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The criteria for tolerant synchronization with a constant propagation delay and actuator faults are presented by using matrix analysis
techniques. A new algorithm, which constructs the extended error systems in order to make the conservation of the stability lower,
is proposed. Based on proper Lyapunov-Krasovskii functional, the novel delay-dependent fault tolerant synchronization analyses
are derived. Finally, numerical examples show the effectiveness of the proposed method.

1. Introduction

The realization of OGY (Ott-Grebogi-Yorker) chaos-control
method [1] and PC (Pecora and Carroll) synchronization
method [2] has been attracting researchers’ attention since
the 1990s. Chaos synchronization [3-13] is of great practical
significance and has aroused great interest in recent years.

They all focused on the design of synchronization under
normal operating conditions in the above works described.
But, in practical chaotic secure communication systems,
sensors, actuators, and inner components may inevitably
fail, which can lead to sharp performance decline of chaotic
secure. For the reason, fault tolerant synchronization and
control [14-20] of chaotic systems have been the hot topic of
intensive researches recently.

More recent works studied the fault tolerant synchro-
nization and control, but they were limited to construct
Lyapunov-Krasovskii functional

V) =Vie®)+V,(f0), (1)

which separates e(t) and f (t), where e(t) is the synchroniza-

tion error and f(t) is the error of fault function. Motivating
the limitation and the extended transformation [21, 22],

the effective new method, which does the extended transfor-
mation for the error system, to consider Lyapunov-Krasovskii
functional

vi=v((o./ o)), @

which do not separate e(t) and ]7 (t), for the chaotic fault
tolerant synchronization with a constant propagation delay
and actuator faults, makes the conservation descent. Finally,
numerical examples are given to verify the above method.

Notations. In this paper, R, R", and R™" denote, respectively,
the real number, the real n-vectors, and the real nxm matrices.
The superscript “T” stands for the transpose of a matrix. The
symbol X >Y (X >Y),where X and Y are symmetric matri-
ces, means that X-Y is positive definite (positive semidefi-

nite). I is the identity matrix of appropriate dimensions. “x
denotes the matrix entries implied by symmetry.

2. Preliminaries and Systems Description

Consider a chaotic master system with the actuator faults
item f(t) in the following form:

xt)=Ax{t)+g(x () +h(x(t-0))+Ef(t),
y () = Cx(t) + Df (1),

3)



where x(t) € R" is the measurable state vector. y(t) € RF is
the output vector, and A, C, D, and E are proper dimension
constant matrices. g(x(t)), h(x(t — 0)) are known continuous
nonlinear functions. 6 > 0 is the delay.

Assumption 1. There exist the matrices U,,U,, M, M,,
W, W,, V,,V, € R™", and the nonlinear functions g(-), and
h(-) satisfy

U, (g(x) - g () - Uy (x - »))"
(M, (g(x)-g(y)) - M, (x-y)) <0,
Wy (h(x) =R () - W, (x - )"

Vi (h(x) =h(y)) -V (x-y)) <0

forall x, y € R".
The slave system linked with the chaotic master system
(3) is described by

(4)

()

3;5(t):Af(t)+g(f(t))+h(ﬁ?(t—9))+Ef
-L(yt-1)-y(t-1)), (6)

y(t) = Cx(t) + Df (t),

where x(t) € R" is the measurable state vector and 7 > O is a
constant propagation delay.

Let e(t) = X(t) - x(1), f®) = ft) - f@t), and o(t) =
y(t) - y(t) = Ce(t) + Df(t), and then

é(t)=Ae(t)+g(xX(®)-gx(®)+h(x(t-0))
~h(x(t-0)+Ef(t) - LCe(t —T)

_ @)
~LDJ (t-1),

@ (t) = Ce(t) + Df (¢).

Lemma 2 (see [23, 24]). For any constant matrix W € R™",
W > 0, scalar 0 < h(t) < h, and vector function w(t) :
[0,h] — R" such that the integrations concerned are well
defined, and then

h(t) T h(t)
(J w(s)ds) W(J w(s)ds)
0 0

h(t)
<h(t) L w’ (s) Ww (s) ds.

(8)

Lemma 3 (see [25]). Let Q > 0, H, F(t), and E be real matri-
ces of appropriate dimensions, with F(t) satisfying FT (t)F(t) <
I. Then, the following inequalities are equivalent:

(1) Q + HF(t)E + ETFT(1)HT < 0;

(2) there exists a scalar ¢ > 0 such that Q + € '"HH' +
¢ETE < 0.

Lemma 4 (see [26-28]). Let A, L, E, and F(t) be real matrices
of appropriate dimensions, with F(t) satisfying FT (t)F(t) < I.
Then, one has the following:
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(1) for any scalar € > 0,

LFE+ETFILT < e 'LLT + ¢ETE; (9)

(2) for any matrix P > 0 and scalar € > 0, such that eI —
EFE" > 0,

(A + LFE)" P(A + LFE)
. (10)
< A"PA + ATPE (el -E"PE)  E'PA+eL'L.

3. Fault Tolerant Synchronization Analysis

3.1. Fault Tolerant Synchronization Analysis When f(t) and
f (t) Are Derivable on t. Let ]~‘(t) = -Ge(t) = -GCe(t) —
GD(t), and we have

é(t) =Ae(t) + g (X (1) — g (x (1) +h(x(t-0)
—h(x(t-0)+Ef(t) - LCe(t) + LCe (t)
~LCe(t—1) - LDf (t) + LD (t)

- LD')?(f - T) (11)
=(A-LC)e() +g(x(1) —g(x(1)

+h(£(t—0))—h(x(t—9))+(E—LD)f(t)

t

+LCJ

t—1

é(s)ds+ LD Jt j‘(s) ds.

t—1

Suppose #(t) = ( Je;((tt)) ), and then

(1) = (A- LC, E LD)(e(t)> #(0)
é(t)=(A-LC,E- - +g(x
Fo)"
g () + h(E(t-0)  h(x(t-0))
t é(s)ds

t—7

+aCLD)|
L ? (s)ds

=(A-LC,E-LD)n(t) + g (X (t))

t

~ g(x() + (LC, LD) j

t—1

7 (s) ds,

e(t)

() = (-GC,~GD) ( 3 ) = (-GC,~-GD) 5 (1),
7
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” (A—LC E—LD) o
1(t) = t
1 ¢ -6p )"

. (9 (X (1) -gx (t))>
0

(h(a?(t— 0)) - h(x (t —0)))
+
0

(LC LD)Jt - d
+ b
0o 0/

o p () q(t) t
n(t)—Bn(t)+( 0 )+< 0 )+RL_T17(s)ds,

where
A-LC E-LD
'\ -Gc -GD )’

p®)=g&x@)-gx(®),
q(t) =h(x(t-0))-h(x(t-0)),

o (LC LD) |
0 0
From the assumption, we have
(9 -9(») UM, (g(x) - g(»))

~ (9 -9 (») UM, (x - y)
~(x= ) UM, (90 - g(»))
+(x- ) UM, (x- y) <0.

So, we can get from assumption that

(p®) UM p (&) - (p (1) U Mye ()

— ()" UM, p(t) + (e ()" U Mye(t) <0,

v UM, o)(e(ﬂ)
(" 7 (t))( o o/\Fo

T
w0 o 1))

R,

UM, o

e(t)
oo ) (o)

. ~UM, Rs (p(t))
+(p" 0)( ) , )20

Rs Ry

in which the proper dimension matrices R, € R™",

1,2,...,7, are arbitrary.

That is,
nT(t)(_UZ(T)MZ g)n(t)

+nT<t><U2ToM 1 ﬁ)(P(()t))

+(1’ (t))T<U1TMz 0>rl(t)
0 R, R,

+<p(t))T ~U'M, Ry (p(t))>0
0 Rg RJ\ 0 ) 7

(12) ’1T(t)<%(51 +SIT)>11(t)
1 p()
+ﬂT(t)<§(SZ+S3T)>( 0 )
0N
w (7)) GlsrsD)ro
p@\' /1 p@®
+( . ) <E(S4+S4T))< . )20,
where
(€U M, 0
U0 o
(14) o _ (VM eR,
2 0 €R,
. - UM, 0
’ eR;  €R,
‘- —eUT M, &Rs
! Ry €R, ’
e>0
is any constant. Consider
(15)

(t)
7" (S + ) n@) + 1" () (S, +57) <p0 )

T
t
+ (p(() )) (83 + Sg)q(t)

P\ pt)
+( 0 ) (S4+S4T)( 0 )20,

E A ED 20,

i =
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where

t t T
Et) = (nT ® 7" ® (7@ 0) (7@ o) L i () ds J;_eﬁT(s)ds> ,

S;+ST 0o 0 S+t
x 0 0 0
A= * * S4+SZ 0
£k % 0
x % % *
% % %

Imitating the above inference, we obtain from inequality (5)
the following:

(A >0, (20)
where
YIAY, 0 0 YTAY, 0 Y[AY,
« 00 0 0 0
s « x« 0 0 0 0
A =
’ x = x YIAY, 0 YIAY,
* * ok * 0 0
* * % * * YZTAY2
d>0,
10 21
Yl:(o 0), (21)
(4 o)
2" \o o)
00
> \I Ry)’
A WV, -Vviw, WV, + VW,
) * WV -viw, )
We choose Lyapunov-Krasovskii functional
T 0 ! T
vo =r oPio+ [ [ i ©ei@dsar
-1 Jit+r
(22)

0 t
! J—B L+r };IT (S) ®’7 (S) dsdr.

0

0
(19)

0

0

0

SO O O O o o

*

Differentiating V'(¢) with respect to t, the following result is
yielded:

V (t) = 21" (t) Piy (t) + i7" (£) QA (£)

-| @i

= 21" (t) PBy (t) + 21" (£) P (P (()t))

t (23)
+2n" (t) PR L_ 7 (s)ds + i7" () QA (£)
- L_ " (s) QA (s)ds + 67" (t) O (1)
[ i wenwas
t—0
From Lemma 2, we have
V() <y (t)(PB+B"P)n(t)+2n ()P (‘D (()t))
T q(t) T Lo
+2n (1) P + 27 (t)PRJ n(s)ds
0 t—7
+1i’ () QA ()
1/ T £ (24)
(lLrwe) of[ o)
+ 67" (t) @7 (¢)

5 ([, o) o[ 10

= (TE() =0,
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where

PB+B'"P 0 P P PR 0

* 7Q 0 0 O 0

* * 0 0 0 0

1= * * % 0 0 0 (25)

x R o

! 1

* * ok ok —56

From model (12), we have

0=2(Q (1) +Qu 1)
.(—ﬁ(t)+Bn(t)+<p(§t)>+RJt ﬁ(s)ds) (26)

= (1) EE(),

where

=

QB+B'Q -Q +B'Q; Qf Q QRO

. - -Q Q Q QRO

* * 0 0 0 0 (27)
B * * * 0 0 0 .

* * R 0 0

% * % % * 0

From formulas (18), (20), (24), and (26), we get

V) <E () (A +A,+TT+E)E()
(28)

=& (1) QE (1),

where Q = A+ 11+ E.
Based on the above derivation, we have the following
result.

Theorem 5. The fault tolerant synchronization (3) and (6) is
achieved if there exist constants T > 0,0 > 0,8 > 0, and
& > 0, the positive definite matrices P = P* > 0,Q = Q" > 0,
and © > 0, and the matrices Q;, M;,U;, j = 1,2, L,C,D, R;,
i=1,2,...,8, such that the matrix ) < 0.

Remark 6. After the extended transformation e(t) — #(t),
system (7) is turned into system (12). Based on the Lyapunov
functional in [15-21], we take Lyapunov functional

T Ot p
Vt)=n (t)P11(t)+J_ L 1 (s)QA(s)dsdr

0t (29)
+ J J 1'1T (s) @7 (s)dsdr,
-0 Jt+r
and we get matrix Q. The conservation of stability of error

system (7) can be decreased by choosing the matrices R;, i =
1,2,...,8, and the constant ¢ > 0.

Corollary 7. When D = 0 in system (3), result similar to
Theorem 5 can be obtained.

When h(x(t — 0)) = 0, inequality (18) is transformed to

ol () Ao (t) =0, (30)
where
o(t)
T T T
. p () L
=<nT(t) nT(t>( (] awas) )
0 t—1
S, +S1 0 S+ 0
« 0 0 0
A= T
* * Sy+85, 0
* * * 0
UM, 0
1_< 2 > 31)
0 0
5 - eUIM, eR,
2 0 €R, ’
. _ UM, 0
’ eR; Ry ’
. _ ~eUTM, eRs
! eRs R, ’

is any constant. The proper dimension matrices R; € R™",
i=1,2,...,7, are arbitrary.
We choose Lyapunov functional

0 t
V(t)=nT(t)Pr;(t)+J JeﬁT(s)Qﬁ(s)dsde, (32)

-1 Jt

and differentiating V'(¢) with respect to t and using Lemma 2
yield

V(t)<ol ()T (1), (33)
where

PB+B'™P 0 P PR
* Q 0 0

I = . . 0 0 (34)
* * ok —lQ
T



From model (12), we have

0=2(Qn®+Qi®)"
. (—rl ) +By(t) + (p(()t)) +R Jt 7 (s) ds> (35)

=0l (t)Bo (1),

where
QB+B'Q -Q +B'Q; Qf QR
T T T
g - ¥ - Q& QR (36)
* * 0 0
3 * * 0

Based on the above derivation, we have the following result.

Corollary 8. The fault tolerant synchronization (3) and (5) is
achieved if there exist constants T,& > 0, the positive definite
matrices P = PT > 0,Q = QT > 0, and the matrices
Q»M;Uj, j = 1,2,QuM;U;, j = 1,2, L,C,D,R, i =
1,2,...,7, such that matrix Q < 0.

3.2. Fault Tolerant Synchronization Analysis When f(t) and
f(t) Are Derivable on x(t). Let df(t)/dx(t) = h(x(t)) =
H - F(x(t)) - N and df(t)/dx(t) = h(Z(t)) = H - F(X(t)) -
N, H,N be proper dimension matrices, with satisfying
FY(x(t))F(x(t)) < I, where H,N are proper dimension
matrices and I is identity matrix. Then,

e(t) =Ae() +g(x(t) - g(x () +h(x(t-0)
—h(x(t-0))+Ef (t) - LCe (t) + LCe (t)
—LCe(t-1) - LDf (t) + LDf (t)
~LDf(t-1)

=(A-LC)e(t) + g (x (1) - g (x (1))

t

é(s)ds

(37)

+(E—LD)f(t)+LCJ

t—1

t

. LDJ 7 (s)ds.

t—1

Suppose %(t) = ( ;7((?) ); we have

() = (A~ LC,E LD)(e(t)> #(0)
e(t) = - LC,E - _ +g(x(t
fo) Y

—gx®)+h(x(t-0))-h(x(-0)
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t

é(s)ds
t-T

+acoy|
L_ ]7 (s)ds

=(A-LC,E-LD)n(t) +g(x(t) — g (x (1)
+h®({-0))-h(x(t-0)

t

+ (LC,LD) J 7 (s)ds.

(38)
According to df(t)/dx(t) = h(x(t)) = H - F(x(t)) - N,
df(t)/dx(t) =h(x(t)) = H- F(x(t)) - N, we get

T = Jl B =) x () + A% (D) e () d)

0
- JIH-F((I—/\)x(t)+/\f(t))-N~e(t)dA,
0
-8f (1)
+8J1H-F((l—/\)x(t)+/\2(t))-N-e(t)d/\ (39)
0

=0,

<5J1 H-F((1-M)x () + A% (1)) - NdA,—(SI)q(t)
0

=0,

where § > 0. Consider
10\,
t
<0 0)’1()

A-LC E-LD
:<6J1H-F((1—/\)x(t)+)t5c‘(t))-Nd/\ oI >W)
(40)

0

(. ()

. p) q(t) t
Elﬂ(t)=Bi1(t)+< . >+< . >+Rqu(s)d5,

where

10
E, = :

00
B

A-LC E-LD
= 1 R (41)
5J H-F((1-A)x(6)+ A% (6)-NdA  —dI

0

p®)=g&x@)-gx (),

<LC LD>
R = .
0 0
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From the assumption, we have where

" (A =0, (42)

t t T
C(t)z(qT(t) &@ (50 0) (4@ o) I A" (s)ds j eéT(s)ds> ,
t—-1 t—
S+ 0o 0o S+S8T 00
* 0 0 0 00
£ % S48 0 00
A, = 4+ 9y )
* * * 0 00
* * * * 00
* * * * * 0
—eUIM, 0
Sl = >
0 0
S eU M, &R,
27\ 0 eR,
S UM, 0
’ eR;  €Ry ’
S ~eU[ M, &Rs
e &Ry  €R, '
e>0
is any constant. The proper dimension matrices R; € R™", Y. = o
i=1,2,...,7, are arbitrary '"\o o
v (—I 0
. > \o o
¢ (A (@) =0, (44)
0 0
Y, =
I R,
where A W]V, -viw, wlv,+v]w,
* -wv, - viw,
A,
YAy, 0 0 Y/AY; 0 Y/ Ay,
« 00 0 0 0 We choose Lyapunov function
* * 0 0 0 0
ol oy, 0 YAy ’
38153 384, T Ot )
. . . 0 0 Vit)=e (t)Ple(t)+J J é (s)Qé(s)dsdr
-7 Ji+r
* * % * * _WzTVZ_VzTWZ 0

t
T .
+ é (s)©®é(s)dsdr
6> 0, J—f) Jt+r ( ) ( )

(43)
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0 t
=" () PEln(t)+J J éT (5) Qé (s) ds do where
-7 Jt+6
. PB+B™PT 0 PP PR 0
+j J ¢ (s) @¢ (s) ds dr, s 1Q00 0 0
-0 Jt+r
IT= * * % 0 0 0 (49)
1
where P = (1;1 %), and it is easy to know that PE, = E] P". ¥ o _;Q 0
The derivation of V(¢) on t is " )
V() = ZTIT (t) PE, 7 (t) + 2T () Qé (£) From model (3), we have
t t T
—J T () Qé (s)ds + 06T (t) ®é (t) OZZ(Qle(t)+Q2é(t)+Q3j ﬁ(s)ds> <—e’(t)
t-T t-1
; +(A-LC,E~LD)n(t)+p(t) +q(t) (50)
—J ¢! (s) @é (s)ds t
’ + (LG, LD)j 7 (s) ds) =¢' (E (D),
t—T
P(t))
=2n" () PBn(t) + 21" (t) P
n (t) PBy (t) n () ( 0 (47) where
¢ By B, B3 B3 By 0
+2n" (t)PRJ 71(s)ds + e’ (£) Qé (t) S
t-1 # By Bpz Bpz By 0
. N By 0 By O
—J T (s) Qé (s)ds + 0¢” (t) ®é (t) * % % By 8y 0
t-1 % % % * By O
* % % x % 0

- Jt T (s) @é (s) ds.
-0

T T T
((3)1>(A—LC,E—LD)+ ((QOI>(A—LC,E—LD)> ,

Q’f T T
p= +(Q} (A-LC,E-LD)) ,
QT
E13:< 01>(I’R8)’ (51)

T
By = <%1 > (LC,LD) +(QL (A~ LC,E-LD))",

From Lemma 2, we have

[1]

(1)
V) < () (PB+B"P ) () +2q" ()P <P )
0

(t)
+2o" (t)P(q >+znT (t) PR Jt 71(s) ds
0 t-1

T .
+ e (t)Qe(t
) 8, = -Q; + QL (LC,LD)",
¢ T t (48) B3 =0,
1 (J e’ (s) ds) Q <J ¢’ (s) ds) L
T t—1 t-1 By = Q3 (I> R9) >
+06" (1) ©¢ (1) = QG D) (@ 0D
1((" r g r where the proper dimension matrices Ry € R™" is arbitrary.
- = <L_9 é (s) dS> C) (L_g é(s) ds) From formulas (42), (44), (48), and (50), we get

=¢" () Tg (1), Vi) <g @) (A+TT+E)¢(t) =¢" (HQct),  (52)
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where

Q, Q
Q=A+H+E=< ! 12),
*

0 S, +ST+8, +YIAY, + PB+B"PT B,
H * TQ+8y )

<P+513 S, +S +8;+P+Y AY; PR+E, YITAY2>
12 = >

=23 Ep B 0
S, +8T 0 g,, 0
o= YAY, By YTAY, |
* * -TQ+ B 0
: - * WV, -V W, (53)
PB+BTPT = <P1 (A-LC) P (E-LD)- 5P2) N (P1 (A-LC) P, (E-LD)- 8P2>T
0 ~8P, 0 _op,
1 . .,
P | F (025 +AR@)AAN 0 BH [ F(1-Dx(®)+ AR @0)dAN 0
0 0 +3 0
PH JOI F((1-A)x(t)+Ax(t))dAN 0 P,H Ll F((1-A)x(t) +AX(t))dAN 0

) F((l ) x () +AZ (1) dA (N 0)

T

F((l ~ M) x () + AZ () dA (N 0)] ,

whereZ:(Pl(A(;LC) PI(E7L€3)75P2). the matrices Q;, M;,U;, j = 1,2, Q,M;U;, j = L2

From Lemma 3, we obtain that S, +ST +&,, + PB+B"P” < LG, DR, i=1,2,...,9, such that matrix ¥ <0, where
0 is equivalent to

_ 211 QIZ
S +SI+E +Z+Z" £ Oy)
T pT T pT T = T
L els? P,HH" P, P,HH" P; 0,=8+S8 +E+Z+Z
* P,HH'P] (54)

T pT TpT
o g2 (RHH Py PHHPs (55)
* P,HH'P]

NN 0
+ & .
0 0

Theorem 9. The fault tolerant synchronization (3) and (6)  Remark 10. After extending system (37) to singular system
is achieved if there exist constants T,e > 0, 8 > 0, the  (40) by the transformation e(t) — #(t), taking proper
positive definite matrices P, = Pl > 0,Q = Q" > 0, and  matrices R;, i = 1,2,...,9, and the constant ¢ > 0 can

NN 0
+¢& < 0.
0 0

Based on the above derivation, we have the following result.
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decrease the conservation of stability of error system (37) by
constructing the Lyapunov functional

V(t)=e" (t)Pe(t) + JO jt ¢T (s)Qé (s)dsdr

-7 Jt+r

+ j_og L:r ér (s)®é(s)dsdr

o (56)
=;7T(t)pE1q(t)+j j ¢ (s) Qé (s) ds b
-7 Jt+6
0t
+J J éT(s)®é(s)dsdr.
-0 Jt+r
When h(x(t — 6)) = 0, inequality (26) is transformed to
W' (t) Aw () > 0, (57)
where
w (1)
T T T
t t
=<11T(t) el (1) (p()) (J é(s)ds> ) ,
0 t—T
S, +S 0 S,+S1 0
* 0 0 0
A= >
* * S4+S4T 0
* * * 0
~eUTM, 0
S, =< R G
0 0

e>0

is any constant. The proper dimension matrices R; € R™",
i=1,2,...,7, are arbitrary.
We choose Lyapunov function

V(t)=e () Pe(t)+ JO Jt e’ (s)Qeé (s)dsdo

-7 Jt+0

(59)
— 1T (t) PE; (D) + JO J (& (9Qe () dsdb,

-7 Ji+
where P = (};} 2 ), and it is easy to know that PE, = E| P,
and differentiating V'(¢) with respect to t and using Lemma 2
yield

V() <o ()T (), (60)
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where

* 7Q 0 0

= * * 0 0 (61)
* % % —lQ
T
From model (12), we have
‘ T
0=2 (Qle(t) +Qe(t) + Qs ‘L 7(s) ds) (—é ()

+(A-LC,E-LD)n(t)+ p(t) (62)

t

+ (LC, LD)J 7 (s) ds) =0l (t)Eo (1),
t—T
where
E11 EIZ E‘13 E‘14
i * Hy By By
* ok iy By
% % * B

'S
kS

T T T
B = (QO1>(ALC,ELD)+ <<Q01>(ALC,ELD)> ,

Q’f T T
v={ +(Q} (A-LC,E-LD)) ,

Ql
13 = LRg),
< 0 >( ) (63)

T
= <?)1 > (LC,LD) + (QF (A-LC,E-LD))",

[n

m

=

By =~ (Qz + Qf) >

By = QZ (I’ Rs) >

Ey = -Q; +Q) (LG, LD)",
B33 =0,

By = Qg (I’ Rs) >

B4 = Q1 (LC.LD) + (Q} (LC,LD))

where the proper dimension matrices Ry € R™" is arbitrary.

Based on the above derivation, we have the following
result.

Corollary 11. The fault tolerant synchronization (3) and (5)
is achieved if there exist constants T,e > 0, § > 0, the

positive definite matrices P, = PlT >0,Q=Q" >0, and
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FIGURE I: The state responses of x(t) and X(t) when f(t) and f (t) are derivable on t.

the matrices Qj,Mj,Uj, j = 12 Qj,Mj,Uj, j = 12
L,C,D,R;,i=1,2,...,8, such that matrix ® < 0, where

®:(®11 QIZ))
* 0 Qy
©,=8+S +8,+2+2"

TpT T pT
, g2 (PHH P BHH'P, (64)
* P,HH'P]

N'N 0
+ & .
0 0
4. Numerical Examples

Example 1. Consider a typical delayed Hopfield neural net-
works [29-32] with two neurons

A=-1,
(20 0.1\ (tanh(x, (1))
gx() = <—5_0 3.0 ) (tanh (x, (t)))’
_ {015 -0.1\ /tanh (x, (¢ - 6))
h(x(t-0))= (_0.2 _2,5> (tanh (%, (t - 9))>’
=001, (65)
0=1,

LC = LD = -381,
E =2],

X1
x(t) =< )
X

10 12

When f(t) and ]? (t) are derivable on t, we take

0,2sint)’, t>2,

0,07,
f@) =

- B 02 0
f(t)—(o 0)(

f®

0,07,
B (0.2sin (x, (1)), 0.45sin (x, (1)))", ¢ = 10.

0<t<2

xy (t) = x5 (t)
X, (t) — x4 ()

Simulation results are shown in Figure 1.
When f(t) and f(t) are derivable on x(¢), we take

Simulation results are shown in Figure 2.

Example 2. Consider chaotic Lii system [31, 32]; that is,

A=

g(x(1) =

=36 36 0
0 20 O

0

0

0

—X1X3

XX,

where x(t) = ( %z ) We choose

LC =

LD =

(=T ]

(=]

-38
-38
0
0
—-38
0

-3

>

)—2f(t).

0<t<10

>

1

(66)

(67)

(68)
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FIGURE 3: The state responses of x(t) and X(t) when f(t) and f (t) are derivable on t.

200 When f(t) and f (t) are derivable on t, we take
E=({020 |,
002
(0,0,0)T, 0<t<?2
7=0.01. ft) = (70)

(69) (0,2sint,0)", t>2,
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