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Solar energy heliostat fields comprise numerous sun tracking platforms. As a result, fault detection is a highly challenging problem.
Accordingly, the present study proposes a cerebellar model arithmetic computer (CMAC) neutral network for automatically
diagnosing faults within the heliostat field in accordance with the rotational speed, vibration, and temperature characteristics of
the individual heliostat transmission systems. As compared with radial basis function (RBF) neural network and back propagation
(BP) neural network in the heliostat field fault diagnosis, the experimental results show that the proposed neural network has a low
training time, good robustness, and a reliable diagnostic performance. As a result, it provides an ideal solution for fault diagnosis

in modern, large-scale heliostat fields.

1. Introduction

Heliostat fields play an essential role in concentrating the
solar irradiation in tower solar power plant systems [1]. A
modern heliostat field comprises hundreds or even thousands
of individual heliostats, each of which is adjusted contin-
uously so as to direct the incident light onto the receiver
[2, 3]. However, the transmission systems of the heliostats
are prone to various vibration, temperature, and rotational
speed errors; and thus, the overall efficiency of the solar
power plant is reduced [4-6]. Due to the sheer scale of
modern heliostat fields, fault diagnosis is a highly challenging
problem. Moreover, even if a faulty heliostat is successfully
located, determining the precise nature of the fault is not
easily achieved using traditional linear mapping techniques
[7]. In a recent study, Cheng-Yu et al. [8] proposed a radial
basis function (RBF) neural network for fault diagnosis in
heliostat fields. The results showed that the proposed system
had a better classification performance than diagnostic sys-
tems based on a back propagation (BP) neural network [9]
or hybrid artificial neural network (ANN)/genetic algorithm
(GA) scheme [10]. However, in both cases, the improved
detection performance was obtained at the expense of a
longer training time.

Cerebellar model arithmetic computer (CMAC) neural
networks are capable of classifying highly complex non linear
dynamic systems with a high degree of accuracy and a
short learning time. As a result, CMACs have found exten-
sive use for fault diagnosis in such systems as automobile
engines, internal combustion engines, and generators [11,
12]. Multilayer perceptron (MLP) or RBF neural networks
achieve a mapping between the input and output data by
means of a systematic weighting and aggregation of the
excitation function outputs of multiple nodes configured
in a small number of hidden layers. Such networks have a
small scale, but incur a long computational time due to the
hierarchical nature of the layer-by-layer mapping process. By
contrast, in CMAC neural networks, the mapping process is
performed by directly summing multiple weightings stored
in the memory lattice. In other words, the mapping process
involves only a simple addition operation. As a result,
although a larger memory lattice is required to achieve the
same mapping ability as that obtained using an MLP or RBF
approach, the mapping time is significantly reduced. Thus,
CMACs have emerged as a highly attractive solution for
real-time fault diagnosis in complex, nondynamic systems
[13].
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FIGURE 1: Schematic diagram of CMAC neural network.

2. Overview of CMAC Neural Networks

In CMAC neural networks, each memory address within the
memory lattice stores a particular weighting value. During
the training process, an input sample (vector) is selected and
input to the CMAC, where it is quantized and encoded. The
encoded vector is then processed by a hash function and
used to excite a particular subset of the memory addresses
within the lattice [14, 15]. The output vector corresponding
to the input vector is then obtained by simply summing
the weightings stored in the excited memory addresses. The
output vector is compared with the ideal (target) output
vector, and the weightings stored in the excited memory
addresses are tuned by allocating the error between the two
vectors equally among them. The process is then repeated
using a new training sample. Given the input of a signal with
an identical form to that of one of the previous samples,
the same set of memory addresses is excited once again
and the signal obtained by summing the tuned weighting
values stored in the excited memory addresses is equal to
the ideal output signal. Given the input of a signal vector
containing noise, the similarity between the new input signal
and the original signal is reduced. As a consequence, only
some of the original memory addresses may be excited once
again. Nonetheless, the output signal obtained by summing
the weightings in the excited addresses retains many of
the characteristics of the original output signal. As for the
original training sample, the weightings of the memory
addresses excited by the distorted signal are further tuned by
distributing the error between the distorted output signal and
the ideal output signal evenly among them. Having retuned
the memorized weightings, the subsequent input of a signal
vector with a similar degree of distortion yields an output
signal with a form close to that of the target output signal.
Figure 1 illustrates the basic framework of a CMAC
neural network [16]. Assume that the number of excited
memory addresses (A”) is equal to 4. Assume further that an
input vector x; is applied to the input nodes of the CMAC.
The weightings stored in the excited memory addresses are
thus updated as w,, w,, ws, and w,, respectively. The output
vector is obtained by summing the updated weightings of the
four addresses and is then compared with the ideal output
value. As described above, the error between the two vectors
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TABLE 1: Gear fault modes.

Output expression

Fault mode Fault description (T1-T7)

A Normal gear (1,0,0,0,0,0,0)
B Gear spalling (0,1,0,0,0,0,0)
C Gear wear (0,0,1,0,0,0,0)
D Gear scoring (0,0,0,1,0,0,0)
E Gear breaking (0,0,0,0,1,0,0)
F Pitting of tooth flank (0,0,0,0,0,1,0)
G Plastic deformation of tooth flank (0, 0,0,0,0,0,1)

is allocated equally among the four weightings such that the
subsequent reinput of the same signal yields the ideal output
vector. Given the input of a new signal x, similar to x;, the
excited memory addresses may be w,, w,, ws;, and w, once
again or may be w,, w,, w;, and ws (e.g.). Generally speaking,
the greater the degree of similarity between the memory
addresses excited by two different input signals, the greater
the degree of similarityy between the two output signals. In
the present example, three of the memory addresses excited
by signal x, are identical to those excited by signal x; (i.e.,
wy, Wy, and w;). Thus, assuming that the tuning process has
been completed, the output signal will be close to the original
output value.

3. Design of Proposed CMAC Fault
Diagnosis System

As described in Section 1, a heliostat field typically contains
hundreds if not thousands of individual heliostats, each with
its own controller. The heliostat field monitoring system
communicates with all of the controllers in the heliostat field
and performs fault diagnosis on the basis of the information
received. Of all the various components within each heliostat,
the turning gear is most commonly affected by faults and
errors [10]. Thus, in developing the proposed CMAC neural
network, the present study focuses specifically on the trans-
mission system of each heliostat.

3.1. Fault Modes. The gears within the heliostat transmission
system experience a range of common faults, including
spalling, wear, scoring, breakage, pitting, and plastic defor-
mation. As shown in Table 1, these gear faults are annotated
in this study as fault modes B ~ G, respectively. (Note that
fault mode A denotes a normal gear operation.) For each fault
mode, the output signal of the CMAC neural network has
the form of a 7-element vector (T'1, T2, T3, T4, T5, T6, T7).
Note that for each vector, an element value of “0” indicates
a normal output, while an element value of “0” indicates an
abnormal output (i.e., a fault).

3.2. Selection of Sensing Points for Fault Diagnosis Purposes.
Heliostats utilize a double-shaft transmission mechanism
to accomplish rotational adjustments of the mirror in the
azimuth and elevation planes, respectively. As shown in
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FIGURE 2: Sensor positions in heliostat transmission system.

Figure 2, the major components in each branch of the trans-
mission system include an asynchronous motor, a reducer,
a gear-cross shaft, and a gear upright shaft. Note that in
Figure 2, labels 1, 2, 3, and 4 denote mechanical couplings;
A, and A, are current vortex sensors, detecting the rotational
speed of the corresponding motor shaft; B;, B,, B;, and B,
are acceleration sensors, detecting the gear vibration; and
C, and C, are temperature sensors, detecting the gear case
temperature. (Note that the gear case temperature is taken
as an indication of the oil temperature within the case.)
The analog signals generated by the velocity, vibration, and
temperature sensors are amplified, converted to a digital
form, and then transferred to the monitoring system for fault
diagnostic purposes.

In the transmission system shown in Figure 2, the engage-
ment vibration of the gears is transferred to the bearing via
the shaft and is subsequently transferred to the gear case via
the bearing pedestal. To measure the vibration accurately,
the acceleration sensor should be attached to a position of
high stiffness. Thus, in the present study, the acceleration
sensors were attached to the bearing pedestals in a vertical
direction. Furthermore, as shown in Figure 2, the current
vortex sensors used to detect the rotational speed of the
asynchronous motors were attached to the output side of the
respective couplers. For each sensor in Figure 2, the measured
signal was normalized as follows:

(xi B xmin)

yi:(x X (1)

max min )

The normalized measurement data obtained from the rota-
tional speed sensors (A, A,), vibration sensors (B, B,, B,
B,) and temperature sensors (C;, C,) were then used to
construct an 8-element input vector for the CMAC neural
network for fault diagnosis purposes.

4. CMAC Neural Network Training

Table 2 shows the sample data used to train the CMAC neural
network. Table 3 shows the corresponding fault modes of
the 20 training samples. In implementing the CMAC neural

network model shown in Figure 1, the quantization step
size is specified as 64 bits and the encoded fault following
quantization has a length of 48 bits. Since there are seven
output classes (see Table 1), a total of six memory layers are
required. Furthermore, since the input signal has the form
of an 8-element vector (see Section 3), each memory layer is
partitioned into eight groups, with each group having six bits.

An output value can be obtained after quantization,
concatenation, excited address coding, and totaling of the
excited address weightings in the CMAC neural network. In
performing the training process, given a fault sample of the
ith (i = 1,2,...) type, only the ith layer of memory is excited
and trained. In the subsequent diagnosis phase, if the same
addresses in each group of memory bits are excited, the fault
type is identified in accordance with the output value of each
layer.

4.1. Quantization. The input data for the CMAC neural
network developed in the present study all fall within a given
range, that is, [X;., X, ]. As shown in Figure 3, each input
data instance is quantized using an equidistant quantization
scheme based on the maximum and minimum values of the
corresponding range.

In performing the quantization process, the quantized
value of any input value less than X ;. is set to 0, while the
quantized value of any input value greater than X, is set to
X ax- The quantized values of the remaining input values are
determined in accordance with

ceil (xi — min)
[(max — min) /Q]’

Qxi (xi) = (2)
where ceil (x) is a Matlab function which causes the quanti-
zation process to yield the integer value closest to x towards
infinity.

4.2. Excited Address Coding and CMAC Output Calculation.
As described above, the recoded fault code following
quantization comprises 48 bits, partitioned into eight 6-bit
groups. Assume that the quantized fault code has the form
101000000000000000000000000100001010000011101101b.
For this particular example, the eight excited addresses
coded sequentially from the LSB to the MSB are as follows:
al = 101101b = 45, a2 = 000011 = 3, a3 = 001010 = 10, a4 =
000100 = 4, a5 = 000000 = 0, a6 = 000000 = 0, a7 = 000000
=0, and a8 = 101000 = 40. Assuming that all of the excited
addresses store an initial weighting of zero, the total memory
weighting excited by the first input sample is equal to 0, W,
W, Ws, Wy, We’. The output of the CMAC neural network
can thus be expressed as

y=YyYw?, (3)

where A” is the total number of excited memory addresses.

4.3. Update Weightings. In the CMAC neural network devel-
oped in the present study, the weightings stored in the
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TABLE 2: Training samples.
No. A, A, B, B, B, B, C, C,
1 0.58 0.64 0.19 0.25 0.23 0.14 0.36 0.41
2 0.65 0.89 0.16 0.25 0.48 0.35 0.38 0.45
3 0.54 0.59 0.62 0.68 0.36 0.41 0.58 0.37
4 0.59 0.64 0.39 0.42 0.61 0.54 0.35 0.60
5 0.60 0.40 0.62 0.58 0.79 0.87 0.32 0.60
6 0.55 0.64 0.12 0.20 0.35 0.40 0.45 0.39
7 0.59 0.15 0.57 0.53 0.86 0.74 0.59 0.90
8 0.53 0.70 0.13 0.24 0.32 0.41 0.36 0.61
9 0.90 0.81 0.33 0.43 0.49 0.31 0.46 0.40
10 0.55 0.59 0.61 0.68 0.57 0.51 0.69 0.62
11 0.51 0.56 0.31 0.40 0.46 0.41 0.50 0.67
12 0.10 0.21 0.85 0.79 0.86 0.73 0.76 0.88
13 0.50 0.61 0.40 0.35 0.45 0.41 0.47 0.34
14 0.33 0.45 0.80 0.76 0.91 0.81 0.59 0.63
15 0.53 0.58 0.32 0.41 0.09 0.15 0.30 0.41
16 0.50 0.78 0.12 0.24 0.35 0.31 0.42 0.46
17 0.32 0.41 0.75 0.81 0.56 0.67 0.62 0.40
18 0.53 0.61 0.22 0.13 0.23 0.24 0.39 0.43
19 0.55 0.60 0.36 0.39 0.19 0.08 0.57 0.35
20 0.15 0.36 0.81 0.92 0.54 0.61 0.75 0.51
TaBLE 3: Fault modes of training samples. | |
[ | 1 1 L1 1 [

No. Fault mode
1 (1,0,0,0,0,0,0) FIGURE 3: Schematic representation of equidistant quantization

scheme.
2 (0,1,0,0,0,0,0)
3 (0,0,0,1,0,0,0)
4 (0,0,0,1,0,0,0)  where W{L,,, is the adjusted weighting, W{. ) is the previous
5 (0,0,0,0,0,0,1) weighting, ai is the excited memory address, f3 is the learning
6 (0,0,1,0,0,0,0) gain (0 < 3 < 1),Y is the target value (set as 1 in the present
7 (0,0,0,0,1,0,0) study), and Y is the actual output value. It is noted that 3 can
8 (0,0,0,0,0,1,0) be sent directly to 1 if each fault type has only one group.
9 (0,1,0,0,0,0,0) However, for more than one sample data, 8 usually has a value
10 (0,0,0,1,0,0,0) slightly less than 1. ' .
1 0.0.0,0,0,1,0) . The memory consumption of each layer in the CMAC
b (0.0,0.0, 1.0.0) is related to the number of bits per group (m). Moregver,

the total memory consumption of the CMAC is determined
13 0,0,1,0,0,0,0) by the number of groups, the number of the length of the
14 (0,0,0,0,0,0,1) encoded fault following quantization (n), and the number of
15 (0,0,1,0,0,0,0)  fault types (f). In the CMAC developed in the present study,
16 (0,1,0,0,0,0,0) A" =8 m = 6,n =48, and f = 6. The total number of
17 (0,0,0,0,0,0,1) memory addresses in the CMAC is given by
18 (1,0,0,0,0,0,0) "
19 (0,0,0,0,0,1,0) My =A"- f-2" = ceil(—) f-2" (5)
20 (0,0,0,0,1,0,0) "

memory lattice are updated using the method of the steepest
descent [15, 16], that is,

A Y, -Y
Witew) < Wiold) + ﬁA—’

Thus, the total number of memory addresses in the present
CMAC is equal to 8 x 6 x 32 = 1536.

In (5), n/m is not guaranteed to be exactly divisible.
Thus, ceil represents an unconditional carry function. In
other words, the insufficient bit of MSB will fill 0 in the
proper order automatically during grouping. Considering
the consumption of memory, the ceil function is neglected
and (5) is differentiated with respect to m to determine the
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number of bits per group which minimizes the total memory
consumption, That is,

oM total _

n m n m
- <_ﬁ)f2 +;-Ln2'2 =0. (6

4.4. Convergence of CMAC. The convergence properties of
CMAC neural networks have been extensively examined in
the literature [17]. In the CMAC developed in the present
study, the memory consumption is reduced by means of an
appropriate encoding mode which ensures that no collisions
occur during the weighting process. (Note that a collision is
defined here as the case where two different input signals
excite the same set of memory addresses.) As a result, the
convergence of the learning process is ensured.

Let the total weighting of the excited addresses on the ith
(i = 1,2,3,...) memory layer be equal to 1 and represent
the ith fault. Furthermore, let the number of data samples

Import previously saved
data of memory weighting.

|

Import diagnostic data

|

Quantization

|

Excited address combination

Update memory

Whether diagnosis is correct L .
weighting online

Save the latest memory
value, diagnosis is completed

Whether there is next data
to be diagnosed

FIGURE 5: Flowchart of online learning process.

corresponding to the ith fault type be equal to d. The
following evaluation index is then introduced:

d

E=Y(v,-1), 7)

i-1

where the value of E represents the learning effect. Define ¢
as a number greater than 0. The training process terminates
once the condition E < ¢ is achieved.

5. Offline and Online Learning Modes

The learning modes and fault diagnosis rules proposed in this
study are summarized as follows.

5.1. Offline Learning Mode .

Step 1. Determine CMAC parameter settings (i.e., quantiza-
tion step size: 64, memory layer: 48 bits, 8 groups, 6 bits per
group).

Step 2. Import training samples into CMAC, quantize sample
data, and sum excited memory addresses to obtain output
signal.

Step 3. Compare output value (y) with ideal value (Y,;) and
use (4) to update memory weightings if required.
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TABLE 4: Training samples ordered by fault type.
No. A A, B, B, B, B, C, C,
1 0.58 0.64 0.19 0.25 0.23 0.14 0.36 0.41
2 0.53 0.61 0.22 0.13 0.23 0.24 0.39 0.43
3 0.65 0.89 0.16 0.25 0.48 0.35 0.38 0.45
4 0.90 0.81 0.33 0.43 0.49 0.31 0.46 0.40
5 0.50 0.78 0.12 0.24 0.35 0.31 0.42 0.46
6 0.55 0.64 0.12 0.20 0.35 0.40 0.45 0.39
7 0.50 0.61 0.40 0.35 0.45 0.41 0.47 0.34
8 0.53 0.58 0.32 0.41 0.09 0.15 0.30 0.41
9 0.54 0.59 0.62 0.68 0.36 0.41 0.58 0.37
10 0.59 0.64 0.39 0.42 0.61 0.54 0.35 0.60
11 0.55 0.59 0.61 0.68 0.57 0.51 0.69 0.62
12 0.59 0.15 0.57 0.53 0.86 0.74 0.59 0.90
13 0.10 0.21 0.85 0.79 0.86 0.73 0.76 0.88
14 0.15 0.36 0.81 0.92 0.54 0.61 0.75 0.51
15 0.53 0.70 0.13 0.24 0.32 0.41 0.36 0.61
16 0.51 0.56 0.31 0.40 0.46 0.41 0.50 0.67
17 0.55 0.60 0.36 0.39 0.19 0.08 0.57 0.35
18 0.60 0.40 0.62 0.58 0.79 0.87 0.32 0.60
19 0.33 0.45 0.80 0.76 0.91 0.81 0.59 0.63
20 0.32 0.41 0.75 0.81 0.56 0.67 0.62 0.40
TaBLE 5: Fault modes of ordered training samples. In practice, the time required to complete the offline
learning process depends on the number of training data
No. Fault mode samples. In the present study, the CMAC is trained using just
1 (1,0,0,0,0,0,0) 20 samples (see Table 1). Hence, the training time is very short
2 (1,0,0,0,0,0,0) (less than one second). Figure 4 presents a flowchart showing
3 (0,1,0,0,0,0,0) the overall framework of the offline learning process.
4 (0,1,0,0,0,0,0)
5 (0,1,0,0,0,0,0)
6 (0,0,1,0,0,0,0) 5.2 inine Learning Mode: Havipg completeq the offline
; (0,0.1,0,0,0.0) learning process, the fault diagnosis procedure is performed
as follows.
8 (0,0,1,0,0,0,0)
9 (0,0,0,1,0,0,0)  Step 6. Import memory weightings obtained in offline learn-
10 (0,0,0,1,0,0,0) ing mode.
11 (0,0,0,1,0,0,0)
12 (0,0,0,0,1,0,0) Step 7. Import diagnostic data.
i Eg 8 g ?) 1 g g; Step 8. Per.form quantization, binary c.:ombination coc.ling,
D concatenation, and excited address coding. Sum the weight-
15 0,0,0,0,0,1,0) ings of the excited addresses in order to obtain the output
- (0,0,0,0,0,1,0) values of the various nodes.
17 (0,0,0,0,0,1,0)
18 (0,0,0,0,0,0,1) Step 9. Compare the diagnosis result with the target result. If
19 (0,0,0,0,0,0,1) the diagnosis is correct, proceed to Step 10; else skip to Step
20 (0,0,0,0,0,0,1) 1L

Step 4. Check if all of the input training samples have been
processed. If not, return to Step 2; else, proceed to Step 5.

Step 5. Evaluate the learning performance. If E < ¢, save the
current set of memory weightings; else, return to Step 2.

Step 10. Check whether or not all of the input diagnostic data
have been classified. If not all of the diagnostic data have been
processed, return to Step 7; else skip to Step 12.

Step 11. Use (4) to update the memory weightings and then
return to Step 10.
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TABLE 6: Diagnosis results for training samples given in Table 4.
No. T1 T2 T3 T4 T5 T6 T7
1 1.000 0 0 0 0 0 0
2 1.000 0 0 0 0 0 0
3 0 1.000 0 0 0 0 0
4 0 1.000 0 0 0 0 0
5 0 1.000 0 0 0 0 0
6 0 0 1.000 0 0 0 0
7 0 0 1.000 0 0 0 0
8 0 0 1.000 0 0 0 0
9 0 0 0 1.000 0 0 0
10 0 0 0 1.000 0 0 0
11 0 0 0 1.000 0 0 0
12 0 0 0 0 1.000 0 0
13 0 0 0 0 1.000 0 0
14 0 0 0 0 1.000 0 0
15 0 0 0 0 0 1.000 0
16 0 0 0 0 0 1.000 0
17 0 0 0 0 0 1.000 0
18 0 0 0 0 0 0 1.000
19 0 0 0 0 0 0 1.000
20 0 0 0 0 0 0 1.000
TABLE 7: Distorted test sample data.
No. A, A, B, B, B, B, C, C,
1 0.69 0.64 0.19 0.25 0.23 0.14 0.50 0.41
2 0.65 0.89 0.16 0.25 0.53 0.35 0.38 0.45
3 0.54 0.59 0.80 0.68 0.36 0.41 0.58 0.48
4 0.59 0.64 0.39 0.42 0.61 0.54 0.35 0.72
5 0.84 0.40 0.62 0.81 0.79 0.87 0.32 0.60
6 0.55 0.77 0.12 0.20 0.35 0.52 0.45 0.39
7 0.59 0.15 0.57 0.63 0.86 0.74 0.59 0.90
8 0.53 0.70 0.13 0.24 0.35 0.41 0.47 0.61
9 0.90 0.89 0.33 0.43 0.49 0.31 0.46 0.52
10 0.55 0.59 0.61 0.68 0.63 0.51 0.69 0.62
TABLE 8: Diagnosis results for distorted training samples given in Table 7.
No. T1 T2 T3 T4 T5 T6 T7
1 0.778 0.113 0.236 0.125 0 0.111 0
2 0.111 0.790 0 0 0 0 0
3 0 0 0.458 0.818 0 0.347 0.111
4 0.222 0 0.236 0.875 0.1 0 0
5 0 0 0 0.216 0 0 0.861
6 0.111 0.226 0.667 0.182 0 0.125 0
7 0.111 0 0 0.125 0.90 0 0.111
8 0.111 0.226 0.569 0.091 0 0.778 0
9 0 0.71 0 0 0 0 0
10 0 0 0.236 0.909 0 0.125 0




Step 12. Save the latest memory weighting values. Terminate
the diagnosis procedure.

Figure 5 presents a flowchart showing the overall frame-
work of the online learning process.

6. Experimental Results and Analysis

For convenience, Tables 4 and 5 list the 20 training samples
given in Table 2 in order of their fault type.

The learning process was repeated 10 times using the
sample data given in Table 4. The corresponding diagnosis
results are presented in Table 6. It appears from a comparison
of Tables 5 and 6 that the CMAC achieves a 100% success rate
in diagnosing the input data samples.

To evaluate the robustness of the proposed CMAC diag-
nosis system, the first 10 training samples in Table 2 were
distorted using a random 10~40% interference signal. The
resulting test samples are shown in Table 7, in which the
distorted values are shown in italics.

The training procedure was repeated 10 times using
the distorted test data given in Table 7. The corresponding
diagnosis results are shown in Table 8.

The results presented in Table 8 confirm that the CMAC
correctly diagnoses the input fault even when the input data
contains 10~40% noise. In other words, the robustness of the
proposed fault diagnosis system toward noise in the input
data is confirmed.

7. Conclusions

Heliostat fields contain hundreds if not thousands of individ-
ual heliostats, each with their own independent controller.
As a result, fault diagnosis via a remote monitoring system
is highly challenging. Existing RBF and BP neural network
approaches for fault diagnosis in heliostat fields achieve
an accurate classification performance, but require a long
training time. Accordingly, this study has presented a new
approach for fault diagnosis in large-scale heliostat fields by
means of a CMAC neural network. The experimental results
have shown that the proposed system has a short learning
time, a high classification performance and a good robustness
toward noise in the input signal.
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