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We derive the moderate and large deviations principle for the smoothed sample quantile from a sequence of independent and
identically distributed samples of size 𝑛.

1. Introduction

As it is known, the quantiles can be used for describing
some properties of random variables without the restriction
of moment conditions. Quantiles play a fundamental role in
statistics; they are the critical values we use in hypothesis test-
ing and interval estimation and often are the characteristics of
distributions we wish most to estimate. The use of quantiles
as primary measure of performance has gained prominence,
particularly in microeconomic, financial, and environmental
analyses and so on.

To bemore specific, let𝐹 denote the unknown cumulative
distributions function (c.d.f.). In terms of the inverse c.d.f.,
the 𝑝-quantile is given by 𝜉𝑝 = 𝐹

−1
(𝑝), where

𝐹
−1
(𝑢) = inf {𝑡; 𝐹 (𝑡) ≥ 𝑢} , 𝑢 ∈ (0, 1) . (1)

Let 𝐹𝑛(𝑡) be the empirical distributions based on the sample
{𝑋𝑖; 𝑖 = 1, 2, . . . , 𝑛}; that is,

𝐹𝑛 (𝑥) =
1
𝑛

𝑛

∑

𝑖=1
1{𝑋𝑖≤𝑥}, −∞ < 𝑥 < ∞. (2)

Then the sample 𝑝-quantile based on the empirical distribu-
tion function can be represented as

̂
𝜉𝑝 = inf {𝑥; 𝐹𝑛 (𝑥) ≥ 𝑝} , 𝑝 ∈ (0, 1) . (3)

The limit properties of ̂𝜉𝑝 have been studied in numerous
literatures. Lahiri and Sun [1] gave Berry-Esseen theorems for

samples of strongly mixing random variables under a poly-
nomial mixing rate. Wu [2] established the Bahadur repre-
sentation for the sample 𝑝-quantile for dependent sequences.
Miao et al. [3] and Xu et al. [4] studied some asymptotic
properties of the deviation between 𝑝-quantile and the esti-
mator, including the moderate deviations, large deviations,
and Bahadur representation. Ma et al. [5] gave the definition
of sample 𝑝-quantile based on mid-distribution functions to
provide a unified framework for asymptotic properties of
sample 𝑝-quantile from discrete distributions.

However,𝐹𝑛 does not take into account the smoothness of
𝐹, that is, the existence of the density function 𝑓. Then some
investigators proposed several smoothed quantile estimates.
Based on a kernel function𝐾, one of the smoothed estimators
for 𝐹 is defined as

𝐹𝑛 (𝑥) = ∫

R

𝐾(

𝑥 − 𝑡

ℎ𝑛

)𝑑𝐹𝑛 (𝑡) =
1
𝑛

𝑛

∑

𝑖=1
𝐾(

𝑥 − 𝑋𝑖

ℎ𝑛

) , (4)

where {ℎ𝑛} is a positive sequence of bandwidths with ℎ𝑛 → 0
as 𝑛 → ∞. Then, the smoothed sample quantile estimate of
𝜉𝑝, ̂𝜉𝑝𝑛 is defined by

̂
𝜉𝑝𝑛 = 𝐹

−1
𝑛
(𝑝) = inf {𝑥; 𝐹𝑛 (𝑥) ≥ 𝑝} , 𝑝 ∈ (0, 1) . (5)

Asymptotic properties for different forms of sample quan-
tile have been investigated extensively in the literature. The
kernel-type estimate of the quantile 𝜉𝑝 early work on the
estimators of the quantile function includes Nadaraya [6] and
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Parzen [7]. Reiss [8] showed that the asymptotic relative
deficiency of the sample quantile with respect to a linear com-
bination of finitelymany order statistics diverges to infinity as
the sample size increases. Falk [9] also examined the asymp-
totic relative deficiency of the sample quantile compared to
kernel-type quantile estimators. Yang [10] studied the asymp-
totic properties of kernel-type quantile estimators. Padgett
[11] extended the previous works to handle right-censored
data. Cai and Roussas [12] established pointwise consistency,
asymptotic normality with rates, andweak convergence of the
smoothed estimates.

In this paper, we will derive the pointwise moderate and
large deviations principle for ̂𝜉𝑝𝑛 − 𝜉𝑝. There exists extensive
large deviation literature involving many areas of probability
and statistics. We refer to the book of Dembo and Zeitouni
[13] and the references therein for an account of results and
applications. In nonparametric function estimation setting,
several results have been stated these last years. We refer to
Louani [14], Gao [15], He and Gao [16], and Korbe Diallo
and Louani [17], where results related to the kernel density
estimator are obtained.

In order to state our main results, let us introduce the
definition of large deviation principle. Let (𝑆, 𝑑) be a metric
space and let {𝑌𝑛 : 𝑛 ≥ 1} be a sequence of 𝑆-valued
random variables on probability space (Ω,F, 𝑃). Let 𝜆(𝑛) be
a sequence of positive real numbers satisfying 𝜆(𝑛) → ∞

as 𝑛 → ∞. A function 𝐼(⋅) : 𝑆 → [0, +∞] is said to be
a rate function if it is lower semicontinuous and it is said to
be a good rate function if its level set {𝑥 ∈ 𝑆 : 𝐼(𝑥) ≤ 𝑙} is
compact for all 𝑙 ≥ 0. The sequence {𝑌𝑛, 𝑛 ≥ 1} is said to
satisfy a large deviation principle with speed 𝜆(𝑛) and with
good rate function 𝐼 if, for any closed set 𝐹 in 𝑆,

lim sup
𝑛→∞

1
𝜆 (𝑛)

log𝑃 (𝑌𝑛 ∈𝐹) ≤ − inf
𝑥∈𝐹
𝐼 (𝑥) (6)

and, for open set 𝐺 in 𝑆,

lim inf
𝑛→∞

1
𝜆 (𝑛)

log𝑃 (𝑌𝑛 ∈𝐺) ≤ − inf
𝑥∈𝐺
𝐼 (𝑥) . (7)

2. Assumptions and Main Results

In order to display our results, we introduce some assump-
tions.

(A1)

lim
𝑥→∞

𝑓 (𝑥) = 0. (8)

(A2) 𝐾(𝑥) ≥ 0, and ∫∞
−∞
𝐾(𝑥)𝑑𝑥 = 1, ∫∞

−∞
𝐾

2
(𝑥)𝑑𝑥 < ∞.

(A3) 𝐼(𝜆) := ∫+∞
−∞
(exp{−𝜆𝐾(𝑧)} − 1)𝑑𝑧 < ∞, for any 𝜆 < 0.

(A4) 𝐽(𝜆) := ∫+∞
−∞

𝐾(𝑧)exp{−𝜆𝐾(𝑧)}𝑑𝑧 < ∞, for any 𝜆 < 0.

(A5) ∫+∞
−∞

𝐾
2
(𝑧)exp{−𝜆𝐾(𝑧)}𝑑𝑧 < ∞, for any 𝜆 < 0.

Firstly, we give the pointwise moderate deviation princi-
ple.

Theorem 1. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be independent identically
distributed random variables with an absolutely continuous
distribution function 𝐹(𝑥), and let 𝜉𝑝 be the 𝑝-quantile of 𝐹
for 𝑝 ∈ (0, 1). Assume that the conditions (A1) and (A2) hold;
corresponding to the sample {𝑋1, 𝑋2, . . . , 𝑋𝑛}, the smoothed
sample 𝑝-quantile which is denoted by ̂𝜉𝑝𝑛 is defined as in
Section 1. Let {𝑏𝑛} be a positive sequence satisfying

𝑏𝑛 󳨀→ ∞,

𝑏𝑛

√𝑛ℎ𝑛

󳨀→ 0

𝑎𝑠 𝑛 󳨀→ ∞.

(9)

Then, for any 𝑟 > 0, we have

lim
𝑛→∞

1
ℎ𝑛𝑏

2
𝑛

log𝑃(√𝑛
𝑏𝑛

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝜉𝑝𝑛 − 𝜉𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
≥ 𝑟)

= −

𝑟
2

2𝑓 (𝜉𝑝) (1 + ∫
∞

−∞
𝐾

2
(𝑧) 𝑑𝑧)

.

(10)

The following result establishes a pointwise large devia-
tion principle.

Theorem 2. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be independent identically
distributed random variables with an absolutely continuous
distribution function 𝐹(𝑥), and let 𝜉𝑝 be the 𝑝-quantile of 𝐹
for 𝑝 ∈ (0, 1). Assume that the conditions (A1)–(A5) hold; ̂𝜉𝑝𝑛
is defined as in Theorem 1; then, for any 𝑟 > 0, we have

lim
𝑛→∞

1
𝑛ℎ𝑛

log𝑃 (̂𝜉𝑝𝑛 − 𝜉𝑝 ≥ 𝑟) = − inf
𝑥≥−𝑝

Λ
∗

+
(𝑥) , (11)

lim
𝑛→∞

1
𝑛ℎ𝑛

log𝑃 (̂𝜉𝑝𝑛 − 𝜉𝑝 ≤−𝑟) = − inf
𝑥≥𝑝
Λ
∗

−
(𝑥) , (12)

where

Λ
∗

+
(𝑥) =

{
{
{

{
{
{

{

𝐽
−1
(

𝑓(𝜉𝑝 + 𝑟) − 𝑥

𝑓 (𝜉𝑝 + 𝑟)

) (𝑥 − 𝑓 (𝜉𝑝 + 𝑟)) + 𝑓 (𝜉𝑝 + 𝑟) 𝐼(𝐽
−1
(

𝑓(𝜉𝑝 + 𝑟) − 𝑥

𝑓 (𝜉𝑝 + 𝑟)

)) , 𝑖𝑓 𝑥 < 𝑓 (𝜉𝑝 + 𝑟) ,

+∞, 𝑖𝑓 𝑥 ≥ 𝑓 (𝜉𝑝 + 𝑟) ,
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Λ
∗

−
(𝑥) =

{
{
{

{
{
{

{

𝐽
−1
(

𝑓(𝜉𝑝 − 𝑟) − 𝑥

𝑓 (𝜉𝑝 − 𝑟)

) (𝑓 (𝜉𝑝 + 𝑟) − 𝑥) + 𝑓 (𝜉𝑝 − 𝑟) 𝐼(−𝐽
−1
(

𝑓(𝜉𝑝 − 𝑟) − 𝑥

𝑓 (𝜉𝑝 − 𝑟)

)) , 𝑖𝑓 𝑥 < 𝑓 (𝜉𝑝 − 𝑟) ,

+∞, 𝑖𝑓 𝑥 ≥ 𝑓 (𝜉𝑝 − 𝑟) .

(13)

Remark 3. As it is known, whatever estimates are obtained by
way of the smooth cumulative distribution function (c.d.f);
they exhibit weaker rate of convergence.We can compare our
moderate deviation result with that of the Xu and Miao [18],
in which the estimation of the sample quantile was based on
the c.d.f. FromTheorem 1 in this paper, for 𝑛 large enough,

𝑃(

√𝑛

𝑏𝑛

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝜉𝑝𝑛 − 𝜉𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
≥ 𝑟) ≈ e−𝐶1ℎ𝑛𝑟

2
𝑏
2
𝑛
. (14)

At the same time, we can derive from Xu and Miao [18] that

𝑃(

√𝑛

𝑏𝑛

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝜉𝑝𝑛 − 𝜉𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
≥ 𝑟) ≈ e−𝐶2𝑟

2
𝑏
2
𝑛
, (15)

where 𝐶1, 𝐶2 are some constants.

3. Proof of the Main Results

3.1. Proof of Theorem 1. For any 𝑟 > 0, we have

𝑃(

√𝑛

𝑏𝑛

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝜉𝑝𝑛 − 𝜉𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
≥ 𝑟)

= 𝑃(
̂
𝜉𝑝𝑛 ≥ 𝜉𝑝 +

𝑏𝑛

√𝑛

𝑟)+𝑃(
̂
𝜉𝑝𝑛 ≤ 𝜉𝑝 −

𝑏𝑛

√𝑛

𝑟) .

(16)

Then,

𝑃(
̂
𝜉𝑝𝑛 ≥ 𝜉𝑝 +

𝑏𝑛

√𝑛

𝑟)

= 𝑃(𝐹𝑛 (𝜉𝑝 +
𝑏𝑛

√𝑛

𝑟)<𝑝)

= 𝑃(

𝑛

∑

𝑖=1
(𝑉𝑖𝑛 −𝐸𝑉𝑖𝑛) ≥ 𝑛 [(1−𝑝) −𝐸𝑉1𝑛]) ,

(17)

where 𝑉𝑖𝑛 = 1 − 𝐾((𝜉𝑝 + (𝑏𝑛/√𝑛)𝑟 − 𝑋𝑖)/ℎ𝑛).

For any 𝜆 ∈ R, by Taylor’s expansion,

Λ (𝜆) := lim
𝑛→∞

1
ℎ𝑛𝑏

2
𝑛

log𝐸

⋅(exp{
𝜆𝑏𝑛

√𝑛

𝑛

∑

𝑖=1
(𝑉𝑖𝑛 −𝐸𝑉𝑖𝑛)}) = lim

𝑛→∞

1
ℎ𝑛𝑏

2
𝑛

⋅ log(𝐸(exp{
𝜆𝑏𝑛

√𝑛

(𝑉𝑖𝑛 − 𝐸𝑉𝑖𝑛)}))

𝑛

= lim
𝑛→∞

𝑛

ℎ𝑛𝑏
2
𝑛

log(𝐸(exp{
𝜆𝑏𝑛

√𝑛

(𝑉𝑖𝑛 − 𝐸𝑉𝑖𝑛)}))

𝑛

= lim
𝑛→∞

𝑛

ℎ𝑛𝑏
2
𝑛

⋅ log(1+
𝜆
2
𝑏
2
𝑛

𝑛

𝐸 (𝑉𝑖𝑛 − 𝐸𝑉𝑖𝑛)
2

2
+ 𝑜(

𝑏
2
𝑛

𝑛

)) .

(18)

On the other hand,

𝐸 (𝑉𝑖𝑛 −𝐸𝑉𝑖𝑛)
2

= 𝐸𝐾
2
(

𝜉𝑝 + (𝑏𝑛/√𝑛) 𝑟 − 𝑋𝑖

ℎ𝑛

)

−(𝐸𝐾(

𝜉𝑝 + (𝑏𝑛/√𝑛) 𝑟 − 𝑋𝑖

ℎ𝑛

))

2

= ∫

+∞

−∞

𝐾
2
(

𝜉𝑝 + (𝑏𝑛/√𝑛) 𝑟 − 𝑥

ℎ𝑛

)𝑓 (𝑥) 𝑑𝑥

−(∫

+∞

−∞

𝐾(

𝜉𝑝 + (𝑏𝑛/√𝑛) 𝑟 − 𝑥

ℎ𝑛

)𝑓 (𝑥) 𝑑𝑥)

2

= ℎ𝑛 ∫

+∞

−∞

𝐾
2
(𝑧) 𝑓(𝜉𝑝 +

𝑏𝑛

√𝑛

𝑟 − ℎ𝑛𝑧) 𝑑𝑧

− ℎ𝑛 (∫

+∞

−∞

𝐾 (𝑧) 𝑓(𝜉𝑝 +
𝑏𝑛

√𝑛

𝑟 − ℎ𝑛𝑧) 𝑑𝑧)

2
.

(19)

By Lemma 2.2 in Gao [15], we can obtain that

lim
𝑛→∞

1
ℎ𝑛𝑏

2
𝑛

log𝐸(exp{
𝜆𝑏𝑛

√𝑛

𝑛

∑

𝑖=1
(𝑉𝑖𝑛 −𝐸𝑉𝑖𝑛)})

=

𝜆
2
𝑓 (𝜉𝑝) (1 + ∫

∞

−∞
𝐾

2
(𝑧) 𝑑𝑧)

2
.

(20)
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Then, by Gärtner-Ellis theorem (see Dembo and Zeitouni
[13]), we have

lim
𝑛→∞

1
ℎ𝑛𝑏

2
𝑛

log𝑃(√𝑛
𝑏𝑛

(
̂
𝜉𝑝𝑛 − 𝜉𝑝) ≥ 𝑟)

= −

𝑟
2

2𝑓 (𝜉𝑝) (1 + ∫
∞

−∞
𝐾

2
(𝑧) 𝑑𝑧)

.

(21)

Likewise,

𝑃(
̂
𝜉𝑝𝑛 ≤ 𝜉𝑝 −

𝑏𝑛

√𝑛

𝑟)

= 𝑃(𝐹𝑛 (𝜉𝑝 −
𝑏𝑛

√𝑛

𝑟)≥𝑝)

= 𝑃(

𝑛

∑

𝑖=1
(𝑄𝑖𝑛 −𝐸𝑄𝑖𝑛) ≥ 𝑛 [𝑝 −𝐸𝑄1𝑛]) ,

(22)

where 𝑄𝑖𝑛 = 𝐾((𝜉𝑝 − (𝑏𝑛/√𝑛)𝑟 − 𝑋𝑖)/ℎ𝑛).
For any 𝜆 ∈ R, by using Taylor’s expansion again,

lim
𝑛→∞

1
ℎ𝑛𝑏

2
𝑛

log𝐸(exp{
𝜆𝑏𝑛

√𝑛

𝑛

∑

𝑖=1
(𝑄𝑖𝑛 −𝐸𝑄𝑖𝑛)})

=

𝜆
2
𝑓 (𝜉𝑝) (1 + ∫

∞

−∞
𝐾

2
(𝑧) 𝑑𝑧)

2
.

(23)

Applying Gärtner-Ellis theorem, we can obtain that

lim
𝑛→∞

1
ℎ𝑛𝑏

2
𝑛

log𝑃(√𝑛
𝑏𝑛

(
̂
𝜉𝑝𝑛 − 𝜉𝑝) ≤ −𝑟)

= −

𝑟
2

2𝑓 (𝜉𝑝) (1 + ∫
∞

−∞
𝐾

2
(𝑧) 𝑑𝑧)

.

(24)

By (21) and (24), we can obtain the result in the theorem.

3.2. Proof of Theorem 2. For any 𝑟 > 0, by Serfling [19],

𝑃 (
̂
𝜉𝑝𝑛 − 𝜉𝑝 ≥ 𝑟)

= 𝑃 (𝐹𝑛 (𝜉𝑝 + 𝑟) <𝑝)

= 𝑃(

𝑛

∑

𝑖=1
(𝑊𝑖𝑛 −𝐸𝑊𝑖𝑛) ≥ 𝑛 [(1−𝑝) −𝐸𝑊1𝑛]) .

(25)

And, for any 𝜆 ∈ R,

𝐸 (exp {𝜆 (𝑊𝑖𝑛 −𝐸𝑊1𝑛)})

= 𝐸(exp{𝜆(𝐸(𝐾(
𝜉𝑝 + 𝑟 − 𝑋𝑖

ℎ𝑛

))−𝐾(

𝜉𝑝 + 𝑟 − 𝑋𝑖

ℎ𝑛

))})

= exp{𝜆ℎ𝑛 ∫
∞

−∞

𝐾 (𝑧) 𝑓 (𝜉𝑝 + 𝑟 − ℎ𝑛𝑧) 𝑑𝑧}

⋅ ℎ𝑛 ∫

+∞

−∞

exp {−𝜆𝐾 (𝑧)} 𝑓 (𝜉𝑝 + 𝑟 − ℎ𝑛𝑧) 𝑑𝑧

= exp{𝜆ℎ𝑛 ∫
∞

−∞

𝐾 (𝑧) 𝑓 (𝜉𝑝 + 𝑟 − ℎ𝑛𝑧) 𝑑𝑧}(1

+ ℎ𝑛 ∫

+∞

−∞

(exp {−𝜆𝐾 (𝑧)} − 1) 𝑓 (𝜉𝑝 + 𝑟 − ℎ𝑛𝑧) 𝑑𝑧) ;

(26)

then, by Lemma 2.2 in Gao [15],

Λ + (𝜆) := lim
𝑛→∞

1
𝑛ℎ𝑛

log𝐸 (exp {𝜆𝑛𝑊𝑖𝑛})

= 𝜆∫

∞

−∞

𝐾 (𝑧) 𝑓 (𝜉𝑝 + 𝑟) 𝑑𝑧

+∫

+∞

−∞

(exp {−𝜆𝐾 (𝑧)} − 1) 𝑓 (𝜉𝑝 + 𝑟) 𝑑𝑧

= 𝜆𝑓 (𝜉𝑝 + 𝑟)

+𝑓 (𝜉𝑝 + 𝑟)∫

+∞

−∞

(exp {−𝜆𝐾 (𝑧)} − 1) 𝑑𝑧.

(27)

The Fenchel-Legendre transform of Λ +(𝜆) is

Λ
∗

+
(𝑥) = sup

𝜆∈R

{𝜆𝑥 −Λ (𝜆)} = sup
𝜆∈R

{𝜆𝑥−𝜆𝑓 (𝜉𝑝 + 𝑟)

−𝑓 (𝜉𝑝 + 𝑟)∫

+∞

−∞

(exp {−𝜆𝐾 (𝑧)} − 1) 𝑑𝑧} .

(28)

By simple calculation, we can obtain

Λ
∗

+
(𝑥) =

{
{
{

{
{
{

{

𝐽
−1
(

𝑓(𝜉𝑝 + 𝑟) − 𝑥

𝑓 (𝜉𝑝 + 𝑟)

) (𝑥 − 𝑓 (𝜉𝑝 + 𝑟)) + 𝑓 (𝜉𝑝 + 𝑟) 𝐼(𝐽
−1
(

𝑓(𝜉𝑝 + 𝑟) − 𝑥

𝑓 (𝜉𝑝 + 𝑟)

)) , if 𝑥 < 𝑓 (𝜉𝑝 + 𝑟) ,

+∞, if 𝑥 ≥ 𝑓 (𝜉𝑝 + 𝑟) .
(29)
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Then, by the Cramér theorem (see Dembo and Zeitouni [13]),
we have

lim
𝑛→∞

1
𝑛ℎ𝑛

log𝑃 (̂𝜉𝑝𝑛 − 𝜉𝑝 ≥ 𝑟) = lim
𝑛→∞

1
𝑛ℎ𝑛

log𝑃

⋅(

𝑛

∑

𝑖=1
(𝑊𝑖𝑛 −𝐸𝑊𝑖𝑛) ≥ 𝑛 [(1−𝑝) −𝐸𝑊1𝑛])

= − inf
𝑥≥−𝑝

Λ
∗

+
(𝑥) .

(30)

Similarly,

𝑃 (
̂
𝜉𝑝𝑛 − 𝜉𝑝 ≤−𝑟)

= 𝑃 (𝐹𝑛 (𝜉𝑝 − 𝑟) ≥𝑝)

= 𝑃(

𝑛

∑

𝑖=1
(𝑈𝑖𝑛 −𝐸𝑈𝑖𝑛) ≥ 𝑛 [𝑝 −𝐸𝑈1𝑛]) .

(31)

And, for any 𝜆 ∈ R,

𝐸 (exp {𝜆 (𝑈𝑖𝑛 −𝐸𝑈1𝑛)})

= 𝐸(exp{𝜆(𝐾(
𝜉𝑝 − 𝑟 − 𝑋𝑖

ℎ𝑛

)−𝐸(𝐾(

𝜉𝑝 − 𝑟 − 𝑋𝑖

ℎ𝑛

)))})

= exp{−𝜆ℎ𝑛 ∫
∞

−∞

𝐾 (𝑧) 𝑓 (𝜉𝑝 − 𝑟 − ℎ𝑛𝑧) 𝑑𝑧}

⋅ ℎ𝑛 ∫

+∞

−∞

exp {𝜆𝐾 (𝑧)} 𝑓 (𝜉𝑝 − 𝑟 − ℎ𝑛𝑧) 𝑑𝑧

= exp{−𝜆ℎ𝑛 ∫
∞

−∞

𝐾 (𝑧) 𝑓 (𝜉𝑝 − 𝑟 − ℎ𝑛𝑧) 𝑑𝑧}(1

+ ℎ𝑛 ∫

+∞

−∞

(exp {𝜆𝐾 (𝑧)} − 1) 𝑓 (𝜉𝑝 − 𝑟 − ℎ𝑛𝑧) 𝑑𝑧) .

(32)

Then,

Λ − (𝜆) := lim
𝑛→∞

1
𝑛ℎ𝑛

log𝐸 (exp {𝜆𝑛𝑈𝑖𝑛})

= 𝜆𝑓 (𝜉𝑝 − 𝑟)

+𝑓 (𝜉𝑝 − 𝑟)∫

+∞

−∞

(exp {𝜆𝐾 (𝑧)} − 1) 𝑑𝑧.

(33)

The Fenchel-Legendre transform of Λ −(𝜆) is

Λ
∗

−
(𝑥) =

{
{
{

{
{
{

{

𝐽
−1
(

𝑓(𝜉𝑝 − 𝑟) − 𝑥

𝑓 (𝜉𝑝 − 𝑟)

) (𝑓 (𝜉𝑝 + 𝑟) − 𝑥) + 𝑓 (𝜉𝑝 − 𝑟) 𝐼(−𝐽
−1
(

𝑓(𝜉𝑝 − 𝑟) − 𝑥

𝑓 (𝜉𝑝 − 𝑟)

)) , if 𝑥 < 𝑓 (𝜉𝑝 − 𝑟) ,

+∞, if 𝑥 ≥ 𝑓 (𝜉𝑝 − 𝑟) .
(34)

Then,we obtain (12), andwe complete the proof ofTheorem2.
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