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Reproducing kernel Hilbert space method (RKHSM) is an effective method. This paper, for the first time, uses the traditional
RKHSM for solving the temperature field in two phase flows of multilayer water injection well. According to 2D oil-water
temperature field mathematical model of two phase flows in cylindrical coordinates, selecting the properly initial and boundary
conditions, by the process of Gram-Schmidt orthogonalization, the analytical solution was given by reproducing kernel functions
in a series expansion form, and the approximate solution was expressed by 𝑛-term summation.The satisfied numerical results were
carried out by Mathematica 7.0, showing that the larger the difference between injected water temperature and initial borehole
temperature or water injection conditions, the more obvious the indication of water accepting zones. The numerical examples
evidence the feasibility and effectiveness of the proposed method of the two phase flows in engineering.

1. Introduction

As we known, during the middle and late stage of water
flooding oil field it is difficult for temperature log to reflect
actual water injection profile in normal water injection
conditions; at the same time, with the deepening of oil
field development and the extension of exploitation time, a
phenomenon of the viscosity of oil in the well became stickier
and the production is reduced, leading to a large amount of
stored oil in undergroundwhich can not bemined. Gradually
people found that water injection can save this problem.
By injecting water, it can keep formation energy, enhance
crude oil recovery ratio, and insure long-term high and stable
production; at the same time, pressure in oil layer is improved,
which can guarantee the high oil field production.

In recent years, many researchers in order to improve
temperature log to determine water injection profile, lots
of mathematical methods were applied in temperature log
such as the ADI method [1], the full implicit form of finite
difference method [2], the finite difference method [3], the
implicit finite differencemethod [4], the alternating direction
implicit method (ADI), and speedup method [5].

In this paper, RKHSM method is used to simulate the
temperature model. It is well known that RKHSM is a simple

and accurate method. In recent years, there has been a
growing interest in using RKHSM to solve mathematical
problems [6–14], but there is no one applying this method
into characteristics of logging response in two phase flows
problems. This paper tries to study the temperature field in
water injection with RKHSM. By analyzing the simulated
results we can conclude that temperature logging can distin-
guish water entry zones from non-water entry zones through
hot-water injection for short periods of time, enlarging water
injection velocity, selecting reasonable shut-in time. It is
economical and reasonable way to use short, fast, hot-water
injection in order to change the condition that temperature
log can not delineate water injection profile.

2. Mathematical Modeling

2.1. The Mathematical Model. In water injection well, the
temperature field model is [5]
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𝑇 is the temperature, 𝜆
𝑤
is the thermal conductivity of

water, and𝐹
𝑤
is water saturation. 𝑧 is the depth of the oil well-

bore, and 𝑟 is the radial distance.𝜌
𝑤
is the density ofwater, and

𝑐
𝑤
are the specific heat ofwater. ]

𝑧
is the velocity of fluid inside

the oil wellbore.The initial temperature of the formation and
wellbore is at the geothermal condition which can be written
as 𝑇|
𝑡=0
= 𝑇
0
= 𝑎 + 𝑏𝑧; 𝑎 is the formation temperature when

𝑧 = 0, 𝑏 is the geothermal gradient, the boundary of adiabatic
condition is (𝜕(𝜆

𝑤
𝑇)/𝜕𝑟)|

𝑟=0
= 0, the upper boundary of

adiabatic condition is (𝜕(𝜆
𝑤
𝑇)/𝜕𝑧)|

𝑧=𝐻
= 0, and the under

boundary of adiabatic condition is (𝜕(𝜆
𝑤
𝑇)/𝜕𝑧)|

𝑧=0
= 0.

In order to solve (1), we introduce the reproducing kernel
spaces.

2.2. Reproducing Kernel Hilbert Spaces Method (RKHSM).
There are several reproducing kernel spaces (RKHS) to
introduce:𝑊1
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where 𝐷 = [0, 1] × [0, 1] and Ṽ(𝑖)
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2.3. Analytical Solution and Approximate Solution. On defin-
ing the linear operator 𝐿, 𝐿−1 is existent:𝑊(𝐷) → 𝑊
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and model problem (1) changes to the following problem:

(𝐿𝑇) (𝑟, 𝑧, 𝑡) = 𝐹 (𝑟, 𝑧, 𝑡) . (10)

𝑊(𝐷) is a RKHS with the reproducing kernel 𝑅{3}
(𝜉,𝜂)
(𝑟, 𝑧),

𝑊
1
(𝐷) is a RKHS with the reproducing kernel 𝑅{1}

(𝜉,𝜂)
(𝑟, 𝑧).

According to [11], it can be noted that 𝜙
𝑖
(𝑟, 𝑧) = 𝑅

{1}

(𝑟
𝑖
,𝑧
𝑖
)
(𝑟, 𝑧),

and𝜓
𝑖
(𝑟, 𝑧) = 𝐿

∗
𝜙
𝑖
(𝑟, 𝑧), where𝐿∗ is the adjoint operator of𝐿.

The orthonormal system {𝜓
𝑖
(𝑟, 𝑧)}

∞

𝑖=1
of𝑊(𝐷) can be derived

from the process of Gram-Schmidt orthogonalization of
{𝜓
𝑖
(𝑟, 𝑧)}

∞

𝑖=1
as 𝜓
𝑖
(𝑟, 𝑧) = ∑

𝑖

𝑘=1
𝛽
𝑖𝑘
𝜓
𝑘
(𝑟, 𝑧). If {(𝑟

𝑖
, 𝑧
𝑖
)}
∞

𝑖=1
is

dense in𝑊(𝐷) and 𝛽
𝑖𝑘
is the coefficient of orthogonalization,

then 𝑇(𝑟, 𝑧, 𝑡) = ∑∞
𝑖=1
∑
𝑖

𝑘=1
𝛽
𝑖𝑘
𝐹(𝑟
𝑘
, 𝑧
𝑘
, 𝑡)𝜓
𝑖
(𝑟, 𝑧) is an analyt-

ical solution of (10). The approximate solution is 𝑇
𝑛
(𝑟, 𝑧, 𝑡) =

∑
𝑛

𝑖=1
∑
𝑖

𝑘=1
𝛽
𝑖𝑘
𝐹(𝑟
𝑘
, 𝑧
𝑘
, 𝑡)𝜓
𝑖
(𝑟, 𝑧), 𝑖 = 1, . . . , 𝑛. If (10) is non-

linear, the approximate solution to (10) can be expressed by
𝑇
𝑛
(𝑟, 𝑧, 𝑡) = ∑

𝑛

𝑖=1
∑
𝑖

𝑘=1
𝛽
𝑖𝑘
𝐹(𝑟
𝑘
, 𝑧
𝑘
, 𝑇
𝑘−1
(𝑟
𝑘
, 𝑧
𝑘
), 𝑡)𝜓
𝑖
(𝑟, 𝑧), 𝑖 =

1, . . . , 𝑛.

The convergence analysis, error analysis, and stability
have been done by many researchers [6–14], and this paper
no longer discusses them.

2.4. Numerical Experiment. In order to show RKHSM is
effective, a nonlinear equation is used as a test to prove the
high accuracy of the method. Select the above conditions and
boundary conditions and let 𝜆

𝑙
= 1 and 𝐷 = (0, 1) × (0, 1);

the equation has an exact solution of the form𝑇(𝑟, 𝑧, 𝑡) = 𝑒−𝑡 ⋅
sin 10𝑟 ⋅ cos 10𝑧. By Mathematica 7.0, using our method, we
choose the number of nodes as 23 and obtain the approximate
solution 𝑇

23
; the comparison of the results with the exact

solution is shown in Table 1, and they are found to be in
good agreement with each other. Figure 1 is the exact solution
𝑇(𝑟, 𝑧, 1), and Figure 2 is the error (𝑇 − 𝑇

23
).

Table 1: Numerical results at 𝑡 = 1.

(𝑟, 𝑧) Approximate
solution

Exact
solution Absolute error

(0.1, 0.1) 0.165583 0.167256 0.001673
(0.2, 0.2) −0.373791 −0.373791 0.001392
(0.3, 0.3) −0.050882 −0.051396 0.000514
(0.4, 0.4) 0.180162 0.181982 0.001820
(0.5, 0.5) −0.099066 −0.100067 0.001001
(0.6, 0.6) −0.097710 −0.098697 0.000987
(0.7, 0.7) 0.180390 0.182212 0.001822
(0.8, 0.8) −0.052427 −0.052957 0.000530
(0.9, 0.9) −0.136755 −0.138136 0.001381
(1.0, 1.0) 0.166248 0.167927 0.001679
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Figure 1: Exact solution 𝑇(𝑟, 𝑧, 1).

3. Numerical Simulation
Results and Discussion

Using the common body structure of vertical wells [5],
assuming that the fluid is Newton fluid, the radius of oil
well is 0.1m, and the geothermal gradient is 0.025∘C/m;
ignoring the influence of casing and cement, the initial
formation temperature is 15∘C. The interlayer between the
two injections is 20m. The thermal conductivity of water
and oil is 4182 J/kg⋅K and 2234.2 J/kg⋅K, the density of
water and oil is 1000 kg/m3 and 800 kg/m3, and the specific
heat of water and oil is 0.618W/m⋅K and 0.156W/m⋅K.
The boundary of adiabatic condition is 𝑇|

𝑧=0
= 15

∘C,
(𝜕(𝜆
𝑤
𝑇)/𝜕𝑟)|

𝑟=0
= 0, the upper boundary of adiabatic

condition is (𝜕(𝜆
𝑤
𝑇)/𝜕𝑧)|

𝑧=1
= 0, and the under boundary

of adiabatic condition is (𝜕(𝜆
𝑤
𝑇)/𝜕𝑧)|

𝑧=0
= 0.

3.1. Effect of Different Injection Rate. The injection tempera-
ture is 80∘C; temperatures of numerical simulations are given
in Figure 1 at 𝑡 = 1 h when the injection rate is 0.0059m/s,
0.095m/s, and 0.0368m/s.

From Figure 3, it can be seen that the temperature of
injection layer is more changed than others when ]

𝑧
=

0.0059m/s. The temperature in injection layer is obviously
changed when the injection rate is small, because the fluid
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Figure 3: Effect of different injection rates 0.0059m/s, 0.095m/s,
and 0.0368m/s.

and borehole wall exchange the heat transfer sufficiently in
the wellbore.

3.2. Effect of Different Injection Temperature. When injection
rate ]

𝑧
= 0.0059m/s, the temperature of numerical simula-

tion when injection temperature is 20∘C, 60∘C, and 80∘C is
given in Figure 4 at 𝑡 = 1 h.

Figure 4 shows the temperature profile is less obvious
when the injection temperature is close to the original
formation temperature (42.5∘C), and the temperature profile
is more obviously changed when the injection temperature
is further deviated from the original formation temperature
(20∘C, 80∘C).

3.3. Effect of Different Injection Time. When injection rate
]
𝑧
= 0.0059m/s, the injection temperature is 80∘C, and the

temperature of numerical simulation when injection time is
0.1 d, 10 d, and 100 d is given in Figure 5.
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Figure 4: Effect of different injection temperatures 20∘C, 60∘C, and
80
∘C.
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Figure 5: Effect of different injection times 0.1 d, 10 d, and 100 d.

Figure 5 presents that the temperature of injection layer
is less changed compared with others when 𝑡 = 0.1 d; this
is because the fluid and borehole wall do not exchange the
heat transfer sufficiently. As the temperature of fluid and
borehole wall becomes consistent when injection time is
long, temperature profile can not be distinguished.Therefore,
reasonable injection time is good for temperature field of the
recovery.

3.4. Effect of Different Oil Layer Thickness. When injection
rate ]

𝑧
= 0.0059m/s, the injection temperature is 80∘C,

and injection time is 𝑡 = 1 h; the temperature of numerical
simulation when oil layer thickness is 1m, 6m, and 10m is
given in Figure 6.

In Figure 6, when oil layer thickness is 1m, the tempera-
ture of injection layer is less changed compared with others.
When the oil layer is thick, the temperature is high, because
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Figure 6: Effect of different oil layer thicknesses 1m, 6m, and 10m.

the fluids are fully blended in the entrance of the injection
layer.

4. Conclusions

In this paper, RKHSM is used to solve a class of linear or
nonlinear partial differential equations which can describe
the temperature field in water injection well; it can be seen
that the method is feasible. According to the numerical
simulation results in Section 3, the following conclusions are
given.

During the water injection wellbore production, different
injection-production conditions make different temperature
profile. By analyzing the simulated results we can conclude
that temperature logging can distinguish water entry zones
from non-water entry zones through hot-water injection for
short periods of time, enlarging water injection velocity,
selecting reasonable shut-in time, so we can use the short,
fast, hot-water injection in order to change the condition that
temperature log can not delineate water injection profile.
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