑛𝑘

∑

𝑛2=0

𝑄 (𝑛
2
, . . . , 𝑛

𝑁
) {𝜌 log[1 +

𝑁

∑

𝑖=2

𝑛
𝑖
𝑝
𝑖
+ (𝐾 −

𝑁

∑

𝑖=2

𝑛
𝑖
)𝑝
1
] − [

𝑁

∑

𝑖=2

𝑛
𝑖
𝛼
𝑖
+ (𝐾 −

𝑁

∑

𝑖=2

𝑛
𝑖
)𝛼
1
] − 𝛽[

𝑁

∑

𝑖=2

𝑛
𝑖
𝑝
𝑖
+ (𝐾 −

𝑁

∑

𝑖=2

𝑛
𝑖
)𝑝
1
]}

s.t. (IC:) 𝛼𝑖 − 𝑉 (𝜃𝑖, 𝑝𝑖) ≥ 𝛼𝑗 − 𝑉 (𝜃𝑖, 𝑝𝑗) , ∀𝑖, 𝑗 ∈ Ω

(IR:) 𝛼𝑖 − 𝑉 (𝜃𝑖, 𝑝𝑖) ≥ 0.

(21)

4.1. Feasibility Conditions forOptimal ContractDesign. In this
subsection, various feasibility conditions for optimal contract
design are presented. Let Φ = {𝑝

𝑖
, 𝛼
𝑖
, ∀𝑖 ∈ Ω} be a feasible

contract.

Proposition 3. For any 𝑘, 𝑗, one has 𝑝
𝑘
> 𝑝
𝑗
if and only if

𝛼
𝑘
> 𝛼
𝑗
.

Proof. First, we prove that if 𝑝
𝑘
> 𝑝
𝑗
, then 𝛼

𝑘
> 𝛼
𝑗
.

Due to the IC constraint in (19), we have

𝛼
𝑘
− 𝛼
𝑗
≥ 𝑉 (𝜃

𝑘
, 𝑝
𝑘
) − 𝑉 (𝜃

𝑘
, 𝑝
𝑗
) > 0. (22)

Thus, 𝛼
𝑘
> 𝛼
𝑗
.

Next, we prove that if 𝛼
𝑘
> 𝛼
𝑗
, then 𝑝

𝑘
> 𝑝
𝑗
.

Due to the IC constraint in (19), we have

𝛼
𝑗
− 𝑉 (𝜃

𝑗
, 𝑝
𝑗
) ≥ 𝛼
𝑘
− 𝑉 (𝜃

𝑗
, 𝑝
𝑘
) , (23)

which can be transformed to be

𝑉(𝜃
𝑗
, 𝑝
𝑘
) − 𝑉 (𝜃

𝑗
, 𝑝
𝑗
) ≥ 𝛼
𝑘
− 𝛼
𝑗
> 0. (24)

Since 𝑉(𝜃
𝑖
, 𝑝
𝑖
) is increasing in 𝑝

𝑖
, thus 𝑝

𝑘
> 𝑝
𝑗
.

Proposition 3 indicates that the RN offering more relay
power should be given with more reward by the source, and
vice versa.

Proposition 4. For any 𝑘, 𝑗, if 𝜃
𝑘
> 𝜃
𝑗
, then 𝑝

𝑘
< 𝑝
𝑗
.

Proof. This proposition can be proved by contradiction.
Suppose there exists 𝑝

𝑘
> 𝑝
𝑗
with 𝜃

𝑘
> 𝜃
𝑗
. Then, we have

𝑉 (𝜃
𝑘
, 𝑝
𝑘
) − 𝑉 (𝜃

𝑘
, 𝑝
𝑗
) = 𝜃
𝑘
(𝑝
𝑘
− 𝑝
𝑗
) ,

𝑉 (𝜃
𝑗
, 𝑝
𝑘
) − 𝑉 (𝜃

𝑗
, 𝑝
𝑗
) = 𝜃
𝑗
(𝑝
𝑘
− 𝑝
𝑗
) .

(25)

By subtracting the last two equalities, we can have

𝑉 (𝜃
𝑘
, 𝑝
𝑘
) − 𝑉 (𝜃

𝑘
, 𝑝
𝑗
) − 𝑉 (𝜃

𝑗
, 𝑝
𝑘
) + 𝑉 (𝜃

𝑗
, 𝑝
𝑗
)

= (𝜃
𝑘
− 𝜃
𝑗
) (𝑝
𝑘
− 𝑝
𝑗
) > 0.

(26)

Thus,

𝑉 (𝜃
𝑘
, 𝑝
𝑘
) + 𝑉 (𝜃

𝑗
, 𝑝
𝑗
) > 𝑉 (𝜃

𝑘
, 𝑝
𝑗
) + 𝑉 (𝜃

𝑗
, 𝑝
𝑘
) . (27)

Next, considering the IC constraints for both type-𝜃
𝑘
and

type-𝜃
𝑗
RNs, we have

𝛼
𝑘
− 𝑉 (𝜃

𝑘
, 𝑝
𝑘
) ≥ 𝛼
𝑗
− 𝑉 (𝜃

𝑘
, 𝑝
𝑗
) ,

𝛼
𝑗
− 𝑉 (𝜃

𝑗
, 𝑝
𝑗
) ≥ 𝛼
𝑘
− 𝑉 (𝜃

𝑗
, 𝑝
𝑘
) .

(28)

By combining the last two inequalities, we have

𝑉(𝜃
𝑘
, 𝑝
𝑗
) + 𝑉 (𝜃

𝑗
, 𝑝
𝑘
) ≥ 𝑉 (𝜃

𝑘
, 𝑝
𝑘
) + 𝑉 (𝜃

𝑗
, 𝑝
𝑗
) , (29)

which contradicts (27). This completes the proof.

This proposition indicates that, in a feasible contract, a
lower type RN should be given with more reward. Thus,
combining Propositions 3 and 4, we can conclude that, for
a feasible contract, all relay-reward contract items should
satisfy

0 ≤ 𝑝
𝑁
≤ 𝑝
𝑁−1

≤ ⋅ ⋅ ⋅ ≤ 𝑝
1

0 ≤ 𝛼
𝑁
≤ 𝛼
𝑁−1

≤ ⋅ ⋅ ⋅ ≤ 𝛼
1
,

(30)

with 𝛼
𝑘
= 𝛼
𝑘+1

if and only if 𝑝
𝑘
= 𝑝
𝑘+1

.
Based on the previous two propositions, we obtain the

following theorem, which is essential to the optimal contract
design under asymmetric information.

Theorem 5. For a contractΦ = {𝑝
𝑖
, 𝛼
𝑖
, ∀𝑖 ∈ Ω}, it is feasible if

and only if all the following conditions hold:

(a) 𝑓𝑜𝑟 1 ≤ 𝑖 < 𝑁, 𝛼
𝑖+1
+ 𝑉 (𝜃

𝑖
, 𝑝
𝑖
) − 𝑉 (𝜃

𝑖
, 𝑝
𝑖+1
) ≤ 𝛼
𝑖
≤ 𝛼
𝑖+1
+ 𝑉 (𝜃

𝑖+1
, 𝑝
𝑖
) − 𝑉 (𝜃

𝑖+1
, 𝑝
𝑖+1
)

(b) 𝛼𝑁 − 𝑉 (𝜃𝑁, 𝑝𝑁) ≥ 0

(c) 0 ≤ 𝑝𝑁 ≤ 𝑝𝑁−1 ≤ ⋅ ⋅ ⋅ ≤ 𝑝1

(d) 0 ≤ 𝛼𝑁 ≤ 𝛼𝑁−1 ≤ ⋅ ⋅ ⋅ ≤ 𝛼1.

(31)
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Proof. Please refer to Appendix A.

4.2. Optimal Contract Design. In this section, the optimal
contract design is investigated. The optimal problem with
complicated constraints in (21) is generally nonconvex, mak-
ing it difficult to efficiently solve for the global optimum [24].
In this paper, a sequential optimization approach is adopted.
Firstly, we derive the best reward allocations (𝛼∗

𝑖
(𝑝
𝑖
)) given

fixed feasible relay powers 𝑝
𝑖
; then, we can obtain the best

relay powers (𝛼∗
𝑖
) for the optimal contract; finally, we show

that there is no gap between the solution (𝛼∗
𝑖
, 𝑝
∗

𝑖
) obtained

from this sequential optimization approach and the one
obtained by directly solving (21).

Theorem 6. Let Φ = {(𝛼
𝑖
, 𝑝
𝑖
), ∀𝑖} be a feasible contract with

fixed relay powers {𝑝
𝑖
, ∀𝑖}. The optimal unique relay powers

satisfy

𝛼
∗

𝑖

=

{{{

{{{

{

𝑉(𝜃
𝑁
, 𝑝
𝑁
) , 𝑖 = 𝑁

𝑉 (𝜃
𝑁
, 𝑝
𝑁
) +

𝑁−1

∑

𝑘=𝑖

[𝑉 (𝜃
𝑘
, 𝑝
𝑘
) − 𝑉 (𝜃

𝑘
, 𝑝
𝑘+1
)] , 𝑖 ̸= 𝑁.

(32)

Proof. Please refer to Appendix B.

Based on Theorem 6, the optimal contract design prob-
lem in (21) can be simplified as

max
{𝑝𝑖≥0}

𝐾

∑

𝑛𝑁=0

𝐾−𝑛𝑁

∑

𝑛𝑁−1=0

⋅ ⋅ ⋅

𝐾−∑
𝑁

𝑘=3
𝑛𝑘

∑

𝑛2=0

𝑄 (𝑛
2
, . . . , 𝑛

𝑁
) {𝜌 log[1 +

𝑁

∑

𝑖=2

𝑛
𝑖
𝑝
𝑖
+ (𝐾 −

𝑁

∑

𝑖=2

𝑛
𝑖
)𝑝
1
] − [

𝑁

∑

𝑖=2

𝑛
𝑖
𝛼
∗

𝑖
(𝑝
𝑖
) + (𝐾 −

𝑁

∑

𝑖=2

𝑛
𝑖
)𝛼
∗

1
(𝑝
1
)] − 𝛽[

𝑁

∑

𝑖=2

𝑛
𝑖
𝑝
𝑖
+ (𝐾 −

𝑁

∑

𝑖=2

𝑛
𝑖
)𝑝
1
]}

s.t. 0 ≤ 𝛼
𝑁
≤ 𝛼
𝑁−1

≤ ⋅ ⋅ ⋅ ≤ 𝛼
1
.

(33)

Note that (33) is a nonconvex optimization problem,
making it difficult to solve efficiently.Here, a low computation
complexity sequential optimization algorithm is proposed to
obtain an approximate optimal solution. First, construct 𝑁
candidate contracts and then select the one with the largest
utility from 𝑁 candidate contracts as the optimal design
strategy. The sequential optimization algorithm is described
as follows.

Algorithm 7 (sequential optimization algorithm for contract
design under asymmetric information).

(i) Step 1: initiate 𝑁, 𝐾. Construct 𝑁 candidate con-
tracts.

(ii) Step 2: offer the same contract item 𝑝
𝑖
> 0 to RNs

with a type equal to or smaller than type 𝜃
𝑖
and zero

for the RNs above type 𝜃
𝑖
. That is, 𝑝

1
= 𝑝
2
= ⋅ ⋅ ⋅ = 𝑝

𝑖

and 𝑝
𝑖+1
= 𝑝
𝑖+2
= ⋅ ⋅ ⋅ = 𝑝

𝑁
= 0.

(iii) Step 3: obtain the optimal 𝑝
𝑖
to maximize the source’s

expected utility in (33) under the above constraints by
using the interior point method. The corresponding
optimal reward allocation 𝛼∗

𝑖
satisfies (32) as specified

in the contract.
(iv) Step 4: select the best contract out of 𝑁 candidate

contracts to maximize the source’s expected utility.

Compared with the exhaustive search algorithm, the
computational complexity of the proposed sequential opti-
mization algorithm is much lower, for the optimization of
each candidate contract only involves a scalar optimization.
Assume that the possible range of 𝑝

𝑖
is denoted by [0, 𝑃]

and all possibilities of any 𝑝
𝑖
are spaced equally by Δ on

the interval [0, 𝑃]. Then, in the case of the exhaustive search
algorithm, it requires searching over all the possible relay
power ranges for 𝑁 types jointly; thus, the computational
complexity is 𝑂(Δ𝑁). In the case of the proposed sequential

optimization algorithm, the complicated problem is decom-
posed into 𝑁 simple subproblems with one critical type in
each subproblem; thus, the overall computation complexity
can be reduced to 𝑂(Δ𝑁).

5. Results and Discussion

In this section, numerical results are presented to evaluate
the performance of the proposed contract-based cooperative
communication method in both symmetric and asymmetric
information scenarios.

5.1. Symmetric Information Scenario. The first evaluation
method is to analyse the performance of relay selection in the
symmetric information scenario.

In Figure 2, we plot the sources optimal utility 𝑈∗
𝑆

versus the equivalent profit 𝜌. The performance-based bonus
coefficient 𝛽 is chosen to be 0.1. As shown in Figure 2, the
source’s optimal utility is increasing in the equivalent profit 𝜌
and decreasing in the lowest RNs’ type 𝜃

1
. As 𝜌 increases, the

RNs have more incentives to provide relay communication
with the source, and the source obtainsmore utility fromRNs’
cooperative relay. As 𝜃

1
increases, the RNs of that type have

poorer relay channel condition, or the RNs of that type have
a higher relay cost for relay communication; thus, the source
obtains less utility by hiring the higher RNs’ type 𝜃

1
. When

𝜌 is smaller than 𝜃
1
, the relay power 𝑝

1
of RNs is reduced

to zero; thus, RNs chooses not to participate in cooperative
communication, which also makes the source’s utility close
to zero.

In Figure 3, the RNs optimal basic wage 𝛼∗
1
is plotted for

different values of 𝜃
1
and 𝜌 with 𝛽 = 0.1. The figure shows

that the RNs’ optimal basic wage of the lowest type 𝜃
1
, 𝛼∗
1
,

increases in the source’s equivalent profit 𝜌. As the equivalent
profit 𝜌 increases, the source obtains more utility from RNs’
cooperative relay; thus, the RN’s basic wage paid by the source
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Figure 3: RNs optimal basic wage 𝛼∗
1
at SR side as a function of the

lowest type 𝜃
1
and equivalent profit 𝜌 for fixed 𝛽 = 0.1.

increases. When 𝜃
1
≤ 𝛽, the performance-based bonus given

by the source is higher than the relay cost of the lowest type-
𝜃
1
RNs; thus, it is not necessary for the source to offer any

more basic wage to RNs for enough relay help. This explains
why the lowest curve has some zero points in certain 𝜃

1
cases.

As 𝜃
1
becomes large, the source willingly allocates reward to

obtain efficient relay help fromRNs.As 𝜃
1
becomes very large,

especially 𝜃
1
≥ 𝜌, the source only needs to allocate a little

amount of reward to RNs for enough relay help.This explains
why all the curves display first increasing and then decreasing
in 𝜃
1
.
Figure 4 shows the relationship between the RNs’ optimal

basic wage 𝛼∗
1
and the performance-based bonus coefficient
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Figure 4: RNs optimal basic wage 𝛼∗
1
at SR side as a function of the

lowest type 𝜃
1
and the performance-based bonus coefficient 𝛽 for

fixed 𝜌 = 1.5.

𝛽 with 𝜌 = 1.5. As 𝛽 becomes large, the source only needs
to allocate a little amount of reward to RNs for enough relay
help; thus, RNs’ optimal basic wage 𝛼∗

1
is strictly decreasing

in 𝛽. When 𝜃
1
≤ 𝛽, the performance-based bonus given by

the source is higher than the relay cost of the lowest type-𝜃
1

RNs; it is not necessary for the source to offer any more basic
wage to RNs for enough relay help; thus, there are some zero
points in certain 𝜃

1
cases.

5.2. Asymmetric Information Scenario. In the asymmetric
information scenarios, the performance of the proposed
sequential optimization algorithm is compared with that
of the 𝑁-dimensional exhaustive search method [25]. The
optimal solution is denoted by 𝐸[𝑈

𝑆
]
∗, and only two types

of RNs, 𝜃
1
< 𝜃
2
, are considered. And two candidate contracts

are considered in the sequential optimization algorithm.The
first candidate contract optimizes the same positive contract
item 𝑝

1
= 𝑝
2
> 0 with the corresponding source’s

maximum expected utility 𝐸[𝑈
𝑆
]
1. The second candidate

contract optimizes the positive contract item 𝑝
1
> 0 with

𝑝
2
= 0 and the corresponding source’s maximum expected

utility 𝐸[𝑈
𝑆
]
2. Then, the larger source’s expected utility of

the two candidate contracts is picked as the solution of the
sequential optimization algorithm.

Figure 5 shows the source’s expected utility obtained with
the two candidate contracts of the sequential optimization
algorithm (𝐸[𝑈

𝑆
]
1 and 𝐸[𝑈

𝑆
]
2) and the optimal exhaustive

search method (𝐸[𝑈
𝑆
]
∗). The parameters were set as follows:

𝑞
1
= 0.9, 𝐾 = 2, 𝛽 = 0.1, 𝜃

1
= 0.2, and 𝜃

2
= 0.5. It

is seen that the sources optimal utility with the candidate
contract 𝐸[𝑈

𝑆
]
1 is always lower than that of 𝐸[𝑈

𝑆
]
2. And

the candidate contract 𝐸[𝑈
𝑆
]
2 achieves an approaching-to-

optimal performance with all values of 𝜌 simulated here.This
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is because the source often needs the low type-𝜃
1
RNs relay

communication for itself.
Figures 6 and 7 show the optimal contract design with

various probabilities of the low type-𝜃
1
RNs 𝑞

1
. The param-

eters were set as follows: 𝐾 = 6, 𝛽 = 0.1, 𝜃
1
= 0.2, and

𝜃
2
= 0.5. Since the source always hires a low type-𝜃

1
RN

for cooperative communication, when 𝑞
1
is small, the source

has to offer much more basic wage to RNs for enough relay
help; thus, the source’s optimal expected utility is low. As 𝑞

1

increases, the proportion of the low type-𝜃
1
RNs is enhanced;

the source only needs to allocate a little amount of reward
to RNs; thus, the source’s optimal expected utility tends to
increase. Moreover, when 𝑞

1
is large, it is not necessary for

the source to offer any more basic wage to the type-𝜃
2
RNs
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Figure 7: RNs optimal basic wage 𝛼∗ versus the probability of the
low type-𝜃

1
𝑞
1
.

for relay communication; thus, the type-𝜃
2
RNs’ optimal basic

wage tends to zero.
Figure 8 shows the source’s optimal expected utility under

different number of RNs and different probability of the
low type-𝜃

1
𝑞
1
. The simulation parameters are provided

underneath the figure. The increased total number of RNs
𝐾 will tend to increase the number of RNs involved in relay
cooperation and result in higher source’s optimal expected
utility. Moreover, as 𝐾 increases, the growth rate of source’s
optimal expected utility reduces. Furthermore, increasing
𝑞
1
can enhance the proportion of the low type-𝜃

1
RNs;

therefore, better source’s optimal expected utility and faster
convergence rate are expected.

5.3. Symmetric Information and Asymmetric Information
Scenarios. Finally, the performance of asymmetric informa-
tion scenario is considered comparing with the symmetric
information benchmark. Cases 1, 2, and 3 correspond to
cooperative communication scenario of symmetric informa-
tion, asymmetric information with large 𝑞

1
, that is, 𝑞

1
= 0.9,

and asymmetric information with small 𝑞
1
, that is, 𝑞

1
= 0.5,

respectively. As shown in Figure 9, 𝐸[𝑈
𝑆
]
∗ under asymmetric

information scenarios are often lower than the maximum
utility achieved in symmetric information scenario due to
the asymmetric RNs’ information. And the maximum utility
achieved under the asymmetric information with large 𝑞

1

is larger than that with small 𝑞
1
. This is because the actual

source’s utility does always depend on the performance of the
low type-𝜃

1
RN.

6. Conclusion

In this paper, the cooperative communication between one
source and multiple RNs is studied. The CRN is modelled
as a labour market, where the source designs a contract
and each RN decides to select a contract item according
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to hidden information. Under symmetric information, the
optimal contract is feasible if and only if it is IR for each RN.
And, under asymmetric information, the optimal contract
design meeting both IC and IR conditions is systematically
characterized. The contract-theoretic model for ability dis-
crimination relay selection is formulated as an optimization
problem where the source’s expected utility is maximized
subject to the necessary and sufficient conditions of each
RN. A sequential optimization algorithm is proposed to
obtain the optimal relay-reward strategy. Simulation results
show that, due to the asymmetric information, the source’s
expected utility loss under asymmetric information is small

compared with symmetric information. And the proposed
contract-theoretic scheme can improve the system perfor-
mance of cooperative communication. The overall incentive
mechanism introduced in this paper is based on RNs’ self-
interest and fully rational hypotheses. As part of future
work, we will incorporate RNs’ behavioural and preference
characteristics, such as fairness, equity, and reciprocity, in
the framework of the standard contract design for the relay
incentive mechanism.

Appendices

A. Proof of Theorem 5

A.1. Proof of Necessary Conditions. Part (b) of (31) is the
same as the necessary IR constraint for the highest type 𝜃

𝑁

in a feasible contract, and parts (c) and (d) are the same
as necessary condition summarized in (30). Then, the left
inequality of part (a) can be derived from the necessary IC
constraint for type 𝜃

𝑖
in a feasible contract; that is,

𝛼
𝑖
− 𝑉 (𝜃

𝑖
, 𝑝
𝑖
) ≥ 𝛼
𝑖+1
− 𝑉 (𝜃

𝑖
, 𝑝
𝑖+1
) . (A.1)

Thus,

𝛼
𝑖+1
+ 𝑉 (𝜃

𝑖
, 𝑝
𝑖
) − 𝑉 (𝜃

𝑖
, 𝑝
𝑖+1
) ≤ 𝛼
𝑖
. (A.2)

And the right inequality of part (a) can similarly be
derived from the necessary IC constraint for type 𝜃

𝑖+1
.

A.2. Proof of Sufficient Conditions. Let Φ(𝑛) = {(𝛼
𝑖
, 𝑝
𝑖
), | 𝑖 =

𝑁− 𝑛 + 1, . . . , 𝑁} denote a subset with the last 𝑛 relay-reward
combinations.

First, we show that Φ(𝑁) is feasible. The contract is
feasible if it satisfies IR constraint in (8). This is true due to
part (b) in Theorem 5.

Secondly, we prove the IC constraint for type 𝜃
𝑖−1

. Since
contract Φ(𝑖) is feasible, the IC constraint for a type-𝜃

𝑖
RN

must hold:

𝛼
𝑖
− 𝑉 (𝜃

𝑖
, 𝑝
𝑖
) ≥ 𝛼
𝑘
− 𝑉 (𝜃

𝑖
, 𝑝
𝑘
) , 𝑘 = 𝑖, . . . , 𝑛. (A.3)

Also, the right inequality of (31) in part (a) can be
transformed to

𝛼
𝑖
+ 𝑉 (𝜃

𝑖−1
, 𝑝
𝑖−1
) − 𝑉 (𝜃

𝑖−1
, 𝑝
𝑖
) ≤ 𝛼
𝑖−1
. (A.4)

By combining the above two inequalities, we can have

𝛼
𝑘
− 𝑉 (𝜃

𝑖
, 𝑝
𝑘
) + 𝑉 (𝜃

𝑖−1
, 𝑝
𝑖−1
) − 𝑉 (𝜃

𝑖−1
, 𝑝
𝑖
)

≤ 𝛼
𝑖−1
− 𝑉 (𝜃

𝑖
, 𝑝
𝑖
) .

(A.5)

Notice that 𝜃
𝑖−1
< 𝜃
𝑖
and 𝑘 ≥ 𝑖; thus 𝑝

𝑖
≥ 𝑝
𝑘
. Then, we

have

𝑉 (𝜃
𝑖−1
, 𝑝
𝑖
) − 𝑉 (𝜃

𝑖−1
, 𝑝
𝑘
) ≤ 𝑉 (𝜃

𝑖
, 𝑝
𝑖
) − 𝑉 (𝜃

𝑖
, 𝑝
𝑘
) . (A.6)

By combining the above two inequalities, we have

𝛼
𝑘
− 𝑉 (𝜃

𝑖−1
, 𝑝
𝑘
) ≤ 𝛼
𝑖−1
− 𝑉 (𝜃

𝑖−1
, 𝑝
𝑖−1
) , (A.7)

which is actually the IC constraint for type 𝜃
𝑖−1

.
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Thirdly, we show the IR constraint for type 𝜃
𝑖−1

. Since
𝑉(𝜃
𝑖−1
, 𝑝
𝑖
) < 𝑉(𝜃

𝑖
, 𝑝
𝑖
) and 𝛼

𝑖
− 𝑉(𝜃

𝑖
, 𝑝
𝑖
) ≥ 0, then, we can

get

𝛼
𝑖
− 𝑉 (𝜃

𝑖−1
, 𝑝
𝑖
) > 𝛼
𝑖
− 𝑉 (𝜃

𝑖
, 𝑝
𝑖
) . (A.8)

Using (A.7), we also have

𝛼
𝑖−1
− 𝑉 (𝜃

𝑖−1
, 𝑝
𝑖−1
) ≥ 𝛼
𝑖
− 𝑉 (𝜃

𝑖−1
, 𝑝
𝑖
) . (A.9)

By combining the last two inequalities, we have

𝛼
𝑖−1
− 𝑉 (𝜃

𝑖−1
, 𝑝
𝑖−1
) ≥ 0, (A.10)

which is the IR constraint for type 𝜃
𝑖−1

.
Finally, we show that if contract Φ(𝑖) is feasible, then the

new contract Φ(𝑖 − 1) can be constructed by subtracting the
item (𝛼

𝑖
, 𝑝
𝑖
) and the new contract is also feasible.

Since contract Φ(𝑖) is feasible, the IC constraint for type
𝜃
𝑖
holds:

𝛼
𝑖
− 𝑉 (𝜃

𝑘
, 𝑝
𝑖
) ≤ 𝛼
𝑘
− 𝑉 (𝜃

𝑘
, 𝑝
𝑘
) , ∀𝑘 = 𝑖, . . . , 𝑁. (A.11)

Also, we can transform the right inequality of (31) in part
(a) to

𝛼
𝑖−1
≤ 𝛼
𝑖
+ 𝑉 (𝜃

𝑖
, 𝑝
𝑖−1
) − 𝑉 (𝜃

𝑖
, 𝑝
𝑖
) . (A.12)

By combining the above two inequalities, we conclude

𝛼
𝑖−1
− 𝑉 (𝜃

𝑘
, 𝑝
𝑖
) ≤ 𝛼
𝑘
− 𝑉 (𝜃

𝑘
, 𝑝
𝑘
) + 𝑉 (𝜃

𝑖
, 𝑝
𝑖−1
)

− 𝑉 (𝜃
𝑖
, 𝑝
𝑖
) .

(A.13)

Note that 𝑘 ≥ 𝑖; thus 𝜃
𝑘
≥ 𝜃
𝑖
and 𝑝

𝑖−1
≥ 𝑝
𝑖
. Then, we have

𝑉 (𝜃
𝑖
, 𝑝
𝑖−1
) − 𝑉 (𝜃

𝑖
, 𝑝
𝑖
) ≤ 𝑉 (𝜃

𝑘
, 𝑝
𝑖−1
) − 𝑉 (𝜃

𝑘
, 𝑝
𝑖
) . (A.14)

By combining the above two inequalities, we conclude

𝛼
𝑖−1
− 𝑉 (𝜃

𝑘
, 𝑝
𝑖−1
) ≤ 𝛼
𝑘
− 𝑉 (𝜃

𝑘
, 𝑝
𝑘
) ,

∀𝑘 = 𝑖, . . . , 𝑁,
(A.15)

which is actually the IC constraint for type 𝜃
𝑖
. This completes

the proof.

B. Proof of Theorem 6

First, the relay powers in (32) can be easily proved to satisfy
the sufficient conditions of contract feasibility in Theorem 5.
Then, we will prove the optimality and uniqueness of the
solutions in (32).

B.1. Proof of Optimality. First, we show that, given fixed relay
power, the reward allocation {𝛼∗

𝑖
} in (32) maximizes the PU’s

utility:

𝑈PU = 𝜌 log(1 + ∑
𝑖∈Ω

𝑁
𝑖
𝑝
𝑖
) − ∑

𝑖∈Ω

𝑁
𝑖
(𝛼
𝑖
+ 𝛽𝑝
𝑖
) . (B.1)

Here, the proof is by contradiction. Suppose there exists
another feasible reward allocation {𝛼

𝑖
, ∀𝑖} which achieves

a better solution than {𝛼∗
𝑖
, ∀𝑖} in (32). Since 𝑈PU(𝛼

∗

𝑖
) <

𝑈PU(𝛼𝑖), and𝑈PU is decreasing in total reward allocations, we
must have

∑

𝑖∈Ω

𝑁
𝑖
𝛼
𝑖
< ∑

𝑖∈Ω

𝑁
𝑖
𝛼
∗

𝑖
. (B.2)

Thus, there is at least one reward allocation 𝛼
𝑖
< 𝛼
∗

𝑖
for

one type 𝜃
𝑖
.

If 𝑖 = 𝑁, then 𝛼
𝑁
< 𝛼
∗

𝑁
. Since 𝛼∗

𝑁
= 𝑉(𝜃

𝑁
, 𝑝
𝑁
), then

𝛼
𝑁
< 𝑉(𝜃

𝑁
, 𝑝
𝑁
). But this violates the IR constraint for type

𝜃
𝑖
. Then, we must have 1 ≤ 𝑖 < 𝑁.
Since {𝛼

𝑖
, ∀𝑖} is feasible, then {𝛼

𝑖
, ∀𝑖} must satisfy the left

inequality of part (a) in Theorem 5. Thus, we have

𝛼
𝑖+1
+ 𝑉 (𝜃

𝑖
, 𝑝
𝑖
) − 𝑉 (𝜃

𝑖
, 𝑝
𝑖+1
) ≤ 𝛼
𝑖
. (B.3)

Also, from (32), we can have

𝛼
∗

𝑖
− 𝛼
∗

𝑖+1
= 𝑉 (𝜃

𝑖
, 𝑝
𝑖
) − 𝑉 (𝜃

𝑖
, 𝑝
𝑖+1
) . (B.4)

By substituting the above equality into (B.3), we get

𝛼
𝑖+1
+ 𝛼
∗

𝑖
− 𝛼
∗

𝑖+1
≤ 𝛼
𝑖
. (B.5)

Since 𝛼
𝑁
< 𝛼
∗

𝑁
, then we have 𝛼

𝑖+1
< 𝛼
∗

𝑖+1
. Using the above

argument repeatedly, we finally obtain that 𝛼
𝑁
< 𝛼
∗

𝑁
, which

violates the IR constraint for type 𝜃
𝑁
again.

B.2. Proof of Uniqueness. We next prove that the relay power
in (32) is the unique solution that maximizes (B.1). We also
prove this by contradiction. Suppose there exists another
{𝛼̃
𝑖
, ∀𝑖} ̸= {𝛼

∗

𝑖
, ∀𝑖} such that ∑

𝑖∈Ω
𝑁
𝑖
𝛼̃
𝑖
= ∑
𝑖∈Ω
𝑁
𝑖
𝛼
∗

𝑖
in (B.1).

Then, there is at least one reward allocation 𝛼̃
𝑘
> 𝛼
∗

𝑘
and

one reward allocation 𝛼̃
𝑙
< 𝛼
∗

𝑙
. We can focus on type 𝜃

𝑙

and 𝛼̃
𝑙
< 𝛼
∗

𝑙
. By using the same argument before, we have

𝛼̃
𝑁
< 𝛼
∗

𝑁
< 𝑉(𝜃

𝑁
, 𝑝
𝑁
). But this violates the IR constraint for

type 𝜃
𝑁
.
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[16] B. Salanié, The Economics of Contracts: A Primer, MIT Press,
2005.

[17] H. Gintis, Game Theory Evolving: A Problem-Centered Intro-
duction to Modeling Strategic Interaction, Princeton University
Press, Princeton, NJ, USA, 2009.

[18] L. Gao, J. Huang, Y.-J. Chen, and B. Shou, “An integrated
contract and auction design for secondary spectrum trading,”
IEEE Journal on Selected Areas in Communications, vol. 31, no.
3, pp. 581–592, 2013.

[19] S.-P. Sheng andM. Liu, “Profit incentive in trading nonexclusive
access on a secondary spectrum market through contract
design,” IEEE/ACM Transactions on Networking, vol. 22, no. 4,
pp. 1190–1203, 2014.

[20] G. S. Kasbekar, S. Sarkar, K. Kar, P. K. Muthuswamy, and A.
Gupta, “Dynamic contract trading in spectrum markets,” IEEE
Transactions on Automatic Control, vol. 59, no. 10, pp. 2856–
2862, 2014.

[21] J. N. Laneman and G. W. Wornell, “Distributed space-time-
coded protocols for exploiting cooperative diversity in wireless
networks,” IEEETransactions on InformationTheory, vol. 49, no.
10, pp. 2415–2425, 2003.

[22] R. Gibbons, “Incentives between firms (and within),” Manage-
ment Science, vol. 51, no. 1, pp. 2–17, 2005.

[23] D. Fudenberg and J. Tirole, Game Theory, The MIT Press,
Cambridge, Mass, USA, 1991.

[24] K. M. Bretthauer and B. Shetty, “The nonlinear knapsack
problem—algorithms and applications,” European Journal of
Operational Research, vol. 138, no. 3, pp. 459–472, 2002.

[25] A. Ruszczynski, Nonlinear Optimization, Princeton University
Press, 2006.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


