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In diversity combining at the receiver, the output signal-to-noise ratio (SNR) is often maximized by using the maximal ratio
combining (MRC) provided that the channel is perfectly estimated at the receiver. However, channel estimation is rarely perfect
in practice, which results in deteriorating the system performance. In this paper, an imperialistic competitive algorithm (ICA) is
proposed and compared with two other evolutionary based algorithms, namely, particle swarm optimization (PSO) and genetic
algorithm (GA), for diversity combining of signals travelling across the imperfect channels. The proposed algorithm adjusts the
combiner weights of the received signal components in such a way that maximizes the SNR andminimizes the bit error rate (BER).
The results indicate that the proposed method eliminates the need of channel estimation and can outperform the conventional
diversity combining methods.

1. Introduction

Diversity techniques are among the prominent ways to
improve the reliability of wireless communication systems
[1, 2]. These techniques, which fundamentally amount to
transmitting signals over independent fading channels, are
used in reality to fight against fading. The main idea of
diversity is to extract information from the received signal
components transmitted over multiple fading channels to
improve the received signal-to-noise ratio (SNR) [3, 4]. The
large-enough spacing is essential in order to make sure
that the received signals are independent, which is a vital
requisite to acquire the full benefit of the diversity receiver [5].
It is obvious that there would be a small probability that all
the received versions of signal are in a deep fade. Therefore,
these techniques assume independent fading effects over the
different signal paths. Out of the three mechanisms, namely,
path loss, large scale, and small scale fading, the first two
are somehow similar and can be mitigated by the power
control over a long period of time. Diversity techniques are
particularly intended to overcome the small scale fading.

In the past decades, different kinds of diversity receivers
functioning over a variety of fading channels have been

comprehensively reviewed in the literature [5]. The widely
used diversity techniques include maximal ratio combining
(MRC), equal gain combining (EGC), and selection combin-
ing (SC) [6, 7]. The aim of these techniques is to find a set
of weights 𝜔⃗ = [𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑀
], as shown in Figure 1, which

optimizes a specific objective function. Here, the weights are
selected to minimize the effect of fading on the received
multiple signal components for each individual user. InMRC,
the received signals are weighted accordingly so that the SNR
at the output of the combiner is the sum of the average SNR of
each branch. In EGC, on the other hand, the received signals
are weighted equally and then added. In SC, the branch with
the highest SNR is selected. In all cases, we consider that the
receiver has the necessary information of channel fading.

The performance of these methods has been extensively
examined in the literature for Rayleigh fading. If the channel
is perfectly estimated at the receiver, MRC can be applied to
maximize the output SNR and minimize the bit error rate
(BER) [8]. However, since the channel estimation is often
imperfect in practice, the estimation error will decay the
systemperformance.While this problemhas long been inves-
tigated [9, 10], the recent evolutions in mobile communica-
tion systems have renewed the attention in comprehending
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Figure 1: Diversity combining block diagram.

and mitigating the effect of imperfect channel estimation on
diversity techniques [11]. The error performance of MRC in
Rayleigh fading environment with independent and iden-
tically distributed (i.i.d.) diversity branches is investigated
in [12]. In [13], the SNR distribution is given for similar
scenarios. In [14], the error performance of MRC with inde-
pendent but not identically distributed (i.n.d.) branches is
studied. In [15, 16], a comparison of hybrid SC/MRC scheme
with SC and MRC schemes over Rayleigh fading channels in
two scenarios of flat and exponentially decaying multipath
intensity profile (MIP) has been done. In [17], the hybrid
diversity scheme is studied as such selection combining and
MRC are at the first and second stages, respectively. In [18], 𝐿
out of𝑁 diversity branches was selected and combined using
MRC over Rayleigh fading channel. The performance study
of conventional MRC receiver in the presence of cochannel
interference has also been a substantial interest of researchers
[19–24]. Particularly in [24], the effect of the number of
interferers on the diversity gain has been investigated in the
context of frequency-selective Rayleigh fading. The study,
however, has been done with the assumption of the prefect
channel estimation of a desired user, which may not be the
case in practice. The impact of imperfect channel estimation
on the performance of diversity receivers in noise-limited
circumstances has been presented in [25–30]. However, con-
sidering the frequency-nonselective fading, the investigation
has been widened to circumstances with multiple cochannel
interferers [31–33].

In this paper, to overcome the effect of imperfect esti-
mation of channel state information, a diversity combining
technique based on the imperialistic competitive algorithm
(ICA) is proposed in which the signals received by the
antennas are iteratively weighted based on ICA operation.
The channel model used is slow flat Rayleigh fading. It should
be noted that Rayleigh model is the simplest and the most
controllable model, but it is not effective in all circumstances.
However, since this paper basically aims at studying the use
of evolutionary algorithms on receiver diversity, the authors
believe that Rayleigh model is enough. Hence, the results
given in this paper are only a ballpark figure of pros and
cons of diversitymethods anddifferent algorithms to improve
them. It is shown that the proposed combining method does
not require the channel estimation, and it outperforms the
MRC when channel estimation is imperfect. On the other
hand, it has almost the same performance as MRC when
channel estimation is assumed to be perfect.The ICAmethod

shows faster convergence speed when comparedwith particle
swarm optimization- (PSO-) and genetic algorithm- (GA-)
based methods. This makes ICA a promising solution for the
real-time applications.

2. System Model

In this paper, it is assumed that the information bits are mod-
ulated by binary phase-shift keying (BPSK) modulation. The
channel is assumed to be frequency nonselective and slowly
fading over the length of the transmitted symbol. We also
assume that𝑀diversity branches are employed at the receiver
for reception. In addition, this researchwork assumes that the
diversity branches are sufficiently far apart from each other,
so that the received signals are statistically independent with
negligible correlation. This is a vital requisite to acquire the
full advantage of the diversity receiver [5].The received signal
at the 𝑖th branch is given by

𝑟
𝑖
(𝑡) = 𝑔

𝑖
𝑆 (𝑡) + 𝑛

𝑖
, 𝑖 = 1, 2, . . . ,𝑀, (1)

where 𝑆(𝑡) is the unit-power transmitted signal and𝑔
𝑖
denotes

the complex channel gain with uncorrelated and Gaussian
distributed real and imaginary parts, each with zero mean
and variance 𝜎2

𝑔𝑖
. The noise random variable 𝑛

𝑖
is complex

additive white Gaussian noise (AWGN) with zero mean and
variance 𝜎2

𝑛
= 𝑁
0
/2. The channel gain 𝑔

𝑖
at two different

diversity branches is assumed to be identically distributed.
It is also assumed that 𝑔

𝑖
and 𝑛

𝑖
are uncorrelated. The signal

power over one symbol period 𝑇
𝑠
, at 𝑖th path, is

𝑝 =

1
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∫
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Since we are assuming slow fading, the term |𝑔
𝑖
|

2 remains
constant over a symbol period and can be taken out of the
integral. 𝑆(𝑡) is assumed to have unit power. As a result, the
instantaneous SNR at the 𝑖th path is

𝛾
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Since we are considering Rayleigh fading, 𝑔
𝑖
= |𝑔
𝑖
|𝑒
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where ∠𝑔
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Rayleigh pdf. Therefore, |𝑔
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(4)

𝑃
0
is the statistical average of |𝑔

𝑖
|

2 and Γ represents the
average SNR at each individual branch, which serves as a
basic parameter to improve the SNR at the receiver.
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The bit error rate (BER) in a BPSK system, given an
SNR of 𝛾

𝑖
, is identified by erfc√2𝛾

𝑖
, where erfc(𝑥) =

(2/√𝜋) ∫

∞

𝑥
𝑒

−𝑡
2

𝑑𝑡 [12]. Therefore, the BER averaged over the
Rayleigh fading in (4) is given by [13]
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(5)

The physical model assumes the fading to be independent
from one branch to the next. Each branch, therefore, acts as
an independent sample of the random fading process (here,
Rayleigh). It means each branch receives an independent
copy of the transmitted signal. Our goal here is to combine
these independent samples in a way to achieve the desired
goal of increasing the SNR and reducing the BER.

3. Conventional Weighting Schemes

In this section, different combining schemes, such as selec-
tion combining (SC), equal gain combining (EGC) and
maximal ratio combining (MRC) are investigated.

3.1. Selection Combining. In selection combining (SC), the
branch with the greatest SNR is chosen as output SNR to be
used in the next step:

𝜔
𝑖
= {

1 𝛾
𝑖
= Max

0 otherwise.
(6)

The average output SNR for SC is defined as [14]

𝛾
𝑇
= Γ

𝑀

∑

𝑖=1

1

𝑖

≅ Γ (𝐶 − ln𝑀+

1

2𝑀

) , (7)

inwhich𝐶 is Euler’s constant.Thefinal approximation is valid
for𝑀 ≥ 3. The overall BER is obtained by bringing together
the conditional BER at a certain SNR. In BPSK modulation,
the conditional BER is erfc√2𝛾

𝑇
and the total BER is

BER
𝑇
= ∫

∞

0
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𝑇
. (8)

3.2. Equal Gain Combining. Equal gain combiner (EGC) sets
unit gain at each branch to increase the average SNR in the
system. In the equal gain combiner,
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(9)

There is no closed form solution for the BER for general
𝑀, but several researchers have investigated the BER perfor-
mance in several kinds of fading channels [15, 16].

3.3. Maximal Ratio Combining. In MRC, receiver linearly
combines the received signal 𝑟

𝑖
(𝑡) with 𝜔

𝑖
, which is the

weighting coefficient of the 𝑖th branch.The output signal 𝑟(𝑡)
of the linear diversity combiner is then given by

𝑟 (𝑡) =

𝑀

∑
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𝑀
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𝑖
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𝑖
. (10)

Since 𝑆(𝑡) is assumed to have unit power, SNR at the output
of combiners is
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According to the Cauchy-Schwarz inequality, MRC with
perfect channel estimation hasmaximumoutput SNR among
allmethods if 𝜔⃗ is linearly proportional to ⃗

𝐺. If 𝜔⃗ = ⃗G ⇒ 𝛾
𝑇
=

|
⃗G ⃗G𝑇|
2

/𝜎

2

𝑛
⃗G𝑇 ⃗G =

⃗G ⃗G𝑇/𝜎2
𝑛
⇒ 𝛾
𝑇
= ∑

𝑀

𝑖=1
|𝛾
𝑖
|, the output SNR

is, therefore, the sum of the SNR at each element. By using
the above assumption, the expected value of the output SNR
is therefore𝑀 times the SNR at each branch.

For the case of imperfect channel estimation, which is
the main issue in practice, it is observable that the SNR is
highly dependent on𝜔

𝑖
.Therefore, the optimal solution is the

weighting vector, which maximizes the objective function 𝛾
𝑇

in (11). We assume 𝑝
𝑖
is the estimate of the complex gain 𝑔

𝑖

on the 𝑖th diversity branch and 𝑒
𝑖
is the estimation error with

zeromean and variance 𝜎2
𝑒
= 𝜎

2

𝑔
(1−𝜌

2
)where 𝜌 ∈ [0, 1] is the

normalized estimation error correlation coefficient. Under
Gaussian error model, 𝑔

𝑖
and 𝑝

𝑖
are related as 𝑔

𝑖
= 𝑝
𝑖
+𝑒
𝑖
[16].

According to the diversity combining rule, the combiner’s
weights take on the 𝜔

𝑖
= 𝑝

∗

𝑖
for MRC diversity, which is

based on the Cauchy-Schwartz inequality, maximizes (11) if
the channel is perfectly estimated (i.e., 𝜌 = 1). However, since
channel estimation is often imperfect in practice, the MRC is
a suboptimal solution [17–37].

4. Evolutionary Algorithm-Based
Weighting Schemes

In this paper, the optimization problem is to maximize the
output SNR of the combiner 𝛾

𝑇
(𝜔⃗) in (11) where 𝜔⃗ =

[𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑀
] and 𝑀 is the number of variables (number

of branches) of 𝛾
𝑇
(𝜔⃗) with 𝜔𝑙 ≤ 𝜔 ≤ 𝜔

𝑢 where 𝜔𝑙 = 0 and
𝜔

𝑢
= 1 are lower and upper limits on 𝜔, respectively. Thus,

we propose to use evolutionary algorithms at the combiner
so that all possible weighting vectors 𝜔⃗ are investigated and
the optimal one, which maximizes the output SNR in (11),
is obtained. Hence, the need for estimating the channel
state information is eliminated. As mentioned earlier, a
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simple Rayleigh channel model is satisfactory to illustrate
the efficiency of the method. We mainly introduce an
imperialist competitive algorithm (ICA) to find the optimal
𝜔⃗ and compare its performance with two other iterative
algorithms, namely, genetic algorithm (GA) and particle
swarm optimization (PSO) to prove its effectiveness. The
three algorithms of GA, PSO, and ICA are presented in the
next sections.

4.1. Genetic Algorithm-Based Weighting Scheme. In the
genetic algorithm (GA), a group of chromosomeswill be arbi-
trarily generated. Equation (11) is used as the fitness function
to evaluate the SNR of randomly generated chromosomes
of the initial population. Then, a new population from the
former population will be reproduced based on the fitness
scores (output SNR values) of its chromosomes and the
process is repeated until a predefined termination criterion is
met [36]. Better populations can be continually formed due
to the concept of surviving the fit/best chromosomes. In GA
terminology, the evolutionary process of forming an offspring
population froma parent population is called generation [37].
The number of produced generations is predetermined by
the designer or self-set based on the quality of obtainable
solutions. The algorithm is configured to maximize the SNR
and it is outlined as follows.

Step 1. Randomly generate a population of pops chromo-
somes.

Step 2. Decode each chromosome into its corresponding
weighting vector 𝜔⃗

𝑗
= [𝜔

𝑗1
, 𝜔
𝑗2
, . . . , 𝜔

𝑗𝑀
]

𝑇, where 𝜔
𝑗𝑖

∈

[0, 1], 𝑖 = 1, 2, . . . ,𝑀, and 𝑗 = 1, 2, . . . , 𝑝𝑜𝑝𝑠.

Step 3. Compute the SNR value of every decoded weighting
vector 𝜔⃗

𝑗
using (11) and rank and identify the best ⌊𝑝𝑜𝑝𝑠 ∗

𝑒𝑙𝑖𝑡𝑒⌋ chromosomes that have maximized SNR. elite is a
parameter that determines a fraction of pops, that is, 𝑒𝑙𝑖𝑡𝑒 ∈
[0, 1), and ⌊⋅⌋ denotes the floor operation.

Step 4. After large-enough generations (runs of the algo-
rithm), if the output SNR of the system converges to a stable
value at each iteration, the procedure is terminated. Other-
wise, increase the generation number by one.

Step 5. Reproduce ⌈𝑝𝑜𝑝𝑠 ∗ (1 − 𝑒𝑙𝑖𝑡𝑒)⌉ new chromosomes
where ⌈⋅⌉ denotes ceiling operation, and construct new
population by concatenating the newly ⌈𝑝𝑜𝑝𝑠 ∗ (1 − 𝑒𝑙𝑖𝑡𝑒)⌉

reproduced chromosomes with the best ⌊𝑝𝑜𝑝𝑠 ∗ 𝑒𝑙𝑖𝑡𝑒⌋ found
in Step 3. Jump to Step 2.

Finally, the optimal weighting vector (decoded chromo-
somes) that leads to the highest stable value of the output SNR
can be indicated and used.

4.2. Particle Swarm Optimization-Based Weighting Scheme.
PSO algorithm is abstracted from the social behavior of
swarm of fish and birds. The behavior of these social orga-
nizations is emulated by the PSO algorithm. Each particle in
PSO algorithm functions based on its own knowledge as well

as the group knowledge and has two main features: position
and velocity. In each iteration, information about the best
position is cooperatively exchanged among the particles. The
steps involved in the PSO algorithm are as follows.

Step 1. Randomly generate 𝑁 number of particle positions
(weighting vectors) as 𝜔⃗

𝑠
= [𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑀
]

𝑇, (𝑠 = 1, . . . , 𝑁)

and 𝑁 number of length-𝑀 velocity vectors v⃗(𝑗)
𝑠
, which are

initially set to zero. Here, particle position and velocity at
iteration 𝑗 are demonstrated by 𝜔⃗(𝑗)

𝑠
and v⃗(𝑗)
𝑠
, respectively.

Step 2. Calculate the objective function (SNR in (11)) for
particle positions as 𝛾

𝑇
(𝜔⃗
(𝑗)

1
), 𝛾
𝑇
(𝜔⃗
(𝑗)

2
) ⋅ ⋅ ⋅ 𝛾
𝑇
(𝜔⃗
(𝑗)

𝑁
). Find the

maximum SNR and name its corresponding position as
𝑃best,𝑗. The best experienced particle position among all
iterations is called global best position and is expressed by
𝐺𝑙best.

Step 3. Update the velocity of the particles by

v⃗(𝑗)
𝑠

= v⃗(𝑗−1)
𝑠

+ 𝑐
1
𝑟
1
[𝑃best,𝑗 − 𝜔⃗

(𝑗−1)

𝑠
] + 𝑐
2
𝑟
2
[𝐺𝑙best − 𝜔⃗

(𝑗−1)

𝑠
] ,

(13)

where individual and social learning acceleration coefficients
are, respectively, denoted by 𝑐

1
and 𝑐
2
and 𝑟
1
and 𝑟
2
which are

the random numbers between 0 and 1.

Step 4. Update the position of particles as follows:

𝜔⃗
(𝑗)

𝑠
= 𝜔⃗
(𝑗−1)

𝑠
+ v⃗(𝑗)
𝑠
. (14)

Step 5. Check the convergence. The output SNR in (11) is
regularly checked at each iteration. After a large-enough
number of iterations, if the algorithm results in the same
output SNR in each iteration, the procedure is terminated.
Otherwise, set 𝑗 = 𝑗 + 1 and the process is repeated from
Step 2.

Therefore, the value of the 𝐺𝑙best is the optimal weighting
vector that maximizes the SNR at the output of the combiner.

4.3. Modified Imperialist Competitive Algorithm-Based
Weighting Scheme. It is considerably obvious that genetic and
physical evolution does not happen as fast as the communal
and the academic evolution of human being. Due to this fact,
some developing algorithms have applied the cultural side
of social life in order to reach well outcomes. Imperialistic
competition and human’s sociopolitical evolution inspire
ICA [38–40]. ICA algorithm has not been deep rooted in
refining diversity combining issue to the best knowledge of
the author. Hence, checking the effectiveness of the algorithm
in comparison to other techniques is the main disquiet of
this research.The main steps of ICA are explained as follows.

Step 1. Generate 𝑁pop numbers of countries (combiner’s
weighting vector shown in Figure 1) as 𝜔⃗

𝑘
= [𝜔
1
, 𝜔
2
, . . . ,

𝜔
𝑀
]

𝑇 where 𝑘 = 1, . . . , 𝑁pop. The SNR value of each country,
based on (11), is calculated and sorted.
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Colony 1

Colony 2

Colony 3

Colony N

Imperialist 1

Imperialist 2

Imperialist 3

Imperialist N

...
...

(a) Imperialists and colonies in each empire

d

x

Imperialist

𝜃

[𝜔1,imp , 𝜔2,imp , . . . , 𝜔M,imp ]
T

𝜔imp =

𝜔old, col𝑗 = [𝜔1,old , 𝜔2,old , . . . , 𝜔M,old ]
T

𝜔new, col𝑗 = [𝜔1,new , 𝜔2,new , . . . , 𝜔M,new ]T

jth colony

New position of jth colony

(b) Movement of colony towards imperialist

Figure 2: Current and future position of imperialists and colonies in imperialistic competitive algorithm.

Step 2. 𝑁imp ofmost powerful (in terms of SNR) countries are
chosen as imperialists to form empires and the rest of 𝑁col
countries are called colonies. Figure 2(a) depicts the initial
colonies for each empire. The initial number of colonies for
an empire is randomly selected from𝑁col with respect to the
empire’s imperialist power (𝑝imp), which is its corresponding
normalized SNR:

Initial number of colonies in an empire = 𝑁
𝑐

= round (𝑁col ⋅ 𝑝imp) .
(15)

Step 3. Colonies in an empire start to move in the search
space towards an imperialist state in different directions
(assimilation). x⃗

𝑗
= [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑀
]

𝑇
(𝑗 = 1, . . . , 𝑁

𝑐
) is the

transferred distance of the 𝑗th colony, which is randomly
chosen from the interval of [ ⃗0, 󸀠Υ ⋅ ⃗d𝑗] where ⃗0 is a 1-by-𝑀
zero vector, 󸀠Υ is the assimilation coefficient (0 <

󸀠
Υ ≤

2), and ⃗d
𝑗
= [𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑀
]

𝑇 is the distance between the
imperialist and 𝑗th colony in an empire, which is calculated
by

⃗d
𝑗
= 𝜔⃗imp − 𝜔⃗col𝑗 = [𝜔

1,imp − 𝜔1,col𝑗 , 𝜔2,imp

−𝜔
2,col𝑗 , . . . , 𝜔𝑀,imp − 𝜔𝑀,col𝑗]

𝑇

.

(16)

Therefore, the new position of the 𝑗th colony is calculated as
follows [41]:

𝜔⃗new,col𝑗 = 𝜔⃗old,col𝑗 + x⃗
𝑗
+ ⃗r ⋅ tan (𝜃) , (17)

where ⃗r is a 1-by-𝑀 random vector, whose values are uni-
formly distributed on (−1, +1) and 𝜃 is assimilation deviation

which can be chosen from −𝜋/2 < 𝜃 < 𝜋/2. Figure 2(b)
depicts how colonies transfer to their related imperialist.

Step 4. The cost of each colony in the new position is again
computed based on (11). Position exchange between a colony
and imperialist can happen in this step. In other words, if a
colony in its new position has a higher SNR than that of the
imperialists, it has the chance to take the control of empire by
replacing the existing imperialist. Consider

𝛾
𝑇
(𝜔⃗new,col𝑗) > 𝛾

𝑇
(𝜔⃗imp)

󳨐⇒ 𝑗th colony will become the impersialist.
(18)

Step 5. Imperialistic competition is being performed in this
step. The colony with the lowest SNR value from the empire
with the weakest power is chosen and provided to one of the
best empires. The total power (in terms of SNR) of an empire
is calculated as follows:

Total empire’s power = 𝛾
𝑇
(𝜔⃗imp) + 𝜉(

∑

𝑁𝑐

𝑗=1
𝛾
𝑇
(𝜔⃗col𝑗)

𝑁
𝑐

) ,

(19)

where positive number, 𝜉, is equal to or less than one
(0 < 𝜉 ≤ 1).

Step 6. When all colonies of an empire move to other power-
ful empires and just imperialist remains, this imperialist auto-
matically joins best empire as a simple colony. This empire
will then be removed.



6 The Scientific World Journal

Table 1: Different parameters values used for testing.

GA PSO ICA

Population size 10, 20, 30, 40, 50 Population size 5, 10, 15, 20, 25,
50 Population size 5, 10, 15, 20, 25, 35

Mutation rate
0.01, 0.1, 0.15,

0.2, 0.3, 0.4, 0.5,
0.6

Learning coefficients 1.8, 1.85, 1.9, 1.95,
2, 2.05, 2.1 Mean colonies power coefficient 0 < 𝜉 ≤ 1

Crossover rate 0.5, 0.65, 0.75,
0.85, 0.95 𝑟

1
and 𝑟
2 𝑈(0, 1) Assimilation coefficient 0 < Υ ≤ 2

Population for
reproduction rate

0.5, 0.6, 0.7, 0.8,
0.9

Table 2: Optimal parameter values for ICA, PSO, and GA algorithms which maximize the output SNR.

GA PSO ICA
Population size 50 Population size 25 Population size 25

Mutation rate 0.3 Learning coefficients 2 Mean colonies power coefficient 0.15
Crossover rate 0.95 𝑟

1
and 𝑟
2

𝑈(0, 1) Assimilation coefficient 1.7

Population for
reproduction rate 0.9

Step 7. Stop condition will satisfy, if only one empire remains.
In other words, after a while, only one empire with the
highest total power (as in (19)) remains, which controls all
the colonies. In this condition, all of the colonies and the
imperialists have the same position (weighting vector) and
cost (SNR at (11)). Otherwise, algorithm jumps to Step 3.

The equivalent weighting vector of the final imperialist is
the best vector thatmaximizes the output SNRof our diversity
problem here.

Figure 3 abstractly shows the flowchart of ICA, which
explains how ICA is applied to improve the reliability of the
wireless communication systems.

5. Numerical Results and Discussion

In this section, Monte-Carlo simulation is employed to
present the performance of the proposed ICA-based diversity
combining technique and compare it with PSO, GA, MRC,
EGC, and SCmethods in twodifferent scenarios of the perfect
and imperfect channel estimation. It is assumed that the
average symbol energy 𝐸

𝑠
= 1 and channel gain and AWGN

variances are 𝜎2
𝑔
= 𝜎

2

𝑛
= 0.5 per dimension. The parameters

for the PSO are 𝑁 = 25 and 𝑐
1

= 𝑐
2

= 2. Figure 4
compares the normalized output SNR of ICA-, PSO-, and
GA-based combining with MRC, EGC, and SC in terms of
different numbers of diversity branches when the channel
is perfectly estimated (𝜌 = 1) [42]. As expected, it has
been observed that the MRC provides the best performance
when channel estimation is perfect. However, the ICA- and
PSO-based solutions demonstrate almost the same SNR gain
as MRC without the need for channel estimation. Since
the parameters in each algorithm are generally problem-
dependent, the set-and-test approach is used in this work to
obtain the optimal values for them. In other words, 𝑐

1
𝑟
1
and

𝑐
2
𝑟
2
in PSO or 𝜃, 󸀠Υ in ICA guarantee that the particles or

colonies would fly over the target about half the time. In
this respect, the environment has been tested separately for
parameters as mentioned in Table 1 and the optimal value is
found in Table 2.

The comparison between the iterative based algorithms
and MRC methods in the case of imperfect channel esti-
mation (𝜌 = 0, 0.5, 0.75) [43, 44] is illustrated in Figure 5.
It can be seen that ICA- and PSO-based methods outperform
MRC when channel estimation is imperfect. The achieved
improvement can be justified by the ability of the algorithms
to investigate the search space thoroughly and evaluate the
objective function in (11) tomaximize the output SNR. As it is
shown in Figures 4 and 5, PSO and ICA results are quite close
to each other. However, on the other hand, Figures 6 and 7
present the superiority of ICA over PSO in terms of achiev-
able BER and SNR, respectively. These two metrics declare
that the quality of the diversity performance achieved by ICA
is quite better than that of PSO. However, 𝑡-test has been
carried out to provide an evidence of statistical significance
in the difference of means of these two algorithms. With a
significance level of 0.10, it has been found that the two-tailed
𝑃 value is 0.0805, whichmeans that the results are considered
statistically significant.

Considering theBPSKmodulation and imperfect channel
estimation, the error performance of the MRC-, ICA- and
PSO-based methods for 1, 2, and 3 diversity branches is
illustrated in Figure 6. It is observable that the bit error rate
of the ICA-based technique is considerably lower than that
of the MRC. For instance, for a two-branch diversity, the
MRC approximately requires almost 3 dB higher SNR than
that of ICA-based to achieve a 𝐵𝐸𝑅 = 10

−4. In addition,
as it is shown, increasing the number of branches results in
improved error performance.

Next, Figure 7 compares the convergence of ICA, PSO,
andGA algorithms used in the diversitymethod.Thenumber
of diversity branches is assumed to be 8. The mean and max
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(calculate and sort the SNR of weighting vectors) 
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End 
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(empires try to catch more colonies) 
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Is there only one 
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empire with the highest

(these empires will be removed since no
weighting vector is left in them)

Figure 3: ICA-based flowchart that maximizes the quality of the received signal in diversity combining technique.
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Table 3: Performance comparison of ICA and PSO assisted for different population numbers.

ICA PSO
Number of countries 5 10 15 20 25 Number of particles 5 10 15 20 25
Average output SNR
(𝑁 = 8)

8.53 8.78 9.09 9.15 9.21 Average output SNR
(𝑁 = 8)

8.46 8.63 8.96 9.06 9.13

Max convergence
iterations 89 72 53 29 18 Max convergence

iterations 92 74 52 38 31

Mean convergence
iterations NA 92 68 43 25 Mean convergence

iterations NA 96 88 47 39

Number of fitness
evaluations 445 720 795 580 450 Number of fitness

evaluations 460 740 780 760 775
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Figure 4: Normalized output SNR of MRC-, ICA-, PSO-, GA-,
EGC-, and SC-based methods when the channel is perfectly esti-
mated.

of each algorithm are achieved when the algorithms run for
100 times. The average of all results is called mean and the
best one among these 100 simulations, which results in the
maximumoutput SNR, is named asmax. As it is shown in the
figure, max curve in ICAmethod converges after 18 iterations
whereas about 31 iterations of PSO algorithm are needed for
convergence. This indicates the higher convergence speed of
the ICA compared to PSO.

Table 3 shows the details of convergence speed for each
method. The term NA in Table 3 indicates that the iter-
ation number for that specific condition is not available.
For instance, ICA-based method with 5 countries cannot
converge in 100 iterations. Moreover, the number of fitness
evaluations as a parameter to compare the complexity of iter-
ative algorithms has been provided in Table 3. The number
of fitness evaluations is simply the product of the number of
generations by which the maximum SNR fitness is achieved
multiplied by the number of fitness evaluations performed in
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Figure 5: Comparison of normalized output SNR of ICA-, PSO-,
GA-, MRC-, EGC-, and SC-based methods for imperfect channel
estimation.

every iteration. The latter equals the population size of any
of these algorithms. For instance, with ICA, the number of
iterations required to achieve the maximum SNR is 18 and
the number of countries is 25.This means that the number of
fitness evaluations to find the optimal setting is 450, which is
considerably low with the advancement of signal processing
and computing cores.

The SNR variances of ICA, PSO, and GA are shown
in Table 4 and are recorded every five iterations until the
55th iteration after which the variances are zeroed when
all colonies, particles, and chromosomes of ICA, PSO, and
GA, respectively, converge to the same optima. Considering
the values in the table and calculating standard deviations
at each iteration, one can conclude that ICA, with all of
its fluctuations around its mean, can still outperform the
other two algorithms. This validates the superiority of this
algorithm in comparison with the other methods.
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Table 4: Variance of SNR of all algorithms when the population size is 25.

Iteration number 5 10 15 20 25 30 35 40 45 50 55
ICA 0.75 0.21 0.98 0.57 0.0004 0 0 0 0 0 0
PSO 0.65 0.64 0.38 0.24 0.28 0.62 0.04 0 0 0 0
GA 0.98 1 0.79 0.65 0.46 0.28 0.17 0.14 0.05 0.01 0
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1 branch GA
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Iterative based
reception diversity

MRC with imperfect
channel estimation

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

Figure 6: Error performance of ICA-, PSO-, and MRC-based
methods for different numbers of diversity branches.
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Figure 7: Convergence performance of the iterative algorithms.

6. Conclusion

One of the most important issues in reception antenna
diversity occurs when the channel is imperfectly estimated.
This defective estimation results in obtaining a vector of the
weighting coefficient of the combiner that deteriorates the
SNR and BER performance of the system at the receiver. To

address the issue, an ICA-based diversity combining method
is proposed to optimize the weighting vector, which is used
to combine the received signals at the receiver. Simulation
results validate that the proposed method provides better
SNR and error performance than that of other evolutionary
algorithms, such as GA and PSO and conventional MRC
when channel estimation is imperfect. On the other hand,
in the perfect channel estimation environment, the proposed
method performs as effectively as the MRC.
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