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Both reliable detection of the primary signal in a noisy and fading environment and nullifying the effect of unauthorized users
are important tasks in cognitive radio networks. To address these issues, we consider a cooperative spectrum sensing approach
where each user is assigned nonuniform reliability based on the sensing performance. Users with poor channel or faulty sensor are
assigned low reliability.Thenonuniform reliabilities serve as identification tags and are used to isolate users withmalicious behavior.
We consider a link layer attack similar to the Byzantine attack, which falsifies the spectrum sensing data. Three different strategies
are presented in this paper to ignore unreliable and malicious users in the network. Considering only reliable users for global
decision improves sensing time and decreases collisions in the control channel. The fusion center uses the degree of reliability as a
weighting factor to determine the global decision in scheme I. Schemes II and III consider the unreliability of users, which makes
the computations even simpler. The proposed schemes reduce the number of sensing reports and increase the inference accuracy.
The advantages of our proposed schemes over conventional cooperative spectrum sensing and the Chair-Varshney optimum rule
are demonstrated through simulations.

1. Introduction

The increasing demand for wireless services has driven the
need for intelligent allocation and efficient use of the wire-
less spectrum. Conventional spectrum allocation results in
spatiotemporal underutilization and scarcity of the spectrum.
According to the Federal Communications Commission
(FCC), the spatial and temporal variations in the utilization
of the assigned spectrum range from 15% to 85% [1, 2].

Cognitive radio (CR) technology has been proposed to
combat the spectrum shortage problem by allowing the
opportunistic use of thewireless spectrum,which is primarily
allocated to primary (licensed) users (PU), by secondary
(unlicensed) users (SUs) under a given level of interference
to the PU [3, 4]. Such a scheme requires the SU to detect
the PU signal accurately and quickly [5]. Some of the various
techniques used for spectrum sensing are energy detection,
cyclostationary detection, matched filter detection, wavelet
detection, and covariance detection. Energy detection is the

method of choice due to its computational simplicity and
ease of implementation, as well as its minimal requirement
of prior knowledge of the primary signal. However, sensing
performance of a single SU is greatly affected by the destruc-
tive channel effects such as shadowing and fading, thereby
hindering the ability of the SU to distinguish between a deep
fade and white space. Cooperative spectrum sensing (CSS)
is used to overcome the channel effects and exploit location
diversity to detect even a weak primary signal [6].

The presence of a malicious user (MU) deteriorates the
detection performance of cooperative spectrum sensing. An
MU is an unwelcome and unauthorized user who imperson-
ates a legal user and propagates false information about the
status of the primary signal. Generally known types of MUs
include always busy (AB), always free (AF), always opposite
(AO), and an MU that transmits high signal with probability
𝛼 and low signal with probability 1−𝛼, and we name it 𝛼MU.
In AB and AF types, an MU always generates either a high
(𝐻
1
) or a low (𝐻

0
) signal, respectively, regardless of the actual
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status of the primary signal. In the case of AO, an MU always
generates a signal about the status of the PU that is opposite
of its local observation. The AO MU is considered to be the
most dangerous type, especially, when the decision is taken
opposite to the real status of PU (if global decision or real
status of the PU is known).

Cooperative sensing can improve the detection and false
alarm probabilities [7], however, a high number of cooper-
ative users, where majority of users have low SNR, may not
produce optimal performance [8] and may have a negative
impact on the complexity of the network, sensing time
(latency), control channel bandwidth, collision in the control
channel, and energy consumption.The number of SUs can be
controlled by assigning reliability to them according to their
sensing reports. Such reliability is based on correlation with
the global decision. Users may send a deviant result due to
either channel effects or malfunctioning of the sensors. The
consistently deviant users are excluded from participation in
the global decision, which leaves fewer but only reliable users
in the network. Three different schemes are proposed in this
paper to identify and remove consistently unreliable users
and MUs which results in a less complex network consisting
of fewer and more reliable nodes, which in turn reduces
the computational burden on the fusion center (FC) and
decreases the latency and overall energy consumption of the
network.

Cooperative spectrum sensing increases the sensing per-
formance of a CR network by using the location diversity
of SUs [7]. However, presence of even few MUs severely
degrades the performance of CSS. In [8], the authors have
shown that a certain number of users (not all the users) with
highest SNR achieve optimal sensing performance. However,
the authors do not consider malicious behavior of the SUs
and the decision of fusion center is solely based on high
SNR users even if they report false data. To nullify the effect
of MUs, reputation-based CSS with assistance from trusted
nodes has been considered [9]. In [10], a statistical model
of the PU was used in a soft reputation-based secure CSS
scheme. Such an approach utilizes assistance from trusted
nodes in the network. The assumption of trusted nodes is
not practical due to the unavailability of such nodes in most
cases. Furthermore, the significance of cooperative spectrum
sensing is reduced if trusted nodes are the primary source
for a result. In [11], an extended sequential CSS scheme
was used in which SUs were polled to send their sensing
result according to their reputation order. Uniform and fixed
reputation degrees were employed for CUs in [12], while
uniform reputation with no MU was used in [13]. In all of
the above-cited studies, uniform reliability was assigned to
users regardless of whether they produce good, normal, or
bad results. Furthermore, only two types ofMUs (AB andAF)
were considered. None of the studies has addressed 𝛼-based
MU and AO, the most dangerous types of MU.

In our previous work [14], the decision of disengagement
of an SU and an MU, of types AO and AB, is taken by
the FC based on reliability of the SU. In this paper, we
extend our work by proposing three different schemes to
deal with unreliable and malicious users. We also mitigate
the effect of the MU that transmits high and low PU status

PU

SU

SU

SU

SU

MU

FC

Figure 1: Cooperative users in a CR network.

based on probabilistic parameter 𝛼. In the first two schemes,
an identification tag (IT) is used to restrict MUs, while
reliabilities and unreliabilities are used to isolate unreliable
users. The IT represents the reliability value of each user.
It is calculated on the basis of correlation between the
result of each user and FC and is communicated to the
SUs in encrypted form. Unauthorized or malicious user
would be unable to decrypt the IT. In the third scheme,
the detection performance depends on honesty of the users.
Dishonest and MUs severely degrade the performance of
the network. Our proposed schemes are advantageous due
to their computational simplicity, which makes them more
practical and easy to implement. With a lower number of
users and an avoidance of complex algorithms, the proposed
approaches produce results that are comparable to (in terms
of detection performance) and better than (in terms of the
number of users) those obtained with the Chair-Varshney
scheme and better (in all aspects for certain types of MUs)
than those attained with the conventional CSS technique.

The remainder of this paper is organized as follows. The
system model is described in Section 2, and our proposed
schemes are presented in Section 3. Simulation results and
discussion are given in Section 4. Conclusion is presented in
Section 5.

2. System Model

We consider a network consisting of one PU and𝑁 SUs with
𝑀 (𝑀 ≤ 𝑁) reliable users and 𝐿 malicious users such that
0 ≤ 𝐿 ≪ 𝑀, shown in Figure 1. The remaining 𝑁 − 𝑀 − 𝐿

users are unreliable users. Initially𝑀 is equal to 𝑁 (if there
is no MU); however, with the training of the CR network,𝑀
gets smaller than 𝑁 due to disappearance of the unreliable
users but remains above a minimum threshold, 𝑁min. The
maximum number of MUs is 𝐿max. The number of reliable
users (users with a good channel) is assumed to be more than
the number of unreliable users (users with a poor channel)
and MUs. Each MU may adopt one of the malicious modes
described earlier. We consider an 𝑚-bit error-free common
control channel between the SU and FC.
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Detection of the primary signal is a binary hypothesis
testing problem. The signal received by the 𝑖th SU is given
as

𝐻
0
:𝑥
𝑖
(𝑛) = 𝑢 (𝑛) , 𝑖 = 1, 2, . . . , 𝑁,

𝐻
1
:𝑥
𝑖
(𝑛) = ℎ

𝑖
(𝑛) 𝑠 (𝑛) + 𝑢 (𝑛) , 𝑛 = 1, 2, . . . , 𝑆,

(1)

where 𝐻
0
and 𝐻

1
correspond to the hypotheses that the PU

signal is absent and present, respectively, 𝑠(𝑛) represents the
primary signal received at the SU, ℎ

𝑖
(𝑛) is the amplitude gain

of the channel, 𝑢(𝑛) is the additive white Gaussian noise
(AWGN)with zeromean and 𝜎2

𝑢
variance,𝑁 is the number of

SUs, and 𝑆 is the number of samples.We assume that 𝑠(𝑛) and
𝑢(𝑛) are completely independent. Without loss of generality,
the variance of noise is assumed to be the same at every
sensor.

Each SU uses 𝑆 samples in the sensing interval to perform
spectrum sensing using the energy detection technique [15].
The local observation of the 𝑖th user is given by

𝑦
𝑖
=

𝑆

∑

𝑛 = 1





𝑥
𝑖
(𝑛)





2

, (2)

where 𝑆 is the number of samples and is equal to 2𝑇𝑊, and
𝑇 and 𝑊 are the sensing time and bandwidth, respectively.
When 𝑆 is relatively large (e.g., 𝑆 > 200), 𝑌

𝑖
can be well

approximated as a Gaussian random variable under both
hypotheses 𝐻

0
and 𝐻

1
with means 𝜇

0
, 𝜇
1
and variances 𝜎2

0
,

𝜎
2

1
, respectively, as follows [16]:

𝐻
0
: 𝜇
0
= 𝑆𝜎
2

𝑢
, 𝜎

2

0
= 2𝑆𝜎

4

𝑢
,

𝐻
1
: 𝜇
1
= 𝑆 (𝛾

𝑖
+ 1) 𝜎

2

𝑢
, 𝜎

2

1
= 2𝑆 (2𝛾

𝑖
+ 1) 𝜎

4

𝑢
,

(3)

where 𝛾
𝑖
is the signal-to-noise ratio (SNR) of the primary

signal at the ith SU. In each time slot, the FC broadcasts
a request to all SUs to perform local sensing. After the
sensing period, each SU reports its observation to the FC
in the reporting period. The FC combines the received local
observations and makes a global decision. We assume that
the global decision taken by the FC is correct all of the time.
The FC also computes the reliability of each user based on the
compliance of an SU’s local observationwith the global result.
Finally, the global decision along with respective reliability in
the encrypted form as identification tag is communicated to
each user.

Authentication is an integral component of the security
protocols [17–19]. A three-stage security protocol consisting
of prevention, detection, and cure is proposed in [17]. The
prevention stage includes authentication and authorization;
the participating users and their data will be authenticated
in the authentication stage while recognition of the users is
performed in the authorization stage. In [18], the authors pro-
posed remote based smart card authentication scheme where
an additional security stage called registration is introduced,
in which details of users along with specific details given by
the server are stored. In [19], a lightweight authentication
scheme is used to guarantee security and privacy in global
mobility networks. In [20], basic and extended features are

used to detectmalicious activity by applying adaptive support
vectormachines. In [21], a cryptographic technique like blind
signature and electronic coin is used to achieve mobility,
reliability, anonymity, and flexibility in a mobile wireless
network. In this paper, we use an encrypted identification
tag for the authentication of users and reliability test for the
detection of unreliable andmalicious users.The identification
tag is assigned to users based on their reported observations.

3. Secure Reliability-Based CSS

In conventional CSS, each SU performs local sensing and
forwards either its quantized local observation 𝑦

𝑖
((2) in the

case of a soft decision) or local decision𝐻
1
or𝐻
0
((4) in the

case of a hard decision) to the FC through a dedicated control
channel. Here,

𝑦
𝑖

𝐻
1

>

<

𝐻
0

𝜆
𝑖
, 𝑖 = 1, 2, . . . , 𝑁, (4)

where 𝜆
𝑖
is the local energy threshold at the 𝑖th SU. The

detection performance of the CR network is measured by
the probability of detection 𝑃

𝑑
which is a measure of the

interference to the PU and the probability of false alarm 𝑃
𝐹

which sets the upper bound on spectrumutilization. A higher
value of 𝑃

𝑑
will protect the quality of service (QoS) of the

PU, and a lower value of 𝑃
𝑓
will result in higher spectrum

utilization. The detection and false alarm probabilities of the
𝑖th user are given, respectively, as

𝑃
𝑑,𝑖
= 𝑃 (𝑦

𝑖
> 𝜆
𝑖
| 𝐻
1
) = 𝑄(

𝜆
𝑖
− 𝑆 (𝛾

𝑖
+ 1) 𝜎

2

𝑢

𝜎
2

𝑢
√2𝑆 (2𝛾

𝑖
+ 1)

) ,

𝑃
𝑓,𝑖
= 𝑃 (𝑦

𝑖
> 𝜆
𝑖
| 𝐻
0
) = 𝑄(

𝜆
𝑖
− 𝑆𝜎
2

𝑢

𝜎
2

𝑢
√2𝑆

) ,

(5)

where 𝑄(⋅) is a monotonically decreasing function defined
as 𝑄(𝑥) = (1/√2𝜋) ∫

∞

𝑥
exp(−𝑡2/2)𝑑𝑡. Sensing results from

several SUs are combined at the FC as weighted sum and
given as

𝑍 =

𝑀

∑

𝑖 = 1

𝑤
𝑖

𝑘−1
× 𝑦
𝑖
, (6)

where𝑤𝑖
𝑘−1

is the weighting coefficient or reliability of the 𝑖th
SU in the previous slot which is computed in Section 3.1.1; it is
used to highlight or suppress the result of a certain SU based
on detection performance. Finally, the status of the primary
signal is determined as

𝑍 < 𝜆, 𝐻
0
,

𝑍 ≥ 𝜆, 𝐻
1
,

(7)
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Figure 2: Reliability queue at the fusion center.

where 𝜆 is the global threshold.The global detection and false
alarm probabilities are expressed as

𝑃
𝐷
= 𝑃 (𝑍 > 𝜆 | 𝐻

1
) = 𝑄(

𝜆 − 𝑆∑
𝑀

𝑖= 1
𝑤
𝑖
(𝛾
𝑖
+ 1) 𝜎

2

𝑢

√2𝑆∑
𝑀

𝑖= 1
𝑤
2

𝑖
(2𝛾
𝑖
+ 1) 𝜎

4

𝑢

),

𝑃
𝐹
= 𝑃 (𝑍 > 𝜆 | 𝐻

0
) = 𝑄(

𝜆 − 𝑆∑
𝑀

𝑖= 1
𝑤
𝑖
𝜎
2

𝑢

√2𝑆∑
𝑀

𝑖= 1
𝑤
2

𝑖
𝜎
4

𝑢

),

(8)

respectively.

3.1. Our Proposed Schemes. It is assumed that FC maintains
𝑀 queues which are collectively called the reliability queue
and is represented by 𝑄, as shown in Figure 2. The size
of each queue is 𝐾 which denotes the previous history of
reliabilitymaintained for each of the reliable SUs.The value of
𝐾 reflects a trade-off between the sensing accuracy and speed.
FC receives sensing results from all SUs with equal initial
reliability which is updated based on the distance between
the local sensing result and the global decision in scheme I.
The SU that produces more congruent result with respect to
the global decision is assigned a higher reliability and vice
versa. In contrast, schemes II and III use unreliability, instead
of reliability, to evaluate an SU for participation in the global
decision. AnMU is detected and isolated from the network in
schemes I and II because FC takes the decision by a two-tier
checking process. However, the decision of disengagement
from the network is taken by SUs (not FC) themselves and
thus, an MU cannot be detected in scheme III. In this case,
the fusion center relies upon the rectitude of the SUs.

3.1.1. Proposed Scheme I. Rather than using complex calcu-
lations to compute the reliability of SUs, a simple method is
proposed in this study. Each SU performs local sensing in the
sensing period and forwards its observation to the FC in the
reporting period. FC accepts the receiving data from the SUs
with equal initial reliability and takes a global decision using

data fusion (soft decision) technique. The initial reliability
(weight) can be assigned to each SU as discussed in [10] but
for simplicity, in this work, we assign equal initial reliability
to the SUs thatmakes the initial weighting coefficient equal in
(6) for each SU’s report. The channel condition between PU
and SU is then quantified into reliability which is measured
on the basis of how much the SU supports or deviates from
the global result. Based on the reliabilities in the previous slot
and reports from the users in the current slot, FC takes the
global decision. In (6) weights of all the SUs are taken into
account for the global decision. However, to calculate/update
weight of the 𝑖th SU, local observations of all SUs except the
𝑖th SU should be considered in order to minimize bias of the
𝑖th SU in weights assignment [22]. In [22, 23] the authors
update the weight coefficients using the Chair-Varshney
technique. However, in practical scenarios the detection and
false alarm probabilities are not known a priori. Further, they
do not handle the malicious users. In this work, we propose
the update of weights based on the reported observations of
the SUs. The global decision, excluding the 𝑖th SU, can be
computed as below:

𝑍
𝑖
=

𝑀

∑

𝑗 = 1

𝑤
𝑗

𝑘−1
𝑦
𝑗
− 𝑤
𝑖

𝑘−1
𝑦
𝑖
=

𝑀

∑

𝑗 = 1,𝑗 ̸= 𝑖

𝑤
𝑗

𝑘−1
𝑦
𝑗
. (9)

The set of all energies reported by the SUs is represented by 𝑌
as

𝑌 = {𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑀
} . (10)

To update weight of the 𝑖th SU,𝑀−1 users are considered by
excluding the 𝑖th SU as follows:

𝑌
𝑜

𝑖
⊂ 𝑌 = {𝑦

𝑙
: 𝑙 = 1, 2, . . . ,𝑀, 𝑙 ̸= 𝑖} , (11)

where 𝑌𝑜
𝑖
is the set of energies of all SUs except the 𝑖th SU.

𝑌
𝑜

𝑖
is sorted into the ordered set 𝑌

𝐽
(ascending or descending

order depending on the global decision𝐻
1
or𝐻
0
, resp., based

on weights of the SUs in the previous slot) as follows:

𝑌
𝐽
= {

𝑌
(1)
< 𝑌
(2)
< ⋅ ⋅ ⋅ < 𝑌

(𝑀−1)
, 𝐻

1

𝑌
(𝑀−1)

< 𝑌
(𝑀−1)

< ⋅ ⋅ ⋅ < 𝑌
(1)
, 𝐻
0
,

(12)

where, in case of 𝐻
1
, 𝑌
(1)

and 𝑌
(𝑀−1)

are the min(𝑌𝑜
𝑖
) and

max(𝑌𝑜
𝑖
), respectively, whereas, in case of𝐻

0
, 𝑌
(1)

and 𝑌
(𝑀−1)

are the max(𝑌𝑜
𝑖
) and min(𝑌𝑜

𝑖
), respectively. In addition to

minimizing effect of the SUs with either a faulty sensor or a
continuous weak channel due to deep fading, the ascending
order suppresses the effect of AF and AO types of MUs,
whereas the descending order suppresses the effect of AB
and AO types of MUs by assigning low reliability to them.
The𝑀− 1 SUs in set 𝑌𝑜

𝑖
are assigned normalized reliabilities

according to the following two equations:

𝑟
𝑜

𝑖𝑙
= arg
𝐽∈(𝑀−1)

(𝑌
(𝐽)
= 𝑦
𝑙
| 𝑦
𝑙
∈ 𝑌
𝑜

𝑖
, 𝑙 ̸= 𝑖) ,

𝑅
𝑙𝑖
=

{

{

{

𝑟
𝑜

𝑖𝑙
× 2

𝑀 (𝑀 − 1)

, 𝑙 ̸= 𝑖

0, 𝑙 = 𝑖.

(13)
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𝑅
𝑙𝑖
is an 𝑀 × 𝑀 matrix where the diagonal elements are

zeros showing exclusion of the 𝑖th SU in the assignment of
weights. Each row of the matrix shows the reliability given to
𝑖th SU when the other SUs are excluded one at a time. Finally,
normalized weight of the 𝑖th SU is computed by adding
elements of the 𝑖th row of the matrix (all weights assigned
to the 𝑖th SU by others except himself, i.e., numerator in (14))
and divided by the summation of all rows (denominator in
(14)), as given by the following equation:

𝑤
𝑖
= 𝑅
𝑖
=

∑
𝑀

𝑙= 1,𝑙 ̸= 𝑖
𝑅
𝑖𝑙

∑
𝑀

𝑛=1
∑
𝑀

𝑙= 1,𝑙 ̸= 𝑛
𝑅
𝑛𝑙

. (14)

The reliability of a user is stored in the database (reliability
queue) at the FC and is also communicated to the user in
the encrypted form as its identification tag (IT) for future use
along with the global decision:

𝑄 (𝑖, 𝑘) = 𝑅
𝑖
,

IT𝑖
𝑘
= 𝑅
𝑖
,

(15)

where 𝑄(𝑖, 𝑘) shows the 𝑘th slot of the 𝑖th queue and IT𝑖
𝑘
is

the IT assigned to the ith user in the current slot. We assume
that only legal SUs know the decryption key, which is updated
and exchanged periodically between FC and legal SUs, which
enables them to successfully decrypt the IT. In the next time
slot, each SU transmits its local sensing result along with the
previously decrypted reliability (IT). The FC first applies the
MU screening test by checking the SU’s reported IT with the
reliability stored in the corresponding slot for the user in its
own database 𝑄(𝑖, 𝑘 − 1). If a mismatch is found, the FC will
declare the user as anMU. Further, the current input (sensing
result) from that SU is discarded, and no future reports will
be accepted from him:

SU
𝑖
= MU, if IT𝑖

𝑘−1
̸= 𝑄 (𝑖, 𝑘 − 1) , (16)

where IT𝑖
𝑘−1

is the IT reported by the 𝑖th user.
If anMU is smart enough to deceive the FCby clearing the

MU screening test, which is possible only if theMU produces
exactly the same reliability as is assigned to a legal user in
the previous slot, then the FC performs a reliability test to
detect MUs and consistently unreliable SUs. The reliability
test is comparatively slower because data from the past few
slots must be gathered in order to identify the behavior
and evaluate the credibility of the user. The purpose of the
reliability test is to detect consistently unreliable sensors so
that their results can be ignored. In going against the global
decision, an MU will also be among the most consistent
producers of unreliable results and will thus be stopped after
a few slots.

The consistently unreliable SUs are identified by finding
the cumulative reliability which is computed by adding the
previously stored𝐾 slots reliabilities as

𝑅
cum
𝑖

=

𝐾

∑

𝑗 = 1

𝑅
𝑗
, (17)

where 𝑗is the index for slots. The SUs with a cumulative
reliability smaller than a predetermined reliability threshold,
𝜆
𝑅
, are discarded:

𝑟
𝑖
= {

1, 𝑅
cum
𝑖

< 𝜆
𝑅

0, 𝑅
cum
𝑖

≥ 𝜆
𝑅
,

(18)

𝑟 =

𝑁

∑

𝑖

𝑟
𝑖
, (19)

where 𝑟 is the number of users that have unacceptable
reliabilities that includes both unreliable andmalicious users.
Finally, only the remaining users,𝑀 = 𝑁 − 𝑟, are considered
by the fusion center when making a global decision. The
final decision is dependent upon the global threshold and
weighting coefficients (reliabilities).

3.1.2. Proposed Scheme II. In this scheme, computations are
further simplified. Instead of computing the reliability for
each user based on previous results, reliability (renewed in
every time slot) is randomly assigned to each user by the FC.
The random reliability (RR) is used as IT for the SU and is
also stored in the database of the FC for future decisions as

IT𝑖
𝑘
= 𝑄 (𝑖, 𝑘) = RR

𝑖
, (20)

where RR
𝑖
is the random reliability assigned to the 𝑖th SU and

is stored at 𝑄(𝑖, 𝑘). The global decision and the respective IT
values are communicated to the SUs at the end of each time
slot.

Since soft fusion rule is used for global decision in this
scheme, therefore, all SUs report their current local observa-
tions along with the previously assigned IT (in the decrypted
form) to the fusion center, where they are combined with
equal weights and a global decision is made about the status
of the primary signal. If the IT sent by an SU does not match
with the recently (previous slot) stored IT in the reliability
queue at the FC, that SU is deemed to be malicious. On the
other hand, if a match is found, then the unreliability of the
SU is computed. If the local observation does not match with
the global decision, the reliability of that particular SU is
decreased. In other words, the unreliability, 𝑈

𝑖
, of that SU is

increased:

𝑈
𝑖
= 𝑈
𝑖
+ (𝑍 ⊕ 𝑦

𝑖
) , (21)

where𝑍 and𝑌
𝑖
are the 1-bit global and local decisions, respec-

tively, and ⊕ is the exclusive-OR operation that produces 1
when local and global decisions are different and produces 0
otherwise. For computation of the unreliability, 1-bit global
and local decisions are considered by the FC, whereas soft
fusion rule is used for the global decision. The 1-bit local
decision of each user is computed by the fusion center based
on the reported observation of the respective user.We assume
the same threshold for all SUs to get the 1-bit local decision at
the FC.

If the MU screening test fails (i.e., MU produces exactly
the same IT as that stored in the queue), then the MU is
detected by the reliability test because MU produces a result
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that frequently deviates from the actual status of the primary
signal (global decision). Every time theMU reports a deviant
result, its unreliability will increase which occurs more fre-
quently than a user in fading or shadowing. An SU (it may be
an MU or a normal SU producing consistently wrong results
due to the channel condition or sensor malfunctioning) is
stopped from sending reports to the FCwhen its unreliability
reaches a predefined threshold. Only the remaining users that
are reliable in terms of generating accurate results contribute
to determining the PU status. The dropped SU, represented
by SU

𝐷
, is not involved in future global decisions and is

determined by the following equation:

SU
𝐷
= arg max

𝑖=1,2,...,𝑀

(𝑈
𝑖
) if 𝑈thr ≤ max

𝑖=1,2,...,𝑀

(𝑈
𝑖
) . (22)

In this scheme, the decision of dropping an unreliable SU
and MU is taken by the FC.

3.1.3. Proposed Scheme III. The unreliability in this scheme
is computed by every SU individually by comparing the
local and global decision. To be consistent with the previous
schemes we use soft decision approach in this scheme.
However, hard decision rule will be more befitting for this
scenario. Three types of users are considered here: honest,
dishonest, and malicious. Honest users are those who stop
reporting when their unreliability exceeds a certain value.
In the case of honest users, with time, only reliable users
that are less than the total number of users contribute to
the detection of the primary signal. Dishonest users continue
reporting their untrusted observations even if their unrelia-
bility exceeds the threshold. Users with malicious behavior
continuously send false data irrespective of the real status of
the primary signal and thus severely degrade the detection
performance of the network. Dishonest andMUs try to falsify
results so as to suit their own selfish interests. As the decision
of disengagement from the network is taken at the user level,
this approach has no solution for dealing with MUs. Only
consistently unreliable users (those with malfunctioning
sensor or in deep fades) are restricted. The FC relies on the
honesty of SUs and accepts reports from all users. In an
environment composed entirely of honest users, consistently
unreliable users disengage themselves from reporting when
their unreliability reaches a certain limit.

In this approach, each SU performs local sensing, sends
its observation to the FC, and waits for the global decision.
If the received global decision is different from the local
decision, the SU increments its unreliability according to (18).
An SU remains in the network as long as its unreliability
does not exceed a certain threshold similar to (19). In contrast
to schemes I and II, no IT or other reliability calculations
are used in scheme III, which makes the approach simple
and fast. At any given time, there will be 𝑀 reliable nodes
in the CR network. In the case of all honest users, 𝑀 is
normally smaller than 𝑁 because unreliable SUs leave the
network, thereby keeping the calculations simple and the CR
network manageable. If both malicious and honest users are
present, the number of users will be less than 𝑁 but greater
than 𝑀. In the case of all dishonest users, the number of
users remains fixed and is equal to the total number of users,

Table 1: System parameters.

Description Symbol Value
Number of iterations 𝑙 5000
Number of SUs 𝑁 15
PU busy probability 𝑝

𝐻1
0.5

Sensing duration 𝑇
𝑠

1ms
Sampling frequency 𝑓

𝑠
300KHz

Number of samples 𝑆 600

Signal-to-noise ratio 𝛾

[−25 dB, −10 dB] with 1 dB
decrement

Maximum number of MUs 𝐿max 3
Minimum number of
reliable SUs 𝑀min 5

Size of queue 𝑄 15 × 50
Depth of each user queue
(each row in 𝑄) 𝐾 50

Unreliability threshold 𝑈thr 10
Probability of H1
transmission by 𝛼MU 𝛼 [0.2, 0.5, 0.8]

𝑁. Computational simplicity is the main advantage of this
strategy; however its disadvantages include lack of control
over the MU and unreliable users, as the decision is taken at
the SU and results in an increased number of users when they
are dishonest.

4. Simulation Results

In this section, we use simulations to compare our pro-
posed strategies with the Chair-Varshney and conventional
cooperative spectrum sensing schemes; schemes I and II are
considered. In scheme III, the effect of dishonest and MUs
is compared with that of honest users. The effects of always
opposite MU, always busy MU, always free MU, and 𝛼MU
with 𝛼𝐻

1
and (1 −𝛼)𝐻

0
are illustrated in the simulations. We

evaluate the detection performance of our proposed schemes
by plotting receiver operating characteristics (ROC) curve.
The simulation parameters are summarized in Table 1.

4.1. Results of Proposed Scheme I. Figure 3 shows the detec-
tion performance of our proposed scheme I, Chair-Varshney
(CV) rule, and conventional CSS scheme under the effect
of zero, one, and two MUs of the AO type. It is clear
from the figure that as the number of AO MUs increases,
detection performance of all schemes decreases. By observing
the figure it is evident that the detection performance of
the Chair-Varshney rule drops quickly when the number
of MUs increases to two. Chair-Varshney is the optimum
rule but the detection performance of our proposed scheme
matches the CV rule for two MUs. Conventional CSS is most
severely affected by the AO MUs. When there is no MU, our
proposed and conventional CSS schemes both show almost
similar results, but our proposed scheme has the advantage of
utilizing a smaller number of users. By introducingmalicious
users (i.e., one or two MUs), our proposed scheme exhibits
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Figure 3: Performance comparison of the Chair-Varshney, conven-
tional CSS, and proposed scheme I with always opposite (AO)MUs.

more robustness and efficiency compared to the conventional
CSS. It is also evident from the figure that Chair-Varshney is
the optimal detection scheme and provides an upper bound
for the other schemes when there is no MU. However, it
has a disadvantage in that all users, including consistently
unreliable andmalicious users, are considered. Our proposed
scheme has the advantage of using fewer users for the global
decision which is shown in Figure 9.

Figure 4 shows the detection performance of the pro-
posed scheme I when there is one AB, AF, or 𝛼MU. 𝛼MU is
an MU that transmits high signal (𝐻

1
), that is, behaving like

AB, with probability 𝛼, and low signal (𝐻
0
), that is, behaving

like AF, with probability 1−𝛼. To differentiate the effect of AB
and AF, 𝑃(𝐻

1
) is set to 0.7 and 𝑃(𝐻

0
) is set to 0.3 such that

AF could produce more deviating results compared to AB
MU.The detection performance curve of𝛼MU is sandwiched
between that of AF and AB MU types for 0 < 𝛼 < 1. On
one extreme, such MU behaves like AF when 𝛼 = 0 and
on the other extreme it behaves like AB when 𝛼 = 1. The
effect of such MU is shown in Figure 4 for 𝛼 = 0.5, 0.8, and
0.2, respectively. The performance curve of 𝛼MU lies in the
middle of AF and ABMUs for 𝛼 = 0.5. For 𝛼 = 0.8, the curve
of 𝛼MU is shifted toward AB and for 𝛼 = 0.2 it is shifted
towards AF MU.

4.2. Results of Proposed Scheme II. This scheme uses a
different approach to identify malicious and unreliable users.
The advantage of this scheme is its computational simplicity.
With a simple approach andwithout computing reliability for
each user, it shows almost similar results with the previous
approach. However, the disadvantage is that more users are
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Figure 4: Effect of the AB, AF, and MU that transmits high signal
with probability 𝛼 and low signal with probability 1−𝛼 on proposed
scheme I.
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Figure 5: Performance comparison of the Chair-Varshney, conven-
tional CSS, and proposed scheme II with always opposite (AO)MUs.

considered for global decision in this scheme shown by
Figure 9.

Figure 5 shows the effect of AOMUs on the performance
of the examined schemes. Similar to Figure 3, conventional
CSS exhibits the worst performance, in terms of detection
performance and the number of users considered for global
decision, when exposed to AOMUs.The performance of our
proposed method improves to that of the Chair-Varshney
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Figure 6: Performance comparison of the Chair-Varshney, conven-
tional CSS, and proposed scheme II with always busy (AB) MUs.
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Figure 7: Performance comparison of the Chair-Varshney, conven-
tional CSS, and proposed scheme II with always free (AF) MUs.

approach when the number of MUs increases to two, even
though our schemehas the advantage of requiring fewer users
(shown in Figure 9).

Figures 6 and 7 show the effect of AB and AF type of
MUs, respectively, on the performance of the Chair-Varshney
approach, conventional CSS, and our proposed scheme II.
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Figure 8: Performance comparison of honest, dishonest, and
malicious users in scheme III.

The detection performances of the latter two methods are
almost similar due to the following reasons. First, the number
of MUs considered is very few compared to legal and reliable
users.The detection performance of conventional CSS will be
severely affected if the number ofMUs is increased. Secondly,
due to the equal probabilities of𝐻

1
and𝐻

0
, AF and ABMUs

show the same effect on the detection performance. Lastly, if
the probability of PU arrival is high and AB MUs are present
in the network or the idle probability of the PU is high and
AF MUs are present in the network, then the effect of AB
and AF type of MUs will be low because most of the time the
actual status of the PU and sensing report of the MU will be
similar which has comparatively less effect on the detection
performance.The advantage of our scheme includes the fewer
number of (reliable) users that are taken into account for
a global decision, as demonstrated in Figure 9 where the
average number of users is equal to the total number of users
in the case of conventional CSS but fewer for our proposed
scheme.This number continues to decrease as the number of
MUs increases.

4.3. Results of Proposed Scheme III. As discussed in Sec-
tion 3.1.3, detection performance with this strategy depends
on honesty of the users. In the case of dishonest users,
every user attempts to influence the global result by showing
himself to be reliable (in fact false reliable). All users,
including honest users, report their sensing observation to
the FC. If the number of dishonest users is small compared
to the number of honest users, then the effect of the former
will be minimal.

Figure 8 shows the performance comparison for the case
that honest users exist only, the case that dishonest users
are mixed with honest users, and the case that MUs are
mixed with honest users. It is clear from the figure that
similar sensing performance is achieved in the honest and
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Figure 9: Average number of users for global decision in conven-
tional CSS, CV (Chair-Varshney), and our proposed schemes for
numbers 0, 1, 2, and 3 of malicious users.

dishonest cases because there are very few dishonest users
present. In the case that all users are honest, the average
number of users will always be less than the number of users
when all of them are dishonest. No control over MUs is
achieved in this scheme and thus, MUs severely contaminate
the sensing performance. As is clearly evident from the
figure, by increasing the number of MUs from 1 to 2, a high
deterioration is observed in the detection performance.

4.4. Comparison of the Average Number of Users for Global
Decision by Our Proposed Schemes and Other Schemes. Fig-
ure 9 shows the average number of SUs considered for the
global decision when conventional CSS, Chair-Varshney rule,
and our proposed schemes are considered in the presence
of zero, one, two, and three MUs. It is observed from the
figure that the average number of users, in the case of
the conventional CSS and Chair-Varshney rule, is equal to
the total number of SUs in the network. However, fewer
users (that even decrease further with increasing MUs) are
used for global decision in our proposed schemes. Scheme
I outperforms all the other schemes in terms of the number
of users and shows almost similar detection performance to
scheme II.The average number of users in scheme I decreases
as the number of MUs increases because the MUs are
successfully blocked by scheme I which reduces the number
of users. It is also visible from the figure that the average
number of users in scheme II is more than that in scheme I.
The reason is that in scheme I each user has a relative weight
depending on the accuracy of the result. Thus, unreliable
users get less weight and are suppressed from the network
which decreases the average number of users. In contrast, all
users (reliable and unreliable) have equal weights in scheme
II and are excluded only when their unreliability reaches a
certain limit. In scheme III, the average number of users in

the dishonest case is 15 (total users), while for the honest case
it is less than maximum but increases with the number of
MUs because MUs pretend to be honest and remain in the
network. Since schemes II and III use unreliability to ignore
a user, therefore the number of users, when there is no MU,
is equal in both schemes. Scheme I and scheme II use 43%
and 17% reduced users, respectively, to show similar detection
performance to that of conventional CSS when there is no
MU. The detection performance improves further with the
improvement of users (decrease in the number of users) of
52% and 28% in scheme I and scheme II, respectively, when
there are two MUs in the network. However, the number of
users considered for global decision in scheme III is 17% and
3% less than the conventional and CV schemes when MU =
0 and MU = 2, respectively.

5. Conclusion

In this paper, we have proposed simple but effective schemes
to combat MUs and control consistently unreliable users.
Nonuniform reliability and reliability-based IT are used to
isolate unreliable and malicious users in scheme I. Unreli-
ability and randomly chosen IT are used to control unre-
liable and MUs in scheme II. In scheme III, honest users
stop sending reports when their trust level decreases below
a certain threshold. The results produced by consistently
unreliable users due to either permanent deep fades or sensor
malfunctioning are restricted so as tominimize their effect on
the global result. Restricting the number of users to only those
that are reliable makes the network manageable and reduces
the computational cost and other overhead.

We intend to extend this work in the future by analyzing
latency and energy consumption of the CR network with our
proposed schemes.
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