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This paper studies impulsive control systems with finite and infinite delays. Several stability criteria are established by employing
the largest and smallest eigenvalue of matrix. Our sufficient conditions are less restrictive than the ones in the earlier literature.
Moreover, it is shown that by using impulsive control, the delay systems can be stabilized even if it contains no stable matrix.
Finally, some numerical examples are discussed to illustrate the theoretical results.

1. Introduction

As is known, a well-developed theory of impulsive control
systems has come into existence (see [1–8] and the references
therein). To our knowledge, such systems are now recognized
as an excellent source of models to simulate processes and
phenomena observed in control fields, such as orbital transfer
of satellite [5, 7], dosage supply in pharmacokinetics [9], sta-
bilization, and synchronization in chaotic secure communi-
cation systems and other chaos systems [10, 11]. Moreover, in
some cases, continuous control is impossible and only impul-
sive control can be used. For example, a central bank cannot
change its interest rate every day in order to regulate the
money supply in a financial market.

On the other hand, time delay [12–20] occurs in many
physical systems. So it is natural to study impulsive control
systems with delays. Also, significant progress has beenmade
in the theory of impulsive control systems with finite or
infinite delays. Yang and Xu [21] have presented several
interesting criteria on robust stability of uncertain impulsive
control systems with time-varying delay by employing a
formula for the variation of parameters and estimating the
Cauchy matrix. Liu [22] has established several criteria
on asymptotic stability of impulsive control systems with
time delay by using the method of Lyapunov functions and
Lyapunov functionals. By using the Razumikhin technique

and Lyapunov functions, a new criterion on the uniform
asymptotic stability and global stability of impulsive infinite
delay differential systems has been obtained in [23]. However,
to the best of our knowledge, there is no criterion on stability
for impulsive control systems with delays by employing the
largest and smallest eigenvalue of matrix. Hence, techniques
and methods for impulsive control systems should be further
developed and explored. The aim of this paper is to establish
stability criteria for impulsive control systems with finite
and infinite delays by employing the largest and smallest
eigenvalue matrix.

Inspired by the idea in [22] dealingwith impulsive control
systems, some stability criteria are established.The rest of this
paper is organized as follows. In Section 2, we introduce some
notations and definitions. Then in Section 3, several stability
criteria of impulsive control systems with finite and infinite
delays by employing the largest and smallest eigenvalue of
matrix are obtained. Finally, in Section 4, the advantages of
the theoretical results are illustrated by two numerical exam-
ples.

2. Preliminaries

Let R denote the set of real numbers, R
+
the set of non-

negative real numbers, R𝑛 the 𝑛-dimensional real space, and
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𝑁 = 1, 2, . . .. The impulse times 𝑡
𝑘
satisfy 0 ≤ 𝑡

0
< 𝑡
1
< ⋅ ⋅ ⋅ <

𝑡
𝑘
< ⋅ ⋅ ⋅ , lim

𝑘→+∞
𝑡
𝑘
= +∞. For any 𝑡 ≥ 𝑡

0
≥ 0 > 𝛼 ≥ −∞,

let ∫+∞
0
ℎ(𝑢)𝑥(𝑡 − 𝑢)𝑑𝑢, where 𝑠 ∈ [𝑡 + 𝛼, 𝑡] is a Volterra type

functional. In this case, when 𝛼 = −∞, the interval [𝑡 + 𝛼, 𝑡]
is understood to be replaced by (−∞, 𝑡].

Consider the delay control system

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝑟) + 𝐶∫

𝑟

0

ℎ (𝑢) 𝑥 (𝑡 − 𝑢) 𝑑𝑢, 𝑡 ̸= 𝑡
𝑘
,

𝑦 (𝑡) = 𝐸𝑥 (𝑡) , 𝑡 ≥ 0,

(1)

where 𝑥 ∈ R𝑛 is the state variable, 𝑦 ∈ R𝑚 is the output
variable, 𝑟 > 0 is a delay constant, 𝐴, 𝐵, 𝐶 ∈ R𝑛×𝑛 and
𝐸 ∈ R𝑚×𝑛 are known constantmatrices, ℎ(𝑢) ∈ 𝐶(R+,R), and
∫

𝑟

0
|ℎ(𝑢)|𝑑𝑢 < ∞.
An impulsive control law of (1) can be presented in the

form of the following control sequence {𝑡
𝑘
, 𝑈(𝑘, 𝑥(𝑡

−

𝑘
))} (refer

the reader to [22]):

Δ𝑥 (𝑡
𝑘
) = 𝑥 (𝑡

+

𝑘
) − 𝑥 (𝑡

−

𝑘
) = 𝑈 (𝑘, 𝑥 (𝑡

−

𝑘
)) , 𝑘 ∈ 𝑁. (2)

Let 𝑈(𝑘, 𝑥) = 𝐵
𝑘
𝑦, 𝐵
𝑘
∈ R𝑛×𝑚, and 𝐶

𝑘
= 𝐵
𝑘
𝐸. Then

we obtain the impulsive control system with finite delays as
follows:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝑟) + 𝐶∫

𝑟

0

ℎ (𝑢) 𝑥 (𝑡 − 𝑢) 𝑑𝑢, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡
𝑘
) = 𝑥 (𝑡

+

𝑘
) − 𝑥 (𝑡

−

𝑘
) = 𝐶
𝑘
𝑥 (𝑡
−

𝑘
) , 𝑘 ∈ 𝑁,

𝑥 (𝑡) = 𝜙 (𝑡) , −𝑟 ≤ 𝑡 ≤ 0,

(3)

where 𝜙 : [−𝑟, 0] → R𝑛 is continuous.
Furthermore, we can investigate the following impulsive

control system with infinite delays:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝑟) + 𝐶∫

+∞

0

ℎ (𝑢) 𝑥 (𝑡 − 𝑢) 𝑑𝑢,

𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡
𝑘
) = 𝑥 (𝑡

+

𝑘
) − 𝑥 (𝑡

−

𝑘
) = 𝐶
𝑘
𝑥 (𝑡
−

𝑘
) , 𝑘 ∈ 𝑁,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝛼 ≤ 𝑡 ≤ 0,

(4)

where 𝜙 : [𝛼, 0] → R𝑛 is continuous and ∫+∞
0
|ℎ(𝑢)|𝑑𝑢 < ∞.

For any matrix 𝐴 ∈ R𝑛×𝑛, 𝜆max(𝐴) denotes the largest
eigenvalue of 𝐴 and similarly 𝜆min(𝐴) denotes the smallest
eigenvalue of 𝐴. The norm of matrix is ‖𝐴‖ = √𝜆max(𝐴

𝑇
𝐴).

For a positive definite (symmetric) matrix 𝐴 ∈ R𝑛×𝑛, √𝐴
denotes the square root of𝐴, which is defined to be the unique
positive definite matrix satisfying√𝐴 ⋅ √𝐴 = 𝐴 (see [24]).

Let us define the following class of functions for later use:

𝐾
1
= {𝑔 ∈ 𝐶 (R

+

,R
+

) | 𝑔 (0) = 0, 𝑔 (𝑠) > 0 for 𝑠 > 0} ;

𝐾
2
= {𝑔 ∈ 𝐶 (R

+

,R
+

) | 𝑔 (0) = 0, 𝑔 (𝑠) > 0 for 𝑠 > 0,

𝑔 is nondecreasing in 𝑠} .

(5)

In order to prove our main results, we need the following
definitions and lemmas.

Definition 1 (see [22]). A matrix 𝐴 ∈ R𝑛×𝑛 is stable (or
Hurwitz) if the eigenvalues of the matrix 𝐴 all have negative
real parts and there is a unique positive definite matrix 𝑃 ∈
R𝑛×𝑛 that solves the Lyapunov equation

𝐴
𝑇

𝑃 + 𝑃𝐴 = −𝑄, (6)

where 𝑄 is any 𝑛 × 𝑛 positive definite matrix.

Definition 2 (see [22]). A matrix 𝐴 ∈ R𝑛×𝑛 is unstable if the
eigenvalues of the matrix 𝐴 all have positive real parts and
there is a unique positive definite matrix 𝑃 ∈ R𝑛×𝑛 that solves
the Lyapunov equation

𝐴
𝑇

𝑃 + 𝑃𝐴 = 𝑄, (7)

where 𝑄 is any 𝑛 × 𝑛 positive definite matrix.

Definition 3 (see [23]). Assume that 𝑥(𝑡) = 𝑥(𝑡, 𝑡
0
, 𝜙) is

the solution of (3) and (4) through (𝑡
0
, 𝜙). Then the trivial

solution of (3) and (4) is said to be

(𝐻
1
) stable, if for any 𝑡

0
≥ 0 and 𝜀 > 0 there exists some 𝛿 =

𝛿(𝜀, 𝑡
0
) > 0 such that ‖𝜙‖ < 𝛿 implies ‖𝑥(𝑡, 𝑡

0
, 𝜙)‖ < 𝜀,

𝑡 ≥ 𝑡
0
;

(𝐻
2
) uniformly stable, if the 𝛿 in (𝐻

1
) is independent of 𝑡

0
;

(𝐻
3
) uniformly asymptotically stable, if (𝐻

2
) holds and

there exists some 𝜂 > 0 such that for any 𝜀 > 0 there
exists some 𝑇 = 𝑇(𝜀, 𝜂) > 0 such that 𝑡

0
≥ 0 and

‖𝜙‖ < 𝜂 together imply ‖𝑥(𝑡, 𝑡
0
, 𝜙)‖ < 𝜀, 𝑡 ≥ 𝑡

0
+ 𝑇.

Lemma4 (see [25]). Assume that there exist functions 𝑎, 𝑏, 𝑐 ∈
𝐾
1
, 𝑝 ∈ 𝑃𝐶(R

+
,R
+
), and 𝑔, 𝑔 ∈ 𝐾

2
, where 𝑠 ≤ 𝑔(𝑠) < 𝑔(𝑠)

for 𝑠 > 0. Suppose further that 𝑉 : [−𝑟,∞) × 𝑆(𝜌) → R
+
is

continuous on [−𝑟, 𝑡
0
) × 𝑆(𝜌) and on [𝑡

𝑘−1
, 𝑡
𝑘
) × 𝑆(𝜌) for 𝑘 =

1, 2, . . . , lim
(𝑡,𝑦)→ (𝑡

−

𝑘

,𝑥)
𝑉(𝑡, 𝑦) = 𝑉(𝑡

−

𝑘
, 𝑥) exists. Moreover, 𝑉,

restricted toR
+
×𝑆(𝜌), is locally Lipschitz in 𝑥 and the following

conditions are satisfied:

(i) 𝑏(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑎(‖𝑥‖) for all (𝑡, 𝑥) ∈ [−𝑟,∞) ×
𝑆(𝜌);

(ii) 𝐷+𝑉(𝑡, 𝜓(0)) ≤ −𝑝(𝑡)𝑐(𝑉(𝑡, 𝜓(0))) for all 𝑡 ̸= 𝑡
𝑘
in R
+

and 𝜓 ∈ 𝑃𝐶([−𝑟, 0], 𝑆(𝜌)), whenever 𝑔(𝑉(𝑡, 𝜓(0))) ≥
𝑉(𝑡 + 𝑠, 𝜓(𝑠)) for 𝑠 ∈ [−𝑟, 0];

(iii) 𝑉(𝑡
𝑘
, 𝜓(0) + 𝐼(𝑡

𝑘
, 𝜓)) ≤ 𝑔(𝑉(𝑡

−

𝑘
, 𝜓(0))) for all (𝑡

𝑘
, 𝜓) ∈

R
+
× 𝑃𝐶([−𝑟, 0], 𝑆(𝜌

1
)) for which 𝜓(0−) = 𝜓(0);

(iv) 𝜏 = inf
𝑘∈𝑁
{𝑡
𝑘
− 𝑡
𝑘−1
} > 0, 𝑀

2
=

sup
𝑞>0
∫

𝑔(𝑞)

𝑞
(𝑑𝑠/𝑐(𝑠)) < ∞, and 𝑀

1
=

inf
𝑡≥0
∫

𝑡+𝜏

𝑡
𝑝(𝑠)𝑑𝑠 > 𝑀

2
.

Then the trivial solution of (3) is uniformly asymptotically
stable.

Lemma5 (see [25]). Assume that there exist functions 𝑎, 𝑏, 𝑐 ∈
𝐾
1
, 𝑝 ∈ 𝑃𝐶(R

+
,R
+
), and 𝑔 ∈ 𝐾

2
and 𝑉 : [−𝑟,∞) × 𝑆(𝜌) →
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R
+
is continuous on [−𝑟, 𝑡

0
) × 𝑆(𝜌) and on [𝑡

𝑘−1
, 𝑡
𝑘
) × 𝑆(𝜌)

for 𝑘 = 1, 2, . . . , lim
(𝑡,𝑦)→ (𝑡

−

𝑘

,𝑥)
𝑉(𝑡, 𝑦) = 𝑉(𝑡

−

𝑘
, 𝑥) exists.

Moreover, 𝑉, restricted to R
+
× 𝑆(𝜌), is locally Lipschitz in 𝑥

and the following conditions are satisfied:
(i) 𝑏(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑎(‖𝑥‖) for all (𝑡, 𝑥) ∈ [−𝑟,∞) ×
𝑆(𝜌);

(ii) 𝐷+𝑉(𝑡, 𝜓(0)) ≤ 𝑝(𝑡)𝑐(𝑉(𝑡, 𝜓(0))) for all 𝑡 ̸= 𝑡
𝑘
in R
+

and 𝜓 ∈ 𝑃𝐶([−𝑟, 0], 𝑆(𝜌)), whenever 𝑉(𝑡, 𝜓(0)) ≥
𝑔(𝑉(𝑡 + 𝑠, 𝜓(𝑠))) for 𝑠 ∈ [−𝑟, 0];

(iii) 𝑉(𝑡
𝑘
, 𝜓(0) + 𝐼(𝑡

𝑘
, 𝜓)) ≤ 𝑔(𝑉(𝑡

−

𝑘
, 𝜓(0))) for all (𝑡

𝑘
, 𝜓) ∈

R
+
× 𝑃𝐶([−𝑟, 0], 𝑆(𝜌

1
)) for which 𝜓(0−) = 𝜓(0);

(iv) 𝜏 = sup
𝑘∈𝑁
{𝑡
𝑘
−𝑡
𝑘−1
} < ∞,𝑀

1
= sup

𝑡≥0
∫

𝑡+𝜏

𝑡
𝑝(𝑠)𝑑𝑠 <

∞, and𝑀
2
= inf
𝑞>0
∫

𝑞

𝑔(𝑞)
(𝑑𝑠/𝑐(𝑠)) > 𝑀

1
.

Then the trivial solution of (3) is uniformly asymptotically
stable.

Lemma6 (see [26]). Assume that there exist functions 𝑎, 𝑏, 𝑐 ∈
𝐾
1
, 𝑝 ∈ 𝑃𝐶(R

+
,R
+
), and 𝑔 ∈ 𝐾

2
and 𝑉 : [𝛼,∞) × 𝑆(𝜌) →

R
+
is continuous on [𝛼, 𝑡

0
)×𝑆(𝜌) and on [𝑡

𝑘−1
, 𝑡
𝑘
)×𝑆(𝜌) for 𝑘 =

1, 2, . . . , lim
(𝑡,𝑦)→ (𝑡

−

𝑘

,𝑥)
𝑉(𝑡, 𝑦) = 𝑉(𝑡

−

𝑘
, 𝑥) exists. Moreover, 𝑉,

restricted toR
+
×𝑆(𝜌), is locally Lipschitz in 𝑥 and the following

conditions are satisfied:
(i) 𝑏(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑎(‖𝑥‖) for all (𝑡, 𝑥) ∈ [𝛼,∞)×𝑆(𝜌);
(ii) 𝐷+𝑉(𝑡, 𝑥) ≤ 𝑝(𝑡)𝑐(𝑉(𝑡, 𝑥)) for any solution 𝑥(𝑡) =
𝑥(𝑡, 𝑡
0
, 𝜙) of (4), whenever 𝑉(𝑡, 𝑥(𝑡)) ≥ 𝑔(𝑉(𝑠, 𝑥(𝑠)))

for 𝑠 ∈ [𝛼, 𝑡];
(iii) 𝑉(𝑡

𝑘
, 𝑥 + 𝐼(𝑡

𝑘
, 𝑥)) ≤ 𝑔(𝑉(𝑡

−

𝑘
, 𝑥)) for all 𝑘 ∈ 𝑁 and all

𝑥 ∈ 𝑆(𝜌
1
);

(iv) 𝑀
1
= sup

𝑘∈𝑁
∫

𝑡
𝑘+1

𝑡
𝑘

𝑝(𝑠)𝑑𝑠 < ∞ and 𝑀
2
=

inf
𝑢>0
∫

𝑢

𝑔(𝑢)
(𝑑𝑠/𝑐(𝑠)) > 𝑀

1
.

Then the trivial solution of (4) is uniformly stable.

3. Main Results

In this section, we will establish some stability criteria for
system (3) and (4). Our first theorem provides conditions
for uniform asymptotic stability of the trivial solution of (3),
when matrix 𝐴 is Hurwitz.

Theorem 7. Let 𝜏 = inf
𝑘∈𝑁
{𝑡
𝑘
− 𝑡
𝑘−1
} > 0 and assume all the

eigenvalues of 𝐴 have negative real parts. Suppose that there
exist a constant 𝛾 ≥ 1 and two symmetrical positive definite
matrices 𝑃,𝑄 ∈ R𝑛×𝑛 such that

𝐴
𝑇

𝑃 + 𝑃𝐴 = −𝑄,

√

𝜆max (𝑃)

𝜆min (𝑃)

󵄩
󵄩
󵄩
󵄩
𝐼 + 𝐶
𝑘

󵄩
󵄩
󵄩
󵄩
≤ 𝛾,

2𝛾 ‖𝑃𝐵‖ + 2𝛾M ‖𝑃𝐶‖ <
𝜆min (𝑄) 𝜆min (𝑃)

𝜆max (𝑃)
,

ln 𝛾
𝜏

−

𝜆min (𝑄)

2𝜆max (𝑃)
+

𝛾 ‖𝑃𝐵‖

𝜆min (𝑃)
+

𝛾M ‖𝑃𝐶‖

𝜆min (𝑃)
< 0,

(8)

where M = ∫

𝛾

0
|ℎ(𝑢)|𝑑𝑢. Then the trivial solution of (3) is

uniformly asymptotically stable.

Proof. Define the Lyapunov function

𝑉 (𝑥) = 𝑥
𝑇

𝑃𝑥. (9)

Then, 𝑉 satisfies

𝜆min (𝑃) ‖𝑥‖
2

≤ 𝑉 (𝑥) ≤ 𝜆max (𝑃) ‖𝑥‖
2

, (10)

for all 𝑥 ∈ R𝑛. Furthermore,

𝑉 (𝜓 (0) + 𝐶
𝑘
𝜓 (0))

= [(𝐼 + 𝐶
𝑘
) 𝜓 (0)]

𝑇

𝑃 [(𝐼 + 𝐶
𝑘
) 𝜓 (0)]

= 𝜓(0)
𝑇

(𝐼 + 𝐶
𝑘
)
𝑇

𝑃 (𝐼 + 𝐶
𝑘
) 𝜓 (0)

≤ 𝜆max (𝑃) [(𝐼 + 𝐶𝑘) 𝜓 (0)]
𝑇

[(𝐼 + 𝐶
𝑘
) 𝜓 (0)]

≤ 𝜆max (𝑃)
󵄩
󵄩
󵄩
󵄩
(𝐼 + 𝐶

𝑘
)𝜓(0)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝜆max (𝑃)
󵄩
󵄩
󵄩
󵄩
(𝐼 + 𝐶

𝑘
)
󵄩
󵄩
󵄩
󵄩

2

⋅
󵄩
󵄩
󵄩
󵄩
𝜓(0)
󵄩
󵄩
󵄩
󵄩

2

≤

𝜆max (𝑃)

𝜆min (𝑃)

󵄩
󵄩
󵄩
󵄩
𝐼 + 𝐶
𝑘

󵄩
󵄩
󵄩
󵄩

2

𝜓(0)
𝑇

𝑃𝜓 (0)

≤ 𝛾
2

𝑉 (𝜓 (0)) .

(11)

Since 𝛾 satisfies the strict inequality (8), then both equalities
are satisfied by any𝛽 chosen sufficiently close to 𝛾. So let𝛽 > 𝛾
satisfy

2𝛽 ‖𝑃𝐵‖ + 2𝛽M ‖𝑃𝐶‖ <
𝜆min (𝑄) 𝜆min (𝑃)

𝜆max (𝑃)
, (12)

ln𝛽
𝜏

−

𝜆min (𝑄)

2𝜆max (𝑃)
+

𝛽 ‖𝑃𝐵‖

𝜆min (𝑃)
+

𝛽M ‖𝑃𝐶‖

𝜆min (𝑃)
< 0. (13)

Define 𝑔(𝑠) = 𝛽2𝑠 and 𝑔(𝑠) = 𝛾2𝑠. Then, when 𝑔(𝑉(𝜓(0))) ≥
𝑉(𝜓(𝑠)), 𝑠 ∈ [−𝑟, 0], so we have 𝛽2𝑉(𝜓(0)) ≥ 𝑉(𝜓(−𝑟)) and
𝛽
2
𝑉(𝜓(0)) ≥ 𝑉(𝜓(−𝑢)). Calculating the derivative of𝑉 along

solutions of (3) gives us

𝐷
+

𝑉 (𝑡, 𝜓)

= 𝜓(0)
𝑇

𝑃[𝐴𝜓 (0) + 𝐵𝜓 (−𝑟) +𝐶∫

𝑟

0

ℎ (𝑢) 𝜓 (−𝑢) 𝑑𝑢]

+ [𝐴𝜓 (0) + 𝐵𝜓 (−𝑟) +𝐶∫

𝑟

0

ℎ (𝑢) 𝜓 (−𝑢) 𝑑𝑢]

𝑇

𝑃𝜓 (0)

= 𝜓(0)
𝑇

(𝐴
𝑇

𝑃 + 𝑃𝐴)𝜓 (0) + 2𝜓(0)
𝑇

𝑃𝐵𝜓 (−𝑟)

+ 2𝜓(0)
𝑇

𝑃𝐶∫

𝑟

0

ℎ (𝑢) 𝜓 (−𝑢) 𝑑𝑢
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≤ −𝜆min (𝑄)
󵄩
󵄩
󵄩
󵄩
𝜓(0)
󵄩
󵄩
󵄩
󵄩

2

+ 2 ‖𝑃𝐵‖ ⋅
󵄩
󵄩
󵄩
󵄩
𝜓 (0)

󵄩
󵄩
󵄩
󵄩
⋅
󵄩
󵄩
󵄩
󵄩
𝜓 (−𝑟)

󵄩
󵄩
󵄩
󵄩

+ 2 ‖𝑃𝐶‖ ⋅
󵄩
󵄩
󵄩
󵄩
𝜓 (0)

󵄩
󵄩
󵄩
󵄩
∫

𝑟

0

|ℎ (𝑢)| ⋅
󵄩
󵄩
󵄩
󵄩
𝜓 (−𝑢)

󵄩
󵄩
󵄩
󵄩
𝑑𝑢

≤ −

𝜆min (𝑄)

𝜆max (𝑃)
𝜓(0)
𝑇

𝑃𝜓 (0)

+

2 ‖𝑃𝐵‖

𝜆min (𝑃)
√𝜓(0)

𝑇

𝑃𝜓 (0) ⋅ 𝜓(−𝑟)
𝑇

𝑃𝜓 (−𝑟)

+

2 ‖𝑃𝐶‖

𝜆min (𝑃)
√𝜓(0)

𝑇

𝑃𝜓 (0)

× ∫

𝑟

0

|ℎ (𝑢)| √𝜓(−𝑢)
𝑇

𝑃𝜓 (−𝑢) 𝑑𝑢

≤ −

𝜆min (𝑄)

𝜆max (𝑃)
𝑉 (𝜓 (0))

+

2 ‖𝑃𝐵‖

𝜆min (𝑃)
√𝑉 (𝜓 (0)) ⋅ 𝑉 (𝜓 (−𝑟))

+

2 ‖𝑃𝐶‖

𝜆min (𝑃)
√𝑉 (𝜓 (0)) ∫

𝑟

0

|ℎ (𝑢)| √V (𝜓 (−𝑢)) 𝑑𝑢

≤ −

𝜆min (𝑄)

𝜆max (𝑃)
𝑉 (𝜓 (0)) +

2𝛽 ‖𝑃𝐵‖

𝜆min (𝑃)
𝑉 (𝜓 (0))

+

2𝛽 ‖𝑃𝐶‖

𝜆min (𝑃)
∫

𝑟

0

|ℎ (𝑢)| 𝑑𝑢𝑉 (𝜓 (0))

≤ −(

𝜆min (𝑄)

𝜆max (𝑃)
−

2𝛽 ‖𝑃𝐵‖

𝜆min (𝑃)
−

2𝛽M ‖𝑃𝐶‖

𝜆min (𝑃)
)𝑉 (𝜓 (0)) .

(14)

Let𝑀
1
and𝑀

2
be given by

𝑀
1
=

𝜏𝜆min (𝑄)

𝜆max (𝑃)
−

2𝜏𝛽 ‖𝑃𝐵‖

𝜆min (𝑃)
−

2𝜏𝛽M ‖𝑃𝐶‖

𝜆min (𝑃)
,

𝑀
2
= 2 ln𝛽.

(15)

Then we have 𝑀
1
> 𝑀
2
, by equality (13) on 𝛽. Thus, by

Lemma 4, it follows that the trivial solution of (3) is uniformly
asymptotically stable.

Our next theorem establishes conditions for uniform
asymptotic stability of trivial solution of (3) whenmatrix𝐴 is
unstable.

Theorem 8. Let 𝜏 = sup
𝑘∈𝑁
{𝑡
𝑘
− 𝑡
𝑘−1
} < ∞ and assume all

the eigenvalues of𝐴 have positive real parts. Suppose that there
exist a constant 0 < 𝛾 < 1 and two symmetrical positive definite
matrices 𝑃,𝑄 ∈ R𝑛×𝑛 such that

𝐴
𝑇

𝑃 + 𝑃𝐴 = 𝑄,

√

𝜆max (𝑃)

𝜆min (𝑃)

󵄩
󵄩
󵄩
󵄩
𝐼 + 𝐶
𝑘

󵄩
󵄩
󵄩
󵄩
≤ 𝛾,

ln 𝛾
𝜏

+

𝜆max (𝑄)

2𝜆min (𝑃)
+

‖𝑃𝐵‖

𝛾𝜆min (𝑃)
+

M ‖𝑃𝐶‖

𝛾𝜆min (𝑃)
< 0,

(16)

where M = ∫

𝛾

0
|ℎ(𝑢)|𝑑𝑢. Then the trivial solution of (3) is

uniformly asymptotically stable.

Proof. Define the Lyapunov function

𝑉 (𝑥) = 𝑥
𝑇

𝑃𝑥. (17)

Then, 𝑉 satisfies

𝜆min (𝑃) ‖𝑥‖
2

≤ 𝑉 (𝑥) ≤ 𝜆max (𝑃) ‖𝑥‖
2

, (18)

for all 𝑥 ∈ R𝑛. Furthermore,

𝑉 (𝜓 (0) + 𝐶
𝑘
𝜓 (0))

= [(𝐼 + 𝐶
𝑘
) 𝜓 (0)]

𝑇

𝑃 [(𝐼 + 𝐶
𝑘
) 𝜓 (0)]

= 𝜓(0)
𝑇

(𝐼 + 𝐶
𝑘
)
𝑇

𝑃 (𝐼 + 𝐶
𝑘
) 𝜓 (0)

≤ 𝜆max (𝑃) [(𝐼 + 𝐶𝑘) 𝜓 (0)]
𝑇

[(𝐼 + 𝐶
𝑘
) 𝜓 (0)]

≤ 𝜆max (𝑃)
󵄩
󵄩
󵄩
󵄩
(𝐼 + 𝐶

𝑘
)𝜓(0)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝜆max (𝑃)
󵄩
󵄩
󵄩
󵄩
(𝐼 + 𝐶

𝑘
)
󵄩
󵄩
󵄩
󵄩

2

⋅
󵄩
󵄩
󵄩
󵄩
𝜓(0)
󵄩
󵄩
󵄩
󵄩

2

≤

𝜆max (𝑃)

𝜆min (𝑃)

󵄩
󵄩
󵄩
󵄩
𝐼 + 𝐶
𝑘

󵄩
󵄩
󵄩
󵄩

2

𝜓(0)
𝑇

𝑃𝜓 (0) ≤ 𝛾
2

𝑉 (𝜓 (0)) .

(19)

Define 𝑔(𝑠) = 𝛾2𝑠. Then if 𝑉(𝜓(0)) ≥ 𝑔(𝑉(𝜓(𝑠))), for 𝑠 ∈
[−𝑟, 0], we have 𝑉(𝜓(−𝑟)) ≤ 𝑉(𝜓(0))/𝛾2 and 𝑉(𝜓(−𝑢)) ≤
𝑉(𝜓(0))/𝛾

2. Calculating the derivative of 𝑉 along solutions
of (3) gives us

𝐷
+

𝑉 (𝑡, 𝜓)

= 𝜓(0)
𝑇

𝑃[𝐴𝜓 (0) + 𝐵𝜓 (−𝑟) + 𝐶∫

𝑟

0

ℎ (𝑢) 𝜓 (−𝑢) 𝑑𝑢]

+ [𝐴𝜓(0) + 𝐵𝜓 (−𝑟) + 𝐶∫

𝑟

0

ℎ (𝑢) 𝜓 (−𝑢) 𝑑𝑢]

𝑇

𝑃𝜓 (0)

= 𝜓(0)
𝑇

(𝐴
𝑇

𝑃 + 𝑃𝐴)𝜓 (0) + 2𝜓(0)
𝑇

𝑃𝐵𝜓 (−𝑟)

+ 2𝜓(0)
𝑇

𝑃𝐶∫

𝑟

0

ℎ (𝑢) 𝜓 (−𝑢) 𝑑𝑢

≤ 𝜆max (𝑄)
󵄩
󵄩
󵄩
󵄩
𝜓 (0)

󵄩
󵄩
󵄩
󵄩

2

+ 2 ‖𝑃𝐵‖ ⋅
󵄩
󵄩
󵄩
󵄩
𝜓 (0)

󵄩
󵄩
󵄩
󵄩
⋅
󵄩
󵄩
󵄩
󵄩
𝜓 (−𝑟)

󵄩
󵄩
󵄩
󵄩

+ 2 ‖𝑃𝐶‖ ⋅
󵄩
󵄩
󵄩
󵄩
𝜓 (0)

󵄩
󵄩
󵄩
󵄩
∫

𝑟

0

|ℎ (𝑢)| ⋅
󵄩
󵄩
󵄩
󵄩
𝜓 (−𝑢)

󵄩
󵄩
󵄩
󵄩
𝑑𝑢

≤

𝜆max (𝑄)

𝜆min (𝑃)
𝜓(0)
𝑇

𝑃𝜓 (0)

+

2 ‖𝑃𝐵‖

𝜆min (𝑃)
√𝜓(0)

𝑇

𝑃𝜓 (0) ⋅ 𝜓(−𝑟)
𝑇

𝑃𝜓 (−𝑟)

+

2 ‖𝑃𝐶‖

𝜆min (𝑃)
√𝜓(0)

𝑇

𝑃𝜓 (0)

× ∫

𝑟

0

|ℎ (𝑢)| √𝜓(−𝑢)
𝑇

𝑃𝜓 (−𝑢) 𝑑𝑢
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≤

𝜆max (𝑄)

𝜆min (𝑃)
𝑉 (𝜓 (0)) +

2 ‖𝑃𝐵‖

𝜆min (𝑃)
√𝑉 (𝜓 (0)) ⋅ 𝑉 (𝜓 (−𝑟))

+

2 ‖𝑃𝐶‖

𝜆min (𝑃)
√𝑉 (𝜓 (0)) ∫

𝑟

0

|ℎ (𝑢)| √𝑉 (𝜓 (−𝑢)) 𝑑𝑢

≤

𝜆max (𝑄)

𝜆min (𝑃)
𝑉 (𝜓 (0)) +

2 ‖𝑃𝐵‖

𝛾𝜆min (𝑃)
𝑉 (𝜓 (0))

+

2 ‖𝑃𝐶‖

𝛾𝜆min (𝑃)
∫

𝑟

0

|ℎ (𝑢)| 𝑑𝑢𝑉 (𝜓 (0))

≤ (

𝜆max (𝑄)

𝜆min (𝑃)
+

2 ‖𝑃𝐵‖

𝛾𝜆min (𝑃)
+

2M ‖𝑃𝐶‖

𝛾𝜆min (𝑃)
)𝑉 (𝜓 (0)) .

(20)

Let𝑀
1
and𝑀

2
be given by

𝑀
1
=

𝜏𝜆max (𝑄)

𝜆min (𝑃)
+

2𝜏 ‖𝑃𝐵‖

𝛾𝜆min (𝑃)
+

2𝜏M ‖𝑃𝐶‖

𝛾𝜆min (𝑃)
,

𝑀
2
= −2 ln 𝛾.

(21)

Then, we have 𝑀
2
> 𝑀
1
, by inequality (16) on 𝛾. Thus, by

Lemma 5, it follows that the trivial solution of (3) is uniformly
asymptotically stable.

Remark 9. Note that inTheorems 7 and 8, the criteria require
the assumption that the time delay 𝛾 is finite, and so theymay
not be user-friendly in applications.Therefore, it is necessary
to investigate the stability of impulsive control systems with
infinite delays.

Theorem 10. Let 𝑡
𝑘
− 𝑡
𝑘−1

≤ 𝜇 and assume that all the
eigenvalues of 𝐴 have positive real parts. Suppose that there
exist a constant 0 < 𝛾 < 1 and two symmetrical positive definite
matrices 𝑃,𝑄 ∈ R𝑛×𝑛 such that

𝐴
𝑇

𝑃 + 𝑃𝐴 = 𝑄,

√

𝜆max (𝑃)

𝜆min (𝑃)

󵄩
󵄩
󵄩
󵄩
𝐼 + 𝐶
𝑘

󵄩
󵄩
󵄩
󵄩
≤ 𝛾,

ln 𝛾
𝜇

+

𝜆max (𝑄)

2𝜆min (𝑃)
+

‖𝑃𝐵‖

𝛾𝜆min (𝑃)
+

N ‖𝑃𝐶‖

𝛾𝜆min (𝑃)
< 0,

(22)

where N = ∫+∞
0
|ℎ(𝑢)|𝑑𝑢. Then the trivial solution of (4) is

uniformly stable.

Proof. Define the Lyapunov function

𝑉 (𝑥) = 𝑥
𝑇

𝑃𝑥. (23)

Then, 𝑉 satisfies

𝜆min (𝑃) ‖𝑥‖
2

≤ 𝑉 (𝑥) ≤ 𝜆max (𝑃) ‖𝑥‖
2

, (24)

for all 𝑥 ∈ R𝑛. Furthermore,

𝑉 (𝜓 (0) + 𝐶
𝑘
𝜓 (0))

= [(𝐼 + 𝐶
𝑘
) 𝜓 (0)]

𝑇

𝑃 [(𝐼 + 𝐶
𝑘
) 𝜓 (0)]

= 𝜓(0)
𝑇

(𝐼 + 𝐶
𝑘
)
𝑇

𝑃 (𝐼 + 𝐶
𝑘
) 𝜓 (0)

≤ 𝜆max (𝑃) [(𝐼 + 𝐶𝑘) 𝜓 (0)]
𝑇

[(𝐼 + 𝐶
𝑘
) 𝜓 (0)]

= 𝜆max (𝑃)
󵄩
󵄩
󵄩
󵄩
(𝐼 + 𝐶

𝑘
) 𝜓 (0)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝜆max (𝑃)
󵄩
󵄩
󵄩
󵄩
(𝐼 + 𝐶

𝑘
)
󵄩
󵄩
󵄩
󵄩

2

⋅
󵄩
󵄩
󵄩
󵄩
𝜓(0)
󵄩
󵄩
󵄩
󵄩

2

≤

𝜆max (𝑃)

𝜆min (𝑃)

󵄩
󵄩
󵄩
󵄩
𝐼 + 𝐶
𝑘

󵄩
󵄩
󵄩
󵄩

2

𝜓(0)
𝑇

𝑃𝜓 (0) ≤ 𝛾
2

𝑉 (𝜓 (0)) .

(25)

Define 𝑔(𝑠) = 𝛾2𝑠. Then if 𝑉(𝜓(0)) ≥ 𝑔(𝑉(𝜓(𝑠))), for 𝑠 ∈
[−∞, 0], we have 𝑉(𝜓(−𝑟)) ≤ 𝑉(𝜓(0))/𝛾2 and 𝑉(𝜓(−𝑢)) ≤
𝑉(𝜓(0))/𝛾

2. Calculating the derivative of 𝑉 along solutions
of (3) gives us

𝐷
+

𝑉 (𝑡, 𝜓)

= 𝜓(0)
𝑇

𝑃[𝐴𝜓 (0) + 𝐵𝜓 (−𝑟) + 𝐶∫

+∞

0

ℎ (𝑢) 𝜓 (−𝑢) 𝑑𝑢]

+ [𝐴𝜓 (0) + 𝐵𝜓 (−𝑟) + 𝐶∫

+∞

0

ℎ (𝑢) 𝜓 (−𝑢) 𝑑𝑢]

𝑇

𝑃𝜓 (0)

= 𝜓(0)
𝑇

(𝐴
𝑇

𝑃 + 𝑃𝐴)𝜓 (0) + 2𝜓(0)
𝑇

𝑃𝐵𝜓 (−𝑟)

+ 2𝜓(0)
𝑇

𝑃𝐶∫

+∞

0

ℎ (𝑢) 𝜓 (−𝑢) 𝑑𝑢

≤ 𝜆max (𝑄)
󵄩
󵄩
󵄩
󵄩
𝜓(0)
󵄩
󵄩
󵄩
󵄩

2

+ 2 ‖𝑃𝐵‖ ⋅
󵄩
󵄩
󵄩
󵄩
𝜓 (0)

󵄩
󵄩
󵄩
󵄩
⋅
󵄩
󵄩
󵄩
󵄩
𝜓 (−𝑟)

󵄩
󵄩
󵄩
󵄩

+ 2 ‖𝑃𝐶‖ ⋅
󵄩
󵄩
󵄩
󵄩
𝜓 (0)

󵄩
󵄩
󵄩
󵄩
∫

+∞

0

|ℎ (𝑢)| ⋅
󵄩
󵄩
󵄩
󵄩
𝜓 (−𝑢)

󵄩
󵄩
󵄩
󵄩
𝑑𝑢

≤

𝜆max (𝑄)

𝜆min (𝑃)
𝜓(0)
𝑇

𝑃𝜓 (0)

+

2 ‖𝑃𝐵‖

𝜆min (𝑃)
√𝜓(0)

𝑇

𝑃𝜓 (0) ⋅ 𝜓(−𝑟)
𝑇

𝑃𝜓 (−𝑟)

+

2 ‖𝑃𝐶‖

𝜆min (𝑃)
√𝜓(0)

𝑇

𝑃𝜓 (0)

× ∫

+∞

0

|ℎ (𝑢)| √𝜓(−𝑢)
𝑇

𝑃𝜓 (−𝑢) 𝑑𝑢

≤

𝜆max (𝑄)

𝜆min (𝑃)
𝑉 (𝜓 (0)) +

2 ‖𝑃𝐵‖

𝜆min (𝑃)
√𝑉 (𝜓 (0)) ⋅ 𝑉 (𝜓 (−𝑟))

+

2 ‖𝑃𝐶‖

𝜆min (𝑃)
√𝑉 (𝜓 (0)) ∫

+∞

0

|ℎ (𝑢)| √𝑉 (𝜓 (−𝑢)) 𝑑𝑢
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≤

𝜆max (𝑄)

𝜆min (𝑃)
𝑉 (𝜓 (0)) +

2 ‖𝑃𝐵‖

𝛾𝜆min (𝑃)
𝑉 (𝜓 (0))

+

2 ‖𝑃𝐶‖

𝛾𝜆min (𝑃)
∫

+∞

0

|ℎ (𝑢)| 𝑑𝑢𝑉 (𝜓 (0))

≤ (

𝜆max (𝑄)

𝜆min (𝑃)
+

2 ‖𝑃𝐵‖

𝛾𝜆min (𝑃)
+

2N ‖𝑃𝐶‖

𝛾𝜆min (𝑃)
)𝑉 (𝜓 (0)) .

(26)

Let𝑀
1
and𝑀

2
be given by

𝑀
1
=

𝜇𝜆max (𝑄)

𝜆min (𝑃)
+

2𝜇 ‖𝑃𝐵‖

𝛾𝜆min (𝑃)
+

2𝜇N ‖𝑃𝐶‖

𝛾𝜆min (𝑃)
,

𝑀
2
= −2 ln 𝛾.

(27)

Then, we have 𝑀
2
> 𝑀
1
, by inequality (22) on 𝛾. Thus,

by Lemma 6, it follows that the trivial solution of (4) is
uniformly stable.

Remark 11. In this paper, a new technique is offered to estab-
lish the stability criteria for finite and infinite delay impulsive
control systems. In the above theories, rather than employing
Razumikhin techniques and Lyapunov functions, we adopt
the largest and smallest eigenvalue so that not only can
they be easier constructed, but also the conditions ensuring
the required stability are less restrictive. Furthermore, in
Theorem 10, the obtained stability criterion is for impulsive
control systemswith both finite and infinite delays.Therefore,
the result is rather general and has great power in applica-
tions.

4. Applications

Example 1. Consider the following impulsive control sys-
tems:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝑟) + 𝐶∫

+∞

0

ℎ (𝑢) 𝑥 (𝑡 − 𝑢) 𝑑𝑢,

𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡
𝑘
) = 𝑥 (𝑡

+

𝑘
) − 𝑥 (𝑡

−

𝑘
) = 𝐶
𝑘
𝑥 (𝑡
−

𝑘
) , 𝑘 ∈ 𝑁,

(28)

where ℎ(𝑢) = 𝑒−𝑢, 𝑢 > 0 and with the following parameter
matrices:

𝐴 = [

1.2 −1.1

0.7 0.8
] , 𝐵 = [

−1.3 0.7

−0.9 0.5
] ,

𝐶 = [

−0.1 −0.22

0.43 0.65
] , 𝐶

𝑘
= [

−0.8 0.2

−0.2 −0.9
] .

(29)

Property 1. The trivial solution of the system (28) is uniformly
stable if there exists constant 𝛾 ∈ (0.4922, 1) such that

4.1189

𝛾

+

ln 𝛾
𝜇

< −2.8015. (30)

Proof. Obviously,

N = ∫
+∞

0

𝑒
−𝑢

𝑑𝑢 = 1. (31)

Choose a symmetric positive definite matrix 𝑃 as follows:

𝑃 = [

0.16 −0.08

−0.08 0.29
] . (32)

We directly calculate the following parameters:

‖𝑃𝐵‖ = 0.2371, ‖𝑃𝐶‖ = 0.2650,

󵄩
󵄩
󵄩
󵄩
𝐼 + 𝐶
𝑘

󵄩
󵄩
󵄩
󵄩
= 0.300, 𝜆min (𝑃) = 0.1219,

𝜆max (𝑃) = 0.3281, √

𝜆max (𝑃)

𝜆min (𝑃)

󵄩
󵄩
󵄩
󵄩
𝐼 + 𝐶
𝑘

󵄩
󵄩
󵄩
󵄩
= 0.4922,

𝜆max (𝑄) = 0.6830,

(33)

where 𝑄 = 𝐴𝑇𝑃 + 𝑃𝐴. So by (30), it can be deduced that

ln 𝛾
𝜇

+

𝜆max (𝑄)

2𝜆min (𝑃)
+

‖𝑃𝐵‖
2

𝛾𝜆min (𝑃)
+

N‖𝑃𝐶‖
2

𝛾𝜆min (𝑃)

=

4.1189

𝛾

+

ln 𝛾
𝜇

+ 2.8015 < 0.

(34)

Suppose in addition that the impulsive times occur with a
frequency of 𝜇 = 0.04. Also, a simple check shows that both of
these conditions are satisfied by choosing 𝛾 = 0.5. Therefore,
uniformly stable of the trivial solution of (28) can be obtained
byTheorem 10.

Example 2. Consider the impulsive control systems (28)
where ℎ(𝑢) = 2𝑒−𝑢, 𝑢 > 0 and with the following parameter
matrices:

𝐴 =
[

[

−2 1 1

0 3 −1

1 2 4

]

]

, 𝐵 =
[

[

2 0 1

−1 1 −2

−3 0 1

]

]

,

𝐶 =
[

[

1 −2 2

−2 −1 −1

5 −1 1

]

]

, 𝐶
𝑘
=
[

[

−1.1 0.1 0

0 −1.1 0.1

0.2 0 −1.2

]

]

.

(35)

Property 2. The trivial solution of the system (28) is uni-
formly stable if there exists constant 𝛾 ∈ (0.5801, 1) such that

26.6491

𝛾

+

ln 𝛾
𝜇

< −9.2250. (36)

Proof. Obviously,

N = ∫
+∞

0

2𝑒
−𝑢

𝑑𝑢 = 2. (37)

Choose a symmetric positive definite matrix 𝑃 as follows:

𝑃 =
[

[

0.1929 −0.0893 −0.0786

−0.0893 0.2500 0.0714

−0.0786 0.0714 0.1643

]

]

. (38)
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We directly calculate the following parameters:

‖𝑃𝐵‖
2
= 1.3240, ‖𝑃𝐶‖

2
= 0.6518,

󵄩
󵄩
󵄩
󵄩
𝐼 + 𝐶
𝑘

󵄩
󵄩
󵄩
󵄩2
= 0.3000, 𝜆min (𝑃) = 0.0986,

𝜆max (𝑃) = 0.3687, √

𝜆max (𝑃)

𝜆min (𝑃)

󵄩
󵄩
󵄩
󵄩
𝐼 + 𝐶
𝑘

󵄩
󵄩
󵄩
󵄩2
= 0.5801,

𝜆max (𝑄) = 1.8251,

(39)

where 𝑄 = 𝐴𝑇𝑃 + 𝑃𝐴. So by (36), it can be deduced that

ln 𝛾
𝜇

+

𝜆max (𝑄)

2𝜆min (𝑃)
+

‖𝑃𝐵‖
2

𝛾𝜆min (𝑃)
+

N‖𝑃𝐶‖
2

𝛾𝜆min (𝑃)

=

26.6491

𝛾

+

ln 𝛾
𝜇

+ 9.2550 < 0.

(40)

Suppose in addition that the impulsive times occur with a
frequency of 𝜌 = 0.009. Also, a simple check shows that
both of these conditions are satisfied by choosing 𝛾 = 0.6.
Therefore, robust exponential stability of the trivial solution
of (28) can be obtained byTheorem 10.
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