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The null geodesics and gravitational lensing in a nonsingular spacetime are investigated. According to the nature of the null
geodesics, the spacetime is divided into several cases. In the weak deflection limit, we find the influence of the nonsingularity
parameter q on the positions and magnifications of the images is negligible. In the strong deflection limit, the coefficients and
observables for the gravitational lensing in a nonsingular black hole background and a weakly nonsingular spacetime are obtained.
Comparing these results, we find that, in a weakly nonsingular spacetime, the relativistic images have smaller angular position and
relative magnification but larger angular separation than those of a nonsingular black hole.These results might offer a way to probe
the spacetime nonsingularity parameter and put a bound on it by the astronomical instruments in the near future.

1. Introduction

The cosmic censorship hypothesis [1, 2] says that singularities
that arise in the solutions of Einstein’s equations are typically
hidden within event horizons and therefore cannot be seen
from the rest of spacetime. However, in a semiclassical
approximation [3], black holes tend to shrink until the central
singularities are reached, which will lead to the breakdown of
the theory.

Motivated by the idea of the free singularities, there are
several ways to obtain black hole spacetime with no sin-
gularities at the center. The one presented in [4, 5] was
inspired by the noncommutative geometry. The points on
the classical commutative manifold are replaced by states
on a noncommutative algebra, and the point-like objects are
replaced by smeared objects. Thus the singularity problem is
cured at the terminal stage of black hole evaporation.

Another way is to introduce a de Sitter core to replace
the central singularity. The first one constructed in this way
is the Bardeen regular black hole [6–9], which was found to
have both an event horizon and a Cauchy horizon. Recently,
Hayward proposed a nonsingular black hole solution [10]
(Poisson and Israel also derived an equivalent solution based

on a simple relation between vacuum energy density and
curvature [11, 12]), which is a minimal model satisfying the
asymptotically flat and flatness conditions at the center. Its
static region is Bardeen-like. In this nonsingular spacetime,
a black hole could be generated from an initial vacuum
region and then subsequently evaporate to a vacuum region
without singularity [10]. This case was extended to the 𝑑 +

1 dimensional spacetime and some interesting results were
obtained [13]. The quasinormal frequency of this nonsin-
gular spacetime has been recently analyzed in [14] with a
significant difference from the singular spacetime. In fact,
according to the nature of this spacetime, we can divide it
into several cases, that is, the nonsingular black hole, the
extremal nonsingular black hole, the weakly nonsingular
spacetime, the marginally nonsingular spacetime, and the
strongly nonsingular spacetime. Other regular black hole
solutions [15–22] can be constructed with the introduction
of some external form of matter, such as nonlinear magnetic
monopole, electrodynamics, or Gaussian sources, which
leads to the fact that they are not vacuum solutions of
Einstein’s equations.

The subject of gravitational lensing by black holes and
compact stars has received great attention in the last ten

Hindawi Publishing Corporation
Advances in High Energy Physics
Volume 2015, Article ID 454217, 11 pages
http://dx.doi.org/10.1155/2015/454217

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194615192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Advances in High Energy Physics

years, basically due to the strong evidence of the presence of
supermassive black holes at the center of galaxies. The study
can be traced back to [23], where the author examined the
gravitational lensing when the light passes near the photon
sphere of Schwarzschild spacetime. In [24], the authors
showed that, in the case of large values of the scalar charge, the
lensing characteristics were significantly different. And the
result provides preliminary knowledge on the naked singular-
ity lens. This resurrects the study of the gravitational lensing.
After modelling the massive dark object at the galactic center
as a Schwarzschild black hole lens, it was found that [25–
27], similar to Darwin’s paper, apart from a primary image
and a secondary image resulting by small bending of light
in a weak gravitational field, there is theoretically an infinite
sequence of very demagnified images on both sides of the
optical axis. A similar result was also found in [28, 29]. These
images were named as the “relativistic images” by Virbhadra
andEllis [25] and that termwas extensively used in laterwork.
Based on lens equation [25, 30], Bozza et al. [31–35] developed
a semianalyticalmethod to deal with it.Thismethod has been
applied to other black holes [36–61]. These results suggest
that, through measuring the relativistic images, gravitational
lensing could act as a probe to these black holes, as well
as a profound verification of alternative theories of gravity
in the strong field regime [37–39]. Furthermore, it can also
guide us to detect the gravitational waves at proper frequency
[62, 63]. It is also worthwhile to mention that, in [27],
the author pointed out that Bozza’s semianalytical method
gives small percentage difference of the deflection angle,
angular position, and angular separation compared to their
accurate values, while it gives large percentage difference
of magnification and differential time delays among the
relativistic images. Thus one must pay great attention to
studying the differential time delays among the relativistic
images, and we will not consider that case in this paper.

In [54, 55], the authors studied the strong gravitational
lensing by a regular black hole with noncommutative cor-
rected parameter.The result showed that gravitational lensing
in the strong deflection limit could provide a probe to the
noncommutative parameter. In this paper, we mainly focus
on the exploration of the lensing features in a nonsingular
spacetime with the central singularity replaced by a de Sitter
core. At first, we study the nature of the spacetime in different
range of the nonsingularity parameter 𝑞. And, according
to it, the spacetime is classified into the nonsingular black
hole 𝑞/2𝑀 ∈ (0, 𝑄cr1), the extremal nonsingular black hole
𝑞/2𝑀 = 𝑄cr1, the weakly nonsingular spacetime 𝑞/2𝑀 ∈

(𝑄cr1, 𝑄cr2), the marginally nonsingular spacetime 𝑞/2𝑀 =

𝑄cr2, and the strongly nonsingular spacetime 𝑞/2𝑀 ∈

(𝑄cr2,∞).Then, under this classification,we study the lensing
features in a nonsingular spacetime in both weak and strong
deflection limits.The result shows that, in the weak deflection
limit, the influence of the nonsingularity parameter 𝑞 on the
lensing is negligible. Compared with it, 𝑞 has a significant
effect in the strong deflection limit, which is very helpful
for detecting the nonsingularity of our universe in the future
astronomical observations.

The paper is structured as follows. In Section 2, we study
the null geodesics and photon sphere for this nonsingular

spacetime. In Section 3, the influence of the nonsingularity
parameter 𝑞 on the lensing in the weak and strong deflection
limits is investigated, respectively. In Section 4, supposing
that the gravitational field of the supermassive black hole at
the center of our Milky Way can be described by the nonsin-
gular metric, we estimate the numerical values of the coeffi-
cients and observables for gravitational lensing in the strong
deflection limit. A brief discussion is given in Section 5.

2. Null Geodesics and Photon Sphere

In [10], Hayward suggested that a nonsingular spacetime, as
a minimal model, can be described by the metric

𝑑𝑠
2
= −𝑓 (𝑟) 𝑑𝑡

2
+ 𝑓 (𝑟)

−1
𝑑𝑟
2
+ 𝑟
2
(𝑑𝜃
2
+ sin2𝜃𝑑𝜙2) , (1)

where the metric function 𝑓(𝑟) reads

𝑓 (𝑟) = 1 −
2𝑀𝑟
2

𝑟3 + 2𝑞2𝑀
, (2)

and its behavior is

𝑓 (𝑟) ∼ 1 −
2𝑀

𝑟
+
4𝑞
2
𝑀
2

𝑟4
+ O(

1

𝑟
)

7

as 𝑟 → ∞,

𝑓 (𝑟) ∼ 1 −
𝑟
2

𝑞2
+

𝑟
5

2𝑞4𝑀
+ O (𝑟)

7 as 𝑟 → 0.

(3)

It is quite clear that the spacetime described by the abovemet-
ric is similar to a Schwarzschild spacetime at large distance,
while, at small distance, there is an effective cosmological
constant, which leads to regularity at 𝑟 = 0. The parameter 𝑞
is a new fundamental constant on the same ground as ℏ and
𝑐. In order to keep some degree of generality, we consider 𝑞
as a free, model-dependent parameter. On the other hand, it
is clear that when 𝑞 = 0, there will be a spacetime singularity
at 𝑟 = 0. So, we can name 𝑞 as a nonsingularity parameter
measuring the nonsingularity of a spacetime.

The outer and inner horizons 𝑟
±
are determined by𝑓(𝑟) =

0. And, for the spacetime with large mass, we approximately
have 𝑟

+
= 2𝑀 and 𝑟

−
= 𝑞. In order to compute the null

geodesics in this nonsingular spacetime, we follow [64]. Here,
we only restrict our attention to the equatorial orbits with
𝜃 = 𝜋/2. The Lagrangian is

2L = −𝑓 (𝑟) ̇𝑡
2
+

̇𝑟
2

𝑓 (𝑟)
+ 𝑟
2 ̇𝜙
2
. (4)

The generalized momentum can be defined from this
Lagrangian as 𝑝

𝜇
= 𝜕L/𝜕�̇�
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= 𝑔
𝜇]�̇�

] with its components
given by

𝑝
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Substituting (5) and (6) into (4), we find that the Lagrangian
L is independent of both 𝑡 and 𝜙. Thus, we immediately get
two integrals of themotion: 𝑝

𝑡
and 𝑝

𝜙
. Solving (5) and (6), we

easily obtain the 𝑡motion and 𝜙motion:

̇𝑡 =
𝐸

𝑓 (𝑟)
, (8)

̇𝜙 =
𝐿

𝑟2sin2𝜃
. (9)

The Hamiltonian is given by

2H = 2 (𝑝
𝜇
�̇�
𝜇
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2
+
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2
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(10)

Here 𝛿 is another integral of the motion. And 𝛿 = −1, 0, 1 are
for spacelike, null, and timelike geodesics, respectively. Since
we consider the null geodesics, we choose 𝛿 = 0 here. Then
the radial motion can be expressed as

̇𝑟
2
+Veff (𝑟) = 𝐸

2
, (11)

with the effective potential Veff = (𝐿
2
/𝑟
2
)(1 − (2𝑀𝑟

2
/(𝑟
3
+

2𝑞
2
𝑀))). Then the circular geodesics satisfy

Veff (𝑟) = 𝐸
2
,

𝜕Veff
𝜕𝑟

= 0. (12)

Moreover, a stable (unstable) circular orbit requires 𝜕2Veff/
𝜕𝑟
2
> 0 (<0), which admits a minimum (maximum) of the

effective potential. Solving (12), we have

2𝑓 (𝑟) − 𝑟𝑓

(𝑟) = 0. (13)

And, for the metric (2), this equation reduces to

2𝑟
6
− 3𝑟
5
+ 4𝑞
2
𝑟
3
+ 2𝑞
4
= 0, (14)

where, for simplicity, we measure all quantities with the
Schwarzschild radius, which is equivalent to putting 2𝑀 = 1

in all equations. Solving (14), we can obtain the stable and
unstable circular orbits for this nonsingular spacetime. For
a spherically symmetric and static spacetime, the photon
sphere is known as an unstable circular orbit of photon (other
definitions can be found in [25, 65]). So, we can obtain the
photon sphere for this nonsingular spacetime from (14) with
the unstable condition 𝜕

2Veff/𝜕𝑟
2
< 0. It is obvious that this

relation (14) is quite different from that in the Schwarzschild
black hole spacetime, which implies that, in the strong field
limit, there exist some distinct effects of 𝑞 on the gravitational
lensing. The stable circular orbit can also be got by imposing
𝜕
2Veff/𝜕𝑟

2
> 0.The event horizons, photon sphere, and stable

circular orbit are plotted in Figure 1 as a function of 𝑞/2𝑀. It
is clear that there are several distinct ranges of the parameter
emerging where the structures of the horizons and circular
geodesics will be qualitatively different; namely, 𝑞/2𝑀 ∈

(0, 𝑄cr1), 𝑞/2𝑀 = 𝑄cr1, 𝑞/2𝑀 ∈ (𝑄cr1, 𝑄cr2), 𝑞/2𝑀 = 𝑄cr2,
and 𝑞/2𝑀 ∈ (𝑄cr2,∞). In the following we will discuss these
cases, respectively.
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Figure 1: Horizons and circular orbits for the nonsingular space-
time. The thin solid and dashed lines are for the outer and inner
horizons, respectively. And the thick solid and dashed lines are
for the photon sphere and stable circular orbit, respectively. The
parameters 𝑄cr1 = (2√3)/9 = 0.385 and 𝑄cr2 = (25√30)/288 =

0.475.

Case 1 (nonsingular black hole 𝑞/2𝑀 ∈ (0, 𝑄cr1)). Since
Veff ∼ 𝑓(𝑟), the horizon locates at Veff = 0. And note that
the local minimum and maximum ofVeff correspond to the
stable and unstable circular orbits, respectively. Then we can
easily read the property of different cases from Figure 2.

For the case of a nonsingular black hole with 𝑞/2𝑀 ∈

(0, 𝑄cr1), there are twohorizons 𝑟±, one photon sphere 𝑟ps, and
one stable circular orbit 𝑟cir. And they satisfy the following
relation:

𝑟
−
< 𝑟cir < 𝑟

+
< 𝑟ps. (15)

This implies that the outer horizon is always covered by a
photon sphere, and the stable circular orbit locates between
these two horizons.

In Figure 2(a), the general behavior of the effective
potential Veff(𝑟) is shown as a function of 𝑟 for different
values of the angular momentum 𝐿. We find that the effective
potential admits two zeros corresponding to the outer and
inner horizons, as well as one maximum and one minimum
corresponding to the photon sphere and stable circular orbit.
We can also see that the local minimum point always lies
between these two zeros indicating the stable circular orbit
lies in the region between the two horizons.

Case 2 (extremal nonsingular black hole 𝑞/2𝑀 = 𝑄cr1). For
this case, we have the following relation:

𝑟
−
= 𝑟
+
= 𝑟cir < 𝑟ps. (16)

The first “=” means that the two horizons coincide with each
other.This case corresponds to an extremal nonsingular black
hole. The second “=” implies that the degenerate horizon is
also a stable circular orbit against small perturbation.

The detailed behavior of the effective potential Veff(𝑟) is
presented in Figure 2(b). It shows that the effective potential
has one zero and one minimum located at the same point. It
also admits a maximum corresponding to the photon sphere.
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Figure 2: Behavior of the effective potentialVeff as a function of 𝑟 with different values of 𝐿.

Case 3 (weakly nonsingular spacetime 𝑞/2𝑀 ∈ (𝑄cr1, 𝑄cr2)).
For the case of 𝑞/2𝑀 ∈ (𝑄cr1, 𝑄cr2), we clearly see from
Figure 1 that the horizon disappears. So this case describes
a nonsingular spacetime without a black hole. Obviously, the
radius of the photon sphere and stable circular orbit satisfy

𝑟cir < 𝑟ps. (17)

This tells that the stable circular orbit is always covered by
a photon sphere. The effective potential Veff(𝑟) is plotted in
Figure 2(c), from which we find that Veff(𝑟) is positive for
all 𝑟’s. Thus, the horizons do not exist in this case, which is
consistent with the result from Figure 1. On the other hand,
there are one minimum and one maximum corresponding to
the stable circular orbit and photon sphere, respectively.

Case 4 (marginally nonsingular spacetime 𝑞/2𝑀 = 𝑄cr2).
For this case, the horizon also disappears. And the stable
and unstable circular orbits coincide with each other; that is,
𝑟cir = 𝑟ps. For this circular orbit, we have 𝜕

2Veff/𝜕𝑟
2
= 0. This

result can be seen from Figure 2(d). One the other hand, we
will see in the next section that some strong deflection limit
coefficients will diverge in this case caused by 𝑟cir = 𝑟ps.

Case 5 (strongly nonsingular spacetime 𝑞/2𝑀 ∈ (𝑄cr2,∞)).
For the last case, all the horizons, photon sphere, and the
stable circular orbit disappear. The effective potentialVeff(𝑟)
is plotted in Figure 2(e). It monotonically decreases from
infinity to zero as 𝑟 goes from 0 to∞.

From the above discussion, we find that the photon
sphere of a nonsingular black hole is always larger than that
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of a weakly nonsingular spacetime. Therefore, we come to
the conclusion that a photon is more easily captured by a
nonsingular black hole. Since the photon sphere disappears
for a strongly nonsingular spacetime, we will not focus on the
lensing for a strongly nonsingular spacetime.

3. Lensing in Nonsingular Spacetime

In this section, we will study the lensing in nonsingular
spacetime. The influence of nonsingularity parameter 𝑞 on
the position and magnification of the nonrelativistic and
relativistic images will be analyzed.

3.1. The Deflection Angle and Lens Geometry. Taking into
account the spherical symmetry of this spacetime, we just
consider the case that both the observer and the source lie in
the equatorial plane (𝜃 = 𝜋/2), resulting in the fact that the
whole trajectory of the photon is also restricted in the same
plane. Then the deflection angle for the photon coming from
infinity and returning to infinity is

𝛼 (𝑟
0
) = 𝐼 (𝑟

0
) − 𝜋, (18)

with the total azimuthal angle given by

𝐼 (𝑟
0
) = 2∫

∞

𝑟0

𝑟
0

𝑟

𝑑𝑟

√𝑟2𝑓 (𝑟
0
) − 𝑟2
0
𝑓 (𝑟)

, (19)

where (9) and (11) are used and 𝐸 is set to one. In a black
hole spacetime, the deflection angle 𝛼(𝑟

0
) is a monotonically

decreasing function with 𝑟
0
. So it is easy to imagine that the

light ray can make a complete loop or more than one loop
before reaching the observer. As other authors have pointed
out, the value of the deflection angle will be unboundedly
large when the photon sphere is reached.

Defining 𝑥 = 𝑟
0
/𝑟, the total azimuthal angle can be

expressed as

𝐼 (𝑟
0
) = ∫

1

0

ℎ (𝑥) 𝑑𝑥, (20)

with

ℎ (𝑥) = −2√
(𝑞
2
+ 𝑟
3

0
) (𝑞
2
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3
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3

0
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0
) (𝑞2𝑥3 + 𝑟3

0
) + 𝑟5
0
(𝑥3 − 1)

.

(21)

Here we would like to give a brief study on the lens
geometry. The lens configuration is supposed in which the
black hole is situated between the light source and observer;
both of them are far from the black hole lens, so that the
gravitational fields are very weak and the spacetime there can
be described by a flat metric. An important element of the
lens geometry is the optical axis, which is defined as the line
joining the observer and the lens. The angular positions of
the source (S) and the images (I), seen from the observer, are
denoted by 𝜛 and 𝜃. Then the lens equation reads [25]

tan𝜛 = tan 𝜃 −
𝐷LS
𝐷OS

[tan (𝛼 − 𝜃) + tan 𝜃] . (22)

𝐷OL, 𝐷LS, and 𝐷OS are the observer-lens, lens-source, and
observer-source distances, respectively. It was pointed out by
Bozza [66] that these distances are not the true distances
between different positions; however, if the source is very
close to the optical axis, they are a reasonably good approxi-
mation.

3.2. Nonrelativistic Images. Let us first consider the lensing
in the weak deflection limit, where photon has a large impact
parameter; that is, 𝑟

0
≫ 1. Then the function ℎ(𝑥) in (21) can

perform a Taylor expansion around 1/𝑟
0
, which is given by

ℎ (𝑥) =
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− 64𝑞
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2
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1
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0

+ O(
1

𝑟5
0

) .

(23)

Thus, the deflection angle is calculated as

𝛼 (𝑟
0
) = 𝐴

1

1

𝑟
0

+ 𝐴
2

1

𝑟2
0

+ 𝐴
3

1
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0
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1

𝑟4
0

+ O(
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𝑟5
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with the coefficients

𝐴
1
= 2, 𝐴

2
=
15𝜋 − 16

16
, 𝐴

3
= −

45𝜋 − 244

48
,

𝐴
4
= (2.94524𝑞

2
− 2.50549) .

(25)

Note that the nonsingularity parameter 𝑞 only affects the
deflection angle in the fourth order. Since 𝑟

0
has a large

value, the influence of 𝑞 on the nonrelativistic images is very
weak. Restoring the dimension, the first three coefficients are
exactly consistent with that of [67].

For high alignment and using lens equation (22), the
image positions and magnifications in the weak deflection
limit can be written as a series expansion of the form [67]

𝜃 = 𝜃
0
+ 𝜃
1
𝜖 + 𝜃
2
𝜖
2
+ 𝜃
3
𝜖
3
+ 𝑂 (𝜖

4
) ,
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0
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1
𝜖 + 𝜇
2
𝜖
2
+ 𝜇
3
𝜖
3
+ 𝑂 (𝜖

4
) ,

(26)

where the expansion parameter 𝜖 = 𝜃
𝐸
𝐷OS/4𝐷LS denotes the

angle subtended by the gravitational radius normalized by the
angular Einstein radius. It is easy to check that the coefficients
𝜃
0
∼ 𝜃
2
and 𝜇
0
∼ 𝜇
2
are independent of 𝑞, and their forms can

be found in [67]. Thus, the nonsingularity parameter 𝑞 only
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affects the position andmagnification of images of more than
the third order in 𝜖. As a result, we come to the conclusion that
the influence of the nonsingularity parameter can be ignored
in the weak deflection limit.

3.3. Relativistic Images. In this case, the spacetime always has
a photon sphere. And a photon before reaching the observer
can do many loops around the black hole; therefore the
photon should pass very near the photon sphere. Adopting
the method developed by Bozza et al., we define a variable
[31]

𝑧 =
𝑓 (𝑟) − 𝑓 (𝑟

0
)

1 − 𝑓 (𝑟
0
)

. (27)

For the photon at infinity 𝑟 = ∞, one has 𝑧 = 1 for 𝑓(∞) =

1. And when 𝑟 = 𝑟
0
, one easily gets 𝑧 = 0. Then the total

azimuthal angle (20) can be rewritten as

𝐼 (𝑟
0
) = ∫

1

0

𝑅 (𝑧, 𝑟
0
)𝐾 (𝑧, 𝑟

0
) 𝑑𝑧, (28)

where

𝑅 (𝑧, 𝑟
0
) =

2𝑟
0
(1 − 𝑓 (𝑟

0
))

𝑟2𝑓 (𝑟) 𝑓 (𝑟)
=

2𝑟
3

0
(𝑟
3
+ 𝑞
2
)
2

𝑟3 (𝑟3
0
+ 𝑞2) (𝑟3 − 2𝑞2)

,

𝐾 (𝑧, 𝑟
0
) =

𝑟

√𝑟2𝑓 (𝑟
0
) − 𝑓 (𝑟) 𝑟

2

0

= (1 +
𝑟
2

0

𝑟3 + 𝑞2
−

𝑟
2

0

𝑟3
0
+ 𝑞2

−
𝑟
2

0

𝑟2
)

−1/2

,

(29)

with 𝑟 = 𝑓
−1
((1 − 𝑓(𝑟

0
))𝑧 + 𝑓(𝑟

0
)). Note that the function

𝑅(𝑧, 𝑟
0
) is regular for 𝑧 and 𝑟

0
, while𝐾(𝑧, 𝑟

0
) diverges at 𝑧 = 0.

So, we split the integral (28) into two parts:
𝐼 (𝑟
0
) = 𝐼
𝑅
(𝑟
0
) + 𝐼
𝐷
(𝑟
0
) , (30)

where the regular and divergent parts 𝐼
𝑅
(𝑟
0
), 𝐼
𝐷
(𝑟
0
) are,

respectively, given by

𝐼
𝑅
= ∫

1

0

𝑔 (𝑧, 𝑟
0
) 𝑑𝑥,

𝐼
𝐷
= ∫

1

0

𝑅 (0, 𝑟ps)𝐾0 (𝑧, 𝑟0) 𝑑𝑧,

(31)

with𝑔(𝑧, 𝑟
0
) = 𝑅(0, 𝑟

0
)𝐾(𝑧, 𝑟

0
)−𝑅(0, 𝑟ps)𝐾0(𝑧, 𝑟0). In order to

find the divergence of the integrand, we do aTaylor expansion
of the function inside the square root of 𝐾(𝑧, 𝑟

0
) and obtain

the function𝐾
0
(𝑧, 𝑟
0
):

𝐾
0
(𝑧, 𝑟
0
) =

1

√𝜒 (𝑟
0
) 𝑧 + 𝜉 (𝑟

0
) 𝑧2 + O (𝑧3)

, (32)

where the coefficients 𝜒(𝑟
0
) and 𝜉(𝑟

0
) read

𝜒 (𝑟
0
) = 2 −

𝑟
2

0

𝑟3
0
+ 𝑞2

− 2
𝑟
2

0
− 3𝑞
2

𝑟3
0
− 2𝑞2

,

𝜉 (𝑟
0
) = −1 + 3

𝑟
8

0
− (6𝑟
0
− 1) 𝑞

2
𝑟
5

0
+ 3𝑟
3

0
𝑞
4

(𝑟3
0
− 2𝑞2)

3
.

(33)

We find that when 𝑟
0
approaches 𝑟ps, the coefficient 𝜒(𝑟

0
)

vanishes, and the leading term of the divergence in 𝐻
0
is

𝑧
−1, which would lead to the logarithmic divergence of the
integrand.Thus, near 𝑟ps, the deflection angle can be assumed
in the form

𝛼 (𝑢) = −𝑎 log( 𝑢

𝑢ps
− 1) + 𝑏 + O (𝑢 − 𝑢ps) . (34)

Under this assumption, the minimum impact parameter 𝑢ps
and the strong deflection limit coefficients 𝑎 and 𝑏 are

𝑢ps = √
𝑟
2

𝑓(𝑟)

𝑟=𝑟ps

= √
𝑟
3

ps + 𝑞
2

𝑟2ps (𝑟ps − 1) + 𝑞2/𝑟2ps
,

𝑎 =
𝑅 (0, 𝑟ps)

2√𝜉 (𝑟ps)
= √

(𝑟
3

ps + 𝑞
2
) (𝑟
3

ps − 2𝑞
2
)

(3 − 𝑟ps) 𝑟
5

ps − 11𝑞2𝑟3ps + 8𝑞4
,

𝑏 = −𝜋 + 𝑏
𝑅
+ 𝑎 log 𝜅,

(35)

where

𝜅 =
2𝜉 (𝑟ps)

𝑓 (𝑟ps)
=
2 (𝑟
3

ps + 𝑞
2
)
2

((3 − 𝑟ps) 𝑟
5

ps − 11𝑞
2
𝑟
3

ps + 8𝑞
4
)

(𝑟3ps − 𝑟2ps + 𝑞2) (𝑟3ps − 2𝑞2)
3

.

(36)

For this nonsingular spacetime, the coefficient 𝑏
𝑅
cannot be

calculated analytically. In order to obtain it, we expand 𝐼
𝑅
(𝑟
0
)

around 𝑟ps:

𝐼
𝑅
(𝑟
0
) =

∞

∑

𝑛=0

1

𝑛!
(𝑟
0
− 𝑟ps)

𝑛

∫

1

0

𝜕
𝑛
𝑔

𝜕𝑟𝑛
0

𝑟0=𝑟ps

𝑑𝑧. (37)

Therefore, ignoring the higher-order terms, we get

𝑏
𝑅
= 𝐼
𝑅
(𝑟ps) = ∫

1

0

𝑔 (𝑧, 𝑟ps) 𝑑𝑧. (38)

With this equation, we can numerically calculate 𝑏
𝑅
. It is

worth pointing out that this result is accurate for the case
𝑟
0
∼ 𝑟ps, while it is invalid for 𝑟

0
≫ 𝑟ps. From these strong

deflection limit coefficients, one easily sees that there is a
significant effect of the nonsingularity parameter 𝑞 on the
strong gravitational lensing. When 𝑞 = 0, these parameters
will reduce to the case of the Schwarzschild black hole [31, 36].

The behaviors of 𝑢ps, 𝑎, and 𝑏 are presented in Figure 3.
The result shows that the minimum impact parameter has
a similar behavior as the radius of the photon sphere. We
can also find that the strong deflection limit coefficient 𝑎
grows with 𝑞/2𝑀, while 𝑏 decreases. For a nonsingular black
hole, both 𝑎 and 𝑏 have a finite value. Compared with the
result of nonsingular black hole, in the weakly nonsingular
spacetime, it has small values of 𝑢ps and 𝑏, while it has large
value of 𝑎. In particular, 𝑎 goes to positive infinity and 𝑏

goes to negative infinity when the nonsingularity parameter
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Figure 3: Behaviors of the minimal impact parameter 𝑢ps and the strong deflection limit coefficients 𝑎 and 𝑏.

𝑞/2𝑀 approaches 𝑄cr2, where the marginally nonsingular
spacetime arrives. With the values of these coefficients, one
can obtain the behavior of the deflection angle. For fixed
impact parameter 𝑢, the deflection angle increases with 𝑞/2𝑀
shown in Figure 4(a). And, in Figure 4(b), it is shown that
𝛼 decreases with (𝑢 − 𝑢ps) for fixed 𝑞/2𝑀. However, the
angle will be unboundedly large when 𝑢 → 𝑢ps, which
corresponds to the case that 𝑟

0
approaches 𝑟ps.

Here, we consider that the source, lens, and observer are
highly aligned; that is,𝜛, 𝜃 ≪ 1; lens equation (22) is reduced
to [31, 36]

𝜛 = 𝜃 −
𝐷LS
𝐷OS

Δ𝛼
𝑛
, (39)

where Δ𝛼
𝑛
= 𝛼 − 2𝑛𝜋 and 𝑛 denotes the number of the loops

that the photon did around the lens. Using the lens geometry,
we can obtain the angular position and magnification of the
images [31, 36]:

𝜃
𝑛
= 𝜃
0

𝑛
+
𝑢ps𝑒𝑛

𝑎

𝐷OS
𝐷OL𝐷LS

(𝜛 − 𝜃
0

𝑛
) , (40)

𝜇
𝑛
=

𝑒
𝑛
(1 + 𝑒

𝑛
)

𝑎𝜛

𝐷OS
𝐷OL

(
𝑢ps

𝐷OL
)

2

, (41)

where

𝑒
𝑛
= 𝑒
(𝑏−2𝑛𝜋)/𝑎

,

𝜃
0

𝑛
=

𝑢ps

𝐷OL
(1 + 𝑒

𝑛
) .

(42)

Since the magnification 𝜇
𝑛

∼ 𝑒
−𝑛, the first image is the

brightest one. We can also see that 𝜇
𝑛
is proportional to

the small quantity (𝑢ps/𝐷OL)
2, which leads to faint images.

Thus, we have the conclusion that, for nonzero 𝜛, the first
image is the brightest one among these relativistic images
and its brightness decreases quickly with the distance 𝐷OL.
On the other hand, it is worth noting that when 𝜛 = 0, the
magnification (41) will be no longer valid.

4. Numerical Estimation of
the Observables for the Supermassive
Galactic Black Hole Lensing

In this section, we first introduce three observables and
then estimate the numerical values for the observables of
gravitational lensing in the strong field limit.
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Figure 4: (a) The deflection angle 𝛼 as a function of 𝑞/2𝑀 with 𝑢 = 𝑢ps + 0.0015, 𝑢ps + 0.0025, and 𝑢ps + 0.0035 from the bottom to top.
(b) The deflection angle 𝛼 as a function of (𝑢 − 𝑢ps) for 𝑞/2𝑀 = 0, 0.3, and 0.42 from the bottom to top.

Consider the case that the outermost image with angular
position 𝜃

1
is a single image and the others are packed

together at 𝜃
∞

= 𝑢ps/𝐷OL.Thenwe have the observables [36]:

𝑠 = 𝜃
1
− 𝜃
∞

= 𝜃
∞
𝑒
(𝑏−2𝜋)/𝑎

,

𝑟 =
𝜇
1

∑
∞

𝑛=2
𝜇
𝑛

= 𝑒
2𝜋/𝑎

,

(43)

where 𝑠 measures the angular separation between the first
image and other ones and 𝑟 denotes the flux of the first image
and the sum of the others.

Next, we would like to estimate the numerical values
for the observables of gravitational lensing in the strong
field limit by supposing that the gravitational field of the
supermassive black hole at the center of ourMilkyWay can be
described by the nonsingular metric (1), and the gravitational
field near the light source and the observer is very weak
so that it can be described by a flat metric. The mass of
the supermassive black hole and the distance between the
observer and the black hole are estimated to be 𝑀 = 2.8 ×

10
6
𝑀
⊙
and𝐷OL = 8.5 kpc with𝑀

⊙
being themass of the sun.

Under this assumption, the angular position can be calculated
with the relation

𝜃
∞

≈ 1.97116 × 10
−5
𝑢ps (

𝑀

𝑀
⊙

)(
1 kpc
𝐷OL

)𝜇 arcsec. (44)

From this equation, we get that the angular position 𝜃
∞

depends on the parameter 𝑢ps and mass 𝑀 determined by
the nature of the gravitational lens and also on the observer-
lens distance𝐷OL determined by the lens geometry. In order
to obtain a large value of 𝜃

∞
for a lens of the same type, it

should have large mass and small 𝐷OL. For different values
of the nonsingularity parameter 𝑞, the numerical values for
the strong deflection limit coefficients and observables are
listed in Table 1. It is clear that these results reduce to the
Schwarzschild black hole spacetime when 𝑞 = 0. Moreover,
we found that as 𝑞 increases, the angular position of the rel-
ativistic images 𝜃

∞
and the relative magnitudes 𝑟

𝑚
decrease,

while the angular separation 𝑠 increases.

The behaviors of the observables can also be found
in Figure 5. We can find that, in the weakly nonsingular
spacetime, the angular position 𝑠 of the relativistic images
𝜃
∞

and the relative magnitudes 𝑟
𝑚
decrease more quickly,

and the angular separation 𝑠 increases more rapidly than the
case of the nonsingular black hole. It is also clear that the
angular position has a maximum value 𝑠 = 0.1235 𝜇 arcsec at
𝑞/2𝑀 = 0.4659. Compared with a Schwarzschild black hole
or a nonsingular black hole, a weakly nonsingular spacetime
has a smaller angular position of the relativistic images and
relativemagnification of the outermost relativistic imagewith
the other relativistic images. However, it has a larger angular
separation for these relativistic images. From Figure 5(a), we
find that the numerical value for the angular position of the
innermost relativistic images 𝜃

∞
of a nonsingular spacetime

is of about 15.3∼16.8 𝜇 arcsec. In principle, such a resolution
is reachable by very long baseline interferometry (VLBI)
projects and advanced radio interferometry between space
and Earth (ARISE), which have the angular resolution of
10∼100 𝜇 arcsec in the near infrared [68, 69]. Therefore we
are hopeful to observe these relativistic images within a not
so far future.

5. Summary

In this paper, we have shown that, in theweak deflection limit,
the influence of the nonsingularity parameter 𝑞 on the grav-
itational lensing is negligible. However, in the strong deflec-
tion limit, 𝑞 has a significant effect, which may offer a poten-
tially powerful tool to probe the nonsingularity of spacetime.

First, we investigated the null geodesics of a nonsingu-
lar spacetime. According to the nature of the nonsingular
spacetime, it is classified into several cases, such as the non-
singular black hole, the extremal nonsingular black hole, the
weakly nonsingular spacetime, the marginally nonsingular
spacetime, and the strongly nonsingular spacetime.We found
that the photon sphere can exist not only in a nonsingular
black hole background but also in a spacetimewithout a black
hole. The result also shows that the photon is more easily
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Table 1: Numerical estimation for main observables and the strong field limit coefficients for a Schwarzschild black hole, a nonsingular black
hole, and a weakly nonsingular spacetime, which is supposed to describe the object at the center of our galaxy; 𝑟

𝑚
= 2.5 log 𝑟.

𝑞/2𝑀 = 0 𝑞/2𝑀 = 0.2 𝑞/2𝑀 = 0.3 𝑞/2𝑀 = 0.39 𝑞/2𝑀 = 0.42 𝑞/2𝑀 = 0.45

𝑎 1.0000 1.0402 1.1094 1.2625 1.3771 1.6277
𝑏 −0.4002 −0.4446 −0.5369 −0.8112 −1.0782 −1.8353
𝑢ps/𝑅𝑠 2.5981 2.5659 2.5209 2.4537 2.4217 2.3806
𝑠 (𝜇 arcsec) 0.0211 0.0259 0.0350 0.0578 0.0750 0.1055
𝑟
𝑚
(magnitude) 6.8219 6.5583 6.1490 5.4036 4.9539 4.1911

𝜃
∞
(𝜇 arcsec) 16.8699 16.6610 16.3688 15.9321 15.7243 15.4580
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Figure 5: Gravitational lensing by the galactic center black hole. Variation of the values of the angular position 𝜃
∞
, angular separation 𝑠, and

relative magnitudes 𝑟
𝑚
with the parameter 𝑞/2𝑀 in the nonsingular spacetime; 𝑟

𝑚
= 2.5 log 𝑟.

captured by a nonsingular black hole rather than by a weakly
nonsingular spacetime.

Second, based on the null geodesics, lensing in the weak
and strong deflection limits was studied. For the first case, we
found that the influence of the nonsingularity parameter 𝑞 on
the positions and magnifications of the images is negligible.
Thus, we cannot distinguish a nonsingular black hole from
a Schwarzschild one. In the strong deflection limit, these
strong deflection limit coefficients were also obtained. For
a nonsingular black hole, these coefficients are always finite
for any value of the nonsingularity parameter 𝑞. Compared
with the result of nonsingular black hole, in the weakly

nonsingular spacetime, it has small values of 𝑢ps and 𝑏,
while it has large value of 𝑎. And when the nonsingular
spacetime approaches the marginally nonsingular one with
𝑟cir = 𝑟ps, we found that 𝑎 goes to positive infinity and 𝑏 goes
to negative infinity. These results tell that the gravitational
lensing by a weakly nonsingular spacetime is more obvious
than a nonsingular black hole.

The model was also applied to the supermassive black
hole hosted in the center of ourMilkyWay. It was shown that,
with the increase of the nonsingularity parameter 𝑞/2𝑀, the
angular position of the relativistic images 𝜃

∞
and the relative

magnitudes 𝑟
𝑚

decrease, while the angular separation 𝑠



10 Advances in High Energy Physics

increases. We found that, in a weakly nonsingular spacetime,
the angular position of the relativistic images 𝜃

∞
and relative

magnitudes 𝑟
𝑚
decrease more quickly, and the angular sepa-

ration 𝑠 increases more rapidly than a nonsingular black hole.
As pointed out in [27], the relativemagnitude 𝑟

𝑚
obtained

in this paper may have a large difference from its accurate
value. However, the angular position 𝜃

∞
and the angular

separation 𝑠 are accurate enough. Thus, combined with the
expected data from VLBI and ARISE, the strong gravita-
tional lensing may offer a possible way to distinguish a
weakly nonsingular spacetime from a nonsingular black hole.
Furthermore, we are also allowed to probe the spacetime
nonsingularity parameter 𝑞 by the astronomical instruments
in the near future astronomical observations.
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