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This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key
is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables,
and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification
algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence
analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an
illustrative example is provided to show that the proposed algorithm is effective.

1. Introduction

Parameter estimation and identification have had important
applications in systemmodelling, system control, and system
analysis [1–5] and thus have receivedmuch research attention
in recent decades [6–11]. Several identification methods have
been developed for state space models, for example, the
subspace identification methods [12]. Gibson and Ninness
presented a robust maximum-likelihood estimation for fully
parameterized linear time-invariant (LTI) state space mod-
els; the idea is to use the expectation maximization (EM)
algorithm to estimate maximum-likelihood degrees [13].
Raghavan et al. studied the EM-based state space model
identification problems with irregular output sampling [14].

The state space model includes not only the unknown
parameter matrices/vectors, but also the unknown noise
terms in the formation vector and unmeasurable state vector.
Many algorithms can estimate the system states assuming
that the system parameter matrices/vectors are available but
such state estimation algorithm cannot work if the system
parameters are unknown [15]. Recently, Ding presented
a combined state and least squares parameter estimation
algorithm for dynamic systems [16].

In the area of state space model identification, Ding
and Chen proposed a hierarchical identification estimation
algorithm for estimating the system parameters and states

[17]. Li et al. assumed that the system states were available
and used the measurable states and input-output data to
estimate the parameters of lifted state space models for
general dual-rate systems [18]. Recently, some identification
methods have been developed, for example, the least squares
methods [19, 20], the gradient-based methods [21, 22], the
bias compensation methods [23, 24], and the maximum
likelihood methods [25–30]. The objective of this paper is to
present a new parameter and state estimation-based residual
algorithm from the given input-output data and further to
analyze the convergence of the proposed algorithm.

The convergence analysis of identification algorithms has
always been one of the important projects in the field of
control. By using the stochastic martingale theory, Ding et
al. studied the properties of stochastic gradient identifica-
tion algorithms under weak conditions [31]. Ding and Liu
discussed the gradient-based identification approach and
convergence for multivariable systems with output measure-
ment noise [32]. Other identification methods for linear
or nonlinear systems [33–42] include the auxiliary model
identification methods [43–57], the hierarchical identifi-
cation methods [58–73], and the two-stage or multistage
identification methods [74–78].

This paper is organized as follows. Section 2 introduces
the system description and its identification model paper.
Section 3 derives a basic parameter identification algorithm
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for canonical state space systems and analyzes the perfor-
mance of the proposed algorithm. Section 4 gives a state
estimation algorithm. Section 5 provides an example for the
proposed algorithm. Finally, concluding remarks are given in
Section 6.

2. System Description and
Identification Model

Let us introduce some notation [15]. “𝐴 =: 𝑋” or “𝑋 := 𝐴”
stands for “𝐴 is defined as 𝑋”; the symbol I(I

𝑛
) stands for an

identity matrix of appropriate size (𝑛 × 𝑛); the superscript T
denotes the matrix transpose; |X| = det[X] represents the
determinant of a square matrix X; the norm of a matrix X
is defined by ‖X‖2 = tr[XXT

]; 1
𝑛

:= 1
𝑛×1

represents an
𝑛 × 1 vector whose elements are all 1; 𝜆min[X] represents the
minimum eigenvalues of X; for 𝑔(𝑡) ⩾ 0, we write 𝑓(𝑡) =

𝑂(𝑔(𝑡)) if there exists a positive constant 𝛿
1
such that |𝑓(𝑡)| ⩽

𝛿
1
𝑔(𝑡).
In order to study the convergence of the algorithm

proposed in [15], here we simply give that algorithm in
[15]. Consider a linear system described by the following
observability canonical state space model [15]:

x (𝑡 + 1) = Ax (𝑡) + b𝑢 (𝑡) ,

𝑦 (𝑡) = cx (𝑡) + V (𝑡) ,
(1)

A :=

[
[
[
[
[
[
[

[

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 d
...

...
... d 0

0 0 ⋅ ⋅ ⋅ 0 1

−𝑎
𝑛

−𝑎
𝑛−1

−𝑎
𝑛−2

⋅ ⋅ ⋅ −𝑎
1

]
]
]
]
]
]
]

]

∈ R
𝑛×𝑛

,

b :=

[
[
[
[

[

𝑏
1

𝑏
2

...
𝑏
𝑛

]
]
]
]

]

∈ R
𝑛

,

c := [1, 0, 0, . . . , 0] ∈ R
1×𝑛

,

(2)

where x(𝑡) ∈ R𝑛 is the state vector, 𝑢(𝑡) ∈ R is the system
input,𝑦(𝑡) ∈ R is the system output, and V(𝑡) ∈ R is a random
noise with zero mean. Assume that the order 𝑛 is known, and
𝑢(𝑡) = 0, 𝑦(𝑡) = 0 and V(𝑡) = 0 for 𝑡 ⩽ 0.

The system in (1) is an observability canonical form, and
its observability matrixQ

𝑜
is an identity matrix; that is,

Q
𝑜
:=

[
[
[
[

[

c
cA
...

cA𝑛−1

]
]
]
]

]

= I
𝑛
. (3)

For the system in (1), the objective of this paper is
to develop a new algorithm to estimate the parameter
matrix/vector A and b (i.e., the parameters 𝑎

𝑖
and 𝑏

𝑖
) and

the system state vector x(𝑡) from the available measurement
input-output data {𝑢(𝑡), 𝑦(𝑡)}.

Since the available measurement input-output data
{𝑢(𝑡), 𝑦(𝑡)} are known but the state vector x(𝑡) is unknown,
it is required to eliminate the state vector from (1) and obtain
a new expression which only involves the input and output,
in order to obtain the estimates of the parameters in (1).
The following derives the identification model based on the
method in [15].

Define some vectors/matrix,

𝜑
𝑦
(𝑡) := [𝑦 (𝑡 − 𝑛) , 𝑦 (𝑡 − 𝑛 + 1) , . . . , 𝑦 (𝑡 − 1)]

T
∈ R
𝑛

,

𝜑
𝑢
(𝑡) := [𝑢 (𝑡 − 𝑛) , 𝑢 (𝑡 − 𝑛 + 1) , . . . , 𝑢 (𝑡 − 1)]

T
∈ R
𝑛

,

𝜑V (𝑡) := [V (𝑡 − 𝑛) , V (𝑡 − 𝑛 + 1) , . . . , V (𝑡 − 1)]
T
∈ R
𝑛

,

M :=

[
[
[
[
[
[
[

[

0 0 ⋅ ⋅ ⋅ 0 0

cb 0 ⋅ ⋅ ⋅ 0 0

cAb cb d
...

...
...

... d 0 0

cA𝑛−2b cA𝑛−3b ⋅ ⋅ ⋅ cb 0

]
]
]
]
]
]
]

]

∈ R
𝑛×𝑛

.

(4)

From (1), we have

𝑦 (𝑡) = cx (𝑡) + V (𝑡) , (5)

𝑦 (𝑡 + 1) = cx (𝑡 + 1) + V (𝑡 + 1)

= c [Ax (𝑡) + b𝑢 (𝑡)] + V (𝑡 + 1)

= cAx (𝑡) + cb𝑢 (𝑡) + V (𝑡 + 1) ,

(6)

𝑦 (𝑡 + 2) = cAx (𝑡 + 1) + cb𝑢 (𝑡 + 1) + V (𝑡 + 2)

= cA [Ax (𝑡) + b𝑢 (𝑡)] + cb𝑢 (𝑡 + 1) + V (𝑡 + 2)

= cA2x (𝑡) + cAb𝑢 (𝑡) + cb𝑢 (𝑡 + 1) + V (𝑡 + 2) ,

...
(7)

𝑦 (𝑡 + 𝑛 − 1) = cA𝑛−1x (𝑡) + cA𝑛−2b𝑢 (𝑡) + cA𝑛−3b𝑢 (𝑡 − 1)

+ ⋅ ⋅ ⋅ + cb𝑢 (𝑡 + 𝑛 − 2) + V (𝑡 + 𝑛 − 1) ,

(8)

𝑦 (𝑡 + 𝑛) = cA𝑛x (𝑡) + cA𝑛−1b𝑢 (𝑡) + cA𝑛−2b𝑢 (𝑡 − 1)

+ ⋅ ⋅ ⋅ + cb𝑢 (𝑡 + 𝑛 − 1) + V (𝑡 + 𝑛) .

(9)

Combining (5) with (8) gives

𝜑
𝑦
(𝑡 + 𝑛) = Q

𝑜
x (𝑡) +M𝜑

𝑢
(𝑡 + 𝑛) + 𝜑V (𝑡 + 𝑛)

= x (𝑡) +M𝜑
𝑢
(𝑡 + 𝑛) + 𝜑V (𝑡 + 𝑛) ,

(10)

or

x (𝑡) = 𝜑
𝑦
(𝑡 + 𝑛) −M𝜑

𝑢
(𝑡 + 𝑛) − 𝜑V (𝑡 + 𝑛) . (11)
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Define the parameter vector 𝜃 and the information vector
𝜑(𝑡) as

𝜃 := [
𝜃
𝑎

𝜃
𝑏

] ∈ R
2𝑛

,

𝜃
𝑎
:= [cA𝑛]T ∈ R

𝑛

,

𝜃
𝑏
:= [−cA𝑛M + [cA𝑛−1b, cA𝑛−1b, . . . , cb]]

T
∈ R
𝑛

,

𝜑 (𝑡 + 𝑛) := [𝜑
T
𝑦
(𝑡 + 𝑛) − 𝜑

T
V (𝑡 + 𝑛) ,𝜑

T
𝑢
(𝑡 + 𝑛)]

T
∈ R
2𝑛

.

(12)

Substituting (11) into (9) gives

𝑦 (𝑡 + 𝑛)

= cA𝑛 [𝜑
𝑦
(𝑡 + 𝑛) −M𝜑

𝑢
(𝑡 + 𝑛) − 𝜑V (𝑡 + 𝑛)]

+ cA𝑛−1b𝑢 (𝑡) + cA𝑛−2b𝑢 (𝑡 − 1)

+ ⋅ ⋅ ⋅ + cb𝑢 (𝑡 + 𝑛 − 1) + V (𝑡 + 𝑛)

= cA𝑛 [𝜑
𝑦
(𝑡 + 𝑛) −M𝜑

𝑢
(𝑡 + 𝑛) − 𝜑V (𝑡 + 𝑛)]

+ [cA𝑛−1b, cA𝑛−2b, . . . , cb]
[
[
[
[

[

𝑢 (𝑡)

𝑢 (𝑡 − 1)

...
𝑢 (𝑡 + 𝑛 − 1)

]
]
]
]

]

+ V (𝑡 + 𝑛)

= cA𝑛 [𝜑
𝑦
(𝑡 + 𝑛) − 𝜑V (𝑡 + 𝑛)] − cA𝑛M𝜑

𝑢
(𝑡 + 𝑛)

+ [cA𝑛−1b, cA𝑛−2b, . . . , cb]𝜑
𝑢
(𝑡 + 𝑛) + V (𝑡 + 𝑛)

= [𝜑
T
𝑦
(𝑡 + 𝑛) − 𝜑

T
V (𝑡 + 𝑛) ,𝜑

T
𝑢
(𝑡 + 𝑛)] [

𝜃
𝑎

𝜃
𝑏

] + V (𝑡 + 𝑛)

= 𝜑
T
(𝑡 + 𝑛) 𝜃 + V (𝑡 + 𝑛) .

(13)

Replacing 𝑡 in (13) with 𝑡 − 𝑛 yields

𝑦 (𝑡) = 𝜑
T
(𝑡) 𝜃 + V (𝑡) , (14)

which is called the identification model or identification
expression of the state-space model.

3. The Parameter Estimation
Algorithm and Its Convergence

The recursive least squares algorithm for estimating 𝜃 is
expressed as

𝜃̂ (𝑡) = 𝜃̂ (𝑡 − 1) + P (𝑡) 𝜑̂ (𝑡) [𝑦 (𝑡) − 𝜑̂
T
(𝑡) 𝜃̂ (𝑡 − 1)] , (15)

P−1 (𝑡) = P−1 (𝑡 − 1) + 𝜑̂ (𝑡) 𝜑̂
T
(𝑡) , P (0) = 𝑝

0
I, (16)

V̂ (𝑡) = 𝑦 (𝑡) − 𝜑̂
T
(𝑡) 𝜃̂ (𝑡) , (17)

𝜑̂ (𝑡) = [𝑦 (𝑡 − 𝑛) − V̂ (𝑡 − 𝑛) ,

𝑦 (𝑡 − 𝑛 + 1) − V̂ (𝑡 − 𝑛 + 1) , . . . ,

𝑦 (𝑡 − 1) − V̂ (𝑡 − 1) , 𝑢 (𝑡 − 𝑛) ,

𝑢 (𝑡 − 𝑛 + 1) , . . . , 𝑢 (𝑡 − 1)]
T
.

(18)

This algorithm is commonly used for convergence analysis.
To avoid computing the matrix inversion, this algorithm is
equivalently expressed as

𝜃̂ (𝑡) = 𝜃̂ (𝑡 − 1) + L (𝑡) [𝑦 (𝑡) − 𝜑̂
T
(𝑡) 𝜃̂ (𝑡 − 1)] , (19)

L (𝑡) = P (𝑡) 𝜑̂ (𝑡) =
P (𝑡 − 1) 𝜑̂ (𝑡)

1 + 𝜑̂
T
(𝑡)P (𝑡 − 1) 𝜑̂ (𝑡)

, (20)

P (𝑡) = [I − L (𝑡) 𝜑̂
T
(𝑡)]P (𝑡 − 1) , P (0) = 𝑝

0
I, (21)

V̂ (𝑡) = 𝑦 (𝑡) − 𝜑̂
T
(𝑡) 𝜃̂ (𝑡) , (22)

𝜑̂ (𝑡) = [𝜑̂
T
(𝑡 − 𝑛) 𝜃̂ (𝑡 − 𝑛) ,

𝜑̂
T
(𝑡 − 𝑛 + 1) 𝜃̂ (𝑡 − 𝑛 + 1) , . . . , 𝜑̂

T
(𝑡 − 1) 𝜃̂ (𝑡 − 1) ,

𝑢 (𝑡 − 𝑛) , 𝑢 (𝑡 − 𝑛 + 1) , . . . , 𝑢 (𝑡 − 1)]
T
,

(23)

where L(𝑡) ∈ R2𝑛 is the gain vector.
Define the parameter estimation error vector 𝜃̃(𝑡) :=

𝜃̂(𝑡)−𝜃 and the nonnegative function𝑇(𝑡) := 𝜃̃
T
(𝑡)P−1(𝑡)𝜃̃(𝑡).

Theorem 1. For the system in (1) and algorithm in (15)–
(18), assume that {V(𝑡),F

𝑡
} is a martingale difference sequence

defined on a probability space {Ω,F, 𝑃}, where {F
𝑡
} is the

𝜎 algebra sequence generated by the observations up to and
including time 𝑡.The noise sequence {V(𝑡)} satisfies the following
assumptions:

(A1) E [V(𝑡) | F
𝑡−1

] = 0, a.s.,
(A2) E [V2(𝑡) | F

𝑡−1
] ⩽ 𝜎
2

< ∞, a.s.,
(A3) 𝐴󸀠(𝑧) := 𝐴

−1

(𝑧) − 1/2 is strictly positive real.

Then the following inequality holds:

E [𝑇 (𝑡) + 𝑆 (𝑡) | F
𝑡−1

]

⩽ 𝑇 (𝑡 − 1) + 𝑆 (𝑡 − 1) + 2𝜑̂
T
(𝑡)P (𝑡) 𝜑̂ (𝑡) 𝜎

2

,

(24)
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where

𝑆 (𝑡) := 2

𝑡

∑

𝑖=1

𝑢̃ (𝑖) 𝑦 (𝑖) ⩾ 0, (25)

𝑢̃ (𝑡) := −𝜑̂
T
(𝑡) 𝜃̃ (𝑡) , (26)

𝑦 (𝑡) :=
1

2
𝜑̂

T
(𝑡) 𝜃̃ (𝑡) + [𝑦 (𝑡) − 𝜑̂

T
(𝑡) 𝜃̂ (𝑡) − V (𝑡)] . (27)

Proof. Define the innovation vector 𝑒(𝑡) := 𝑦(𝑡) − 𝜑̂
T
(𝑡)𝜃̂(𝑡 −

1). Using (17), it follows that

V̂ (𝑡) = [1 − 𝜑̂
T
(𝑡)P (𝑡) 𝜑̂ (𝑡)] 𝑒 (𝑡)

=
𝑒 (𝑡)

1 + 𝜑̂
T
(𝑡)P (𝑡 − 1) 𝜑̂ (𝑡)

.

(28)

Subtracting 𝜃 from both sides of (15) and using (14), we have

𝜃̃ (𝑡) = 𝜃̂ (𝑡) − 𝜃 = 𝜃̃ (𝑡 − 1) + P (𝑡) 𝜑̂ (𝑡) 𝑒 (𝑡)

= 𝜃̃ (𝑡 − 1) + P (𝑡 − 1) 𝜑̂ (𝑡) V̂ (𝑡) .
(29)

According to the definition of 𝑇(𝑡) and using (16) and (29),
we have

𝑇 (𝑡) = 𝑇 (𝑡 − 1) + 𝜃̃
T
(𝑡) 𝜑̂ (𝑡) 𝜑̂

T
(𝑡) 𝜃̃ (𝑡)

+ 2𝜑̂
T
(𝑡) 𝜃̃ (𝑡) V̂ (𝑡) − 𝜑̂T (𝑡)P (𝑡) 𝜑̂ (𝑡)

× [1 − 𝜑̂
T
(𝑡)P (𝑡) 𝜑̂ (𝑡)] 𝑒

2

(𝑡)

⩽ 𝑇 (𝑡 − 1) + 𝜃̃
T
(𝑡) 𝜑̂ (𝑡) 𝜑̂

T
(𝑡) 𝜃̃ (𝑡)

+ 2𝜑̂
T
(𝑡) 𝜃̃ (𝑡) V̂ (𝑡)

= 𝑇 (𝑡 − 1) + 2𝜑̂
T
(𝑡) 𝜃̃ (𝑡)

× [
1

2
𝜃̃
T
(𝑡) 𝜑̂ (𝑡) + (V̂ (𝑡) − V (𝑡))] + 2𝜑̂

T
(𝑡) 𝜃̃ (𝑡) V̂ (𝑡) .

(30)

Using (26), (27), and (29), and 0 ⩽ 𝜑̂
T
(𝑡)P(𝑡)𝜑̂(𝑡) ⩽ 1, we have

𝑇 (𝑡) ⩽ 𝑇 (𝑡 − 1) − 2𝑢̃ (𝑡) 𝑦 (𝑡) + 2𝜑̂
T
(𝑡)

× [𝜃̃ (𝑡 − 1) + P (𝑡) 𝜑̂ (𝑡) 𝑒 (𝑡)] V (𝑡)

= 𝑇 (𝑡 − 1) − 2𝑢̃ (𝑡) 𝑦 (𝑡) + 2𝜑̂
T
(𝑡) 𝜃̃ (𝑡 − 1) V (𝑡)

+ 2𝜑̂
T
(𝑡)P (𝑡) 𝜑̂ (𝑡) [𝑒 (𝑡) − V (𝑡)] V (𝑡) + V2 (𝑡) .

(31)

Since 𝜑̂T(𝑡)𝜃̃(𝑡−1), 𝑒(𝑡)− V(𝑡), 𝜑̂T(𝑡)P(𝑡)𝜑̂(𝑡) are uncorrelated
with V(𝑡) and are F

𝑡−1
-measurable, taking the conditional

expectation with respect toF
𝑡−1

and using (A1)-(A2) give

E [𝑇 (𝑡) | F
𝑡−1

] ⩽ 𝑇 (𝑡 − 1) − 2E [𝑢̃ (𝑡) 𝑦 (𝑡) | F
𝑡−1

]

+ 2𝜑̂
T
(𝑡)P (𝑡) 𝜑̂ (𝑡) 𝜎

2

, a.s.
(32)

The state spacemodel in (1) can be transformed into an input-
output representation,

𝑦 (𝑡) = c(𝑧I − A)−1b𝑢 (𝑡) + V (𝑡)

=
c adj [𝑧I − A] b
det [𝑧I − A]

𝑢 (𝑡) + V (𝑡)

=:
𝐵 (𝑧)

𝐴 (𝑧)
𝑢 (𝑡) + V (𝑡) ,

(33)

where adj[𝑧I − A] is the adjoint matrix of [𝑧I − A], 𝐴(𝑧)
and 𝐵(𝑧) are polynomials in a unit backward shift operator
𝑧
−1

[𝑧
−1

𝑦(𝑡) = 𝑦(𝑡 − 1)], and

𝐴 (𝑧) := 𝑧
−𝑛 det [𝑧I − A] ,

𝐵 (𝑧) := 𝑧
−𝑛c adj [𝑧I − A] b.

(34)

Referring to the proof of Lemma 3 in [43], using (33), we have

𝐴 (𝑧) [V̂ (𝑡) − V (𝑡)] = 𝐴 (𝑧) V̂ (𝑡) − 𝐴 (𝑧) 𝑦 (𝑡) + 𝐵 (𝑧) 𝑢 (𝑡)

= −𝐴 (𝑧) 𝜑̂
T
(𝑡) 𝜃̂ (𝑡) + 𝐵 (𝑧) 𝑢 (𝑡)

= −𝜑̂
T
(𝑡) 𝜃̃ (𝑡) = 𝑢̃ (𝑡) .

(35)

Using (17), (26), and (35), from (27), we get

𝑦 (𝑡) =
1

2
𝜑̂
T
(𝑡) 𝜃̃ (𝑡) + [V̂ (𝑡) − V (𝑡)]

= [𝐴
−1

(𝑧) −
1

2
] 𝑢̃ (𝑡) .

(36)

Since 𝐴
󸀠

(𝑧) is a strictly positive real function, referring to
Appendix C in [79], we can obtain the conclusion 𝑆(𝑡) ⩾ 0.
Adding both sides of (32) by 𝑆(𝑡) gives the conclusion of
Theorem 1.

Theorem 2. For the system in (1) and the algorithm in (15)–
(18), assume that (A1)–(A3) hold and that 𝐴(𝑧) is stable; that
is, all zeros of𝐴(𝑧) are inside the unit circle; then the parameter
estimation error satisfies

󵄩󵄩󵄩󵄩󵄩
𝜃̂ (𝑡) − 𝜃

󵄩󵄩󵄩󵄩󵄩

2

= 𝑂(
[ln 𝑟 (𝑡)]

𝑐

𝜆min [P−1 (𝑡)]
) , 𝑎.𝑠., 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑐 > 1.

(37)

Proof. Using the formula 𝜆min[Q]‖x‖2 ⩽ xTQx ⩽

𝜆max[Q]‖x‖2, and from the definition of 𝑇(𝑡), we have

󵄩󵄩󵄩󵄩󵄩
𝜃̃ (𝑡)

󵄩󵄩󵄩󵄩󵄩

2

⩽
𝜃̃
T
(𝑡)P−1 (𝑡) 𝜃̃ (𝑡)
𝜆min [P−1 (𝑡)]

=
𝑇 (𝑡)

𝜆min [P−1 (𝑡)]
. (38)

Let

𝑊(𝑡) :=
𝑇 (𝑡) + 𝑆 (𝑡)

[ln 󵄨󵄨󵄨󵄨P−1 (𝑡)
󵄨󵄨󵄨󵄨]
𝑐
, 𝑐 > 1. (39)
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Since ln |P−1(𝑡)| is nondecreasing, usingTheorem 1 yields

E [𝑊 (𝑡) | F
𝑡−1

] ⩽
𝑇 (𝑡 − 1) + 𝑆 (𝑡 − 1)

[ln 󵄨󵄨󵄨󵄨P−1 (𝑡)
󵄨󵄨󵄨󵄨]
𝑐

+
2𝜑̂

T
(𝑡)P (𝑡) 𝜑̂ (𝑡)

[ln 󵄨󵄨󵄨󵄨P−1 (𝑡)
󵄨󵄨󵄨󵄨]
𝑐

𝜎
2

⩽ 𝑉 (𝑡 − 1) +
2𝜑̂

T
(𝑡)P (𝑡) 𝜑̂ (𝑡)

[ln 󵄨󵄨󵄨󵄨P−1 (𝑡)
󵄨󵄨󵄨󵄨]
𝑐

𝜎
2

, a.s.

(40)

Referring to the proof of Theorem 2 in [43], we have

󵄩󵄩󵄩󵄩󵄩
𝜃̃ (𝑡) − 𝜃

󵄩󵄩󵄩󵄩󵄩

2

= 𝑂(

[ln 󵄨󵄨󵄨󵄨󵄨
P−1 (𝑡)󵄨󵄨󵄨󵄨󵄨]

𝑐

𝜆min [P−1 (𝑡)]
)

= 𝑂(
[ln 𝑟 (𝑡)]

𝑐

𝜆min [P−1 (𝑡)]
) , a.s. for any 𝑐 > 1.

(41)

Assume that there exist positive constants 𝛾, 𝑐
1
, 𝑐
2
, and

𝑡
0
such that the following generalized persistent excitation

condition (unbounded condition number) holds:

𝑐
1
I ⩽ 1

𝑡

𝑡

∑

𝑗=1

𝜑 (𝑗)𝜑
T
(𝑗) ⩽ 𝑐

2
𝑡
𝛾I, a.s., for 𝑡 ⩾ 𝑡

0
. (42)

Then for any 𝑐 > 1, we have

󵄩󵄩󵄩󵄩󵄩
𝜃̂ (𝑡) − 𝜃

󵄩󵄩󵄩󵄩󵄩

2

= 𝑂(
[ln 𝑡]
𝑐

𝑡
) 󳨀→ 0, a.s. for any 𝑐 > 1. (43)

4. The State Estimation Algorithm

Referring to the method in [15], the state estimate x̂(𝑡) of the
state vector x(𝑡) can be expressed as

x̂ (𝑡 − 𝑛) = 𝜑
𝑦
(𝑡) − M̂ (𝑡)𝜑

𝑢
(𝑡) − 𝜑̂V (𝑡) , (44)

𝜑
𝑦
(𝑡) = [𝑦 (𝑡 − 𝑛) , 𝑦 (𝑡 − 𝑛 + 1) , . . . , 𝑦 (𝑡 − 1)]

T
, (45)

𝜑
𝑢
(𝑡) = [𝑢 (𝑡 − 𝑛) , 𝑢 (𝑡 − 𝑛 + 1) , . . . , 𝑢 (𝑡 − 1)]

T
, (46)

𝜑̂V (𝑡) = [V̂ (𝑡 − 𝑛) , V̂ (𝑡 − 𝑛 + 1) , . . . , V̂ (𝑡 − 1)]
T
, (47)

M̂ (𝑡) =

[
[
[
[
[
[
[
[

[

0 0 ⋅ ⋅ ⋅ 0 0

𝑏̂
1
(𝑡) 0 ⋅ ⋅ ⋅ 0 0

𝑏̂
2
(𝑡) 𝑏̂

1
(𝑡) d

...
...

...
... d 0 0

𝑏̂
𝑛−1

(𝑡) 𝑏̂
𝑛−2

(𝑡) ⋅ ⋅ ⋅ 𝑏̂
1
(𝑡) 0

]
]
]
]
]
]
]
]

]

, (48)

[
[
[
[
[
[
[

[

𝑏̂
1
(𝑡)

𝑏̂
2
(𝑡)

...
𝑏̂
𝑛−1

(𝑡)

𝑏̂
𝑛
(𝑡)

]
]
]
]
]
]
]

]

=

[
[
[
[
[
[

[

𝑎
𝑛−1

(𝑡) 𝑎
𝑛−2

(𝑡) ⋅ ⋅ ⋅ 𝑎
1
(𝑡) 1

𝑎
𝑛−2

(𝑡) 𝑎
𝑛−3

(𝑡) ⋅ ⋅ ⋅ 1 0

...
...

...
...

𝑎
1
(𝑡) 1 ⋅ ⋅ ⋅ 0 0

1 0 ⋅ ⋅ ⋅ 0 0

]
]
]
]
]
]

]

−1

𝜃̂
𝑏
(𝑡) ,

(49)

𝜃̂ (𝑡) = [
𝜃̂
𝑎
(𝑡)

𝜃̂
𝑏
(𝑡)

] , (50)

𝜃̂
𝑎
(𝑡) = [−𝑎

𝑛
(𝑡) , −𝑎

𝑛−1
(𝑡) , . . . , −𝑎

1
(𝑡)]

T
. (51)

To summarize, we list the steps involved in the algorithm in
(19)–(23) and (44)–(51) to compute the parameter estimate
𝜃̂(𝑡) and the state estimate x̂(𝑡 − 𝑛).

(1) Let 𝑡 = 1; set the initial values 𝜃̂(𝑖) = 1
𝑛
/𝑝
0
, P(0) =

𝑝
0
I, 𝑢(𝑖) = 0, 𝑦(𝑖) = 0, V̂(𝑖) = 0, or V̂(𝑖) = 1/𝑝

0
for

𝑖 ⩽ 0, 𝑝
0
= 10
6. Give a small positive number 𝜀.

(2) Collect the input-output data 𝑢(𝑡) and 𝑦(𝑡); form 𝜑̂(𝑡)
using (23), 𝜑

𝑦
(𝑡) using (45), and 𝜑

𝑢
(𝑡) using (46).

(3) Compute the gain vector L(𝑡) using (20) and the
covariance matrix P(𝑡) using (21).

(4) Update the parameter estimation vector 𝜃̂(𝑡) using
(19).

(5) Compute V̂(𝑡) using (22), and form 𝜑̂V(𝑡) using (47).

(6) Determine 𝑎
𝑖
(𝑡) using (51) and compute 𝑏̂

𝑖
(𝑡) using

(49); then form M̂(𝑡) using (48).
(7) Compute the state estimate x̂(𝑡 − 𝑛) using (44).

(8) If they are sufficiently close, if ‖𝜃̂(𝑡) − 𝜃̂(𝑡 − 1)‖ ⩽ 𝜀,
then terminate the procedure and obtain the estimate
𝜃̂(𝑡); otherwise, increase 𝑡 by 1 and go to step 2.

5. Example

Consider the following single-input single-output second-
order system in canonical form:

x (𝑡 + 1) = [
0 1

−0.70 1.35
] x (𝑡) + [

1

1
] 𝑢 (𝑡) ,

𝑦 (𝑡) = [1, 0] x (𝑡) + V (𝑡) .

(52)

The simulation conditions are the same as in [15]. That
is, the input {𝑢(𝑡)} is taken as an independent persistent
excitation signal sequence with zero mean and unit variances
and {V(𝑡)} as a white noise sequence with zero mean and
variances 𝜎

2

= 0.20
2 and 𝜎

2

= 1.00
2, respectively. Apply

the proposed parameter and state estimation algorithm in
(19)–(23) and (44)–(51) to estimate the parameters and states
of this example system; the parameter estimates and their
estimation errors are shown in Tables 1 and 2; the parameter
estimation errors 𝛿 versus 𝑡 are shown in Figure 1; the states
𝑥
𝑖
(𝑡) and their estimates 𝑥

𝑖
(𝑡) versus 𝑡 are shown in Figures 2

and 3, where 𝛿 := ‖𝜃̂(𝑡)−𝜃‖/‖𝜃‖ (‖x‖2 = xTx) is the parameter
estimation error.

From the simulation results of Tables 1 and 2 and Figures
1–3, we can draw the following conclusions.

(1) A lower noise level leads to a faster rate of convergence
of the parameter estimates to the true parameters.

(2) The parameter estimation errors 𝛿 become smaller
(in general) as the data length 𝑡 increases; see
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Table 1: The parameter estimates and errors (𝜎2 = 0.20
2).

𝑡 𝜃
1

𝜃
2

𝜃
3

𝜃
4

𝛿 (%)

100 −0.70568 1.35339 −0.39169 1.01645 2.44445
200 −0.71515 1.38650 −0.41330 1.00994 4.06207
500 −0.70678 1.36377 −0.38556 0.99926 2.08997
1000 −0.70624 1.36483 −0.37257 1.00253 1.50180
2000 −0.70481 1.35720 −0.35450 0.99836 0.53395
3000 −0.70098 1.35107 −0.34969 0.99994 0.08005
True values −0.70000 1.35000 −0.35000 1.00000

Table 2: The parameter estimates and errors (𝜎2 = 1.00
2).

𝑡 𝜃
1

𝜃
2

𝜃
3

𝜃
4

𝛿 (%)

100 −0.32642 0.84623 −0.03136 1.05653 38.07875
200 −0.60245 1.38498 −0.53220 1.01317 11.33189
500 −0.72060 1.42162 −0.52967 0.98306 10.53486
1000 −0.70654 1.38791 −0.42136 1.00912 4.40155
2000 −0.71358 1.37357 −0.35605 0.98820 1.63287
3000 −0.70120 1.35114 −0.34033 0.99742 0.54719
True values −0.70000 1.35000 −0.35000 1.00000
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t

Figure 1: The parameter estimation errors 𝛿 versus 𝑡 (𝜎2 = 0.20
2

and 𝜎
2

= 1.00
2).

Tables 1 and 2 and Figure 1. In other words, increasing
data length generally results in smaller parameter
estimation errors.

(3) The state estimates are close to their true values with 𝑡

increasing; see Figures 2 and 3.These indicate that the
proposed parameter and state estimation algorithm
are effective.

6. Conclusions

In this paper, the identification problems for linear systems
based on the canonical state space models with unknown
parameters and states are studied. A new parameter and state
estimation algorithm has been presented directly from input-
output data. The analysis using the martingale convergence
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Figure 2: The state estimation errors 𝛿 versus 𝑡 (𝜎2 = 0.20
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theorem indicates that the proposed algorithms can give
consistent parameter estimation.The simulation results show
that the proposed algorithms are effective. The method in
this paper can combine the multiinnovation identification
methods [80–92], the iterative identification methods [93–
100], and other identification methods [101–111] to present
new identification algorithms or to study adaptive control
problems for linear or nonlinear, single-rate or dual-rate,
scalar or multivariable systems [112–117].
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