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The paper deals with the design of control algorithms for virtual reality based telerobotic system with haptic feedback that allows
for the remote control of the vertical drilling operation. The human operator controls the vertical penetration velocity using a
haptic device while simultaneously receiving the haptic feedback from the locally implemented virtual environment. The virtual
environment is rendered as a virtual spring with stiffness updated based on the estimate of the stiffness of the rock currently
being cut. Based on the existing mathematical models of drill string/drive systems and rock cutting/penetration process, a robust
servo controller is designed which guarantees the tracking of the reference vertical penetration velocity of the drill bit. A scheme
for on-line estimation of the rock intrinsic specific energy is implemented. Simulations of the proposed control and parameter
estimation algorithms have been conducted; consequently, the overall telerobotic drilling systemwith a human operator controlling
the process using PHANTOM Omni haptic device is tested experimentally, where the drilling process is simulated in real time in
virtual environment.

1. Introduction

Drilling a borehole is a common method for extracting oil,
gas, and natural resources from beneath the surface of the
earth. Conventional oil well drilling has made significant
progress over recent years, and currently is one of the most
automated processes in the oil and gas industry. However,
there are still some fundamental challenges associated with
the drilling. One of the challenges is the choice of vertical
penetration velocity of the drill bit. For efficient drilling
operation, this velocity must depend upon the type of rock
beds drilled. In particular, the velocitymust be adjusted when
mechanical characteristics of rock strata change. Often, it is
difficult to estimate in real time the relative position of the
drill bit with respect to different rock layers and, therefore,
hard to predict the mechanical characteristics of the rock
formations.

The goal of this research is to design a telerobotic system
with haptic feedback for control of the drilling process.
Telerobotics for drilling well is a relatively novel idea, and it
is substantial endeavor to automate one of the fundamental

processes in the extraction of energy and resources. As
telerobotics is integrated with drilling, it can greatly decrease
the number of people working and monitoring operation
on the site. This, in particular, can reduce the work site
hazards. Also, telerobotics can bring actual analysis of in
situ conditions (underground drilling environment) in real
time to the human operator that works remotely, where
(s)he will be able to monitor the current drilling conditions
and, in particular, promptly enforce changes in the vertical
speed of penetration of the drill bit in the oil well. Real-time
control and optimization of the drilling speed are crucial for
today’s drilling industry, as it can reduce time and immense
cost associated with the drilling an oil well. Introduction of
haptic feedback would allow the human operator to feel the
changes in mechanical characteristics of the rock and adjust
the vertical velocity of penetration accordingly.

In this paper, we address the problem of design of control
algorithms for virtual reality based telerobotic system with
haptic feedback that allows for the remote control of the
vertical drilling operation. Based on a simplified mathe-
matical model of the drilling process, control algorithms
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are designed which allow to achieve a desired rate of the
vertical penetration, regardless of the mechanical properties
of the rock. The control design includes an online parameter
estimator of the intrinsic specific energy which is a parameter
that describes the hardness of the rock. All these algorithms
are consequently used in the design of a telerobotic drilling
system with virtual environment-based haptic feedback that
allows the human operator to feel the stiffness of the rock in
contact with the drill bit. Simulations and semiexperimental
results are performed which confirm the validity of the
theoretical developments.

The potential application domain of this research is not
limited to onshore/offshore oil well drilling, but the same
principles can be applied, in particular, to different types
of mining robots [1], telerobotic systems for dredging and
mining ocean [2–5], surgical drilling [6], and telerobotic
systems for drilling the extraterrestrial terrain to discover and
research the minerals and composition beneath [5, 7].

The structure of the paper is as follows. In Section 2, a
mathematical model of the drilling process is derived which
is subsequently used for the control design. Section 3 deals
with the design of control algorithms for rotational and trans-
lationalmotion of the drilling systems, as well as the design of
an online parameter estimator of the intrinsic specific energy
of the rock. In Section 4, the structure of a telerobotic drilling
system is described and the corresponding experimental
results are presented. Finally, in Section 5, some conclusions
are given and possible future directions are formulated.

2. Mathematical Model of Drilling System

In this section, mathematical models that describe the
drilling system are presented. Specifically, the mathematical
model of drill string and drive system is described in
Section 2.1, while the model of rock cutting and penetration
is the subject of Section 2.2.

2.1. Mathematical Model of the Drill String and Drive System.
The drill string is the assembly of rotating pipes which are
responsible for transmitting rotation and weight to the bit
and bridge up a connection between the bottom hole tools
[8]. The components of a drill string along with drill pipes
and the bottom hole assembly (BHA) are shown in Figure 1.
A number of simplified mathematical models for drill string
and drive systems were proposed in the literature, such as
[9–12]. The model used in our work was developed in [9].
This model describes the drill string as a simple torsional
pendulum, where the drill pipes are represented as torsional
springs and the bottom hole assembly is described as a rigid
body with inertia. The model is based on the following
simplifying assumptions.

(1) The bottom hole assembly and the drill bits behave
like rigid bodies.

(2) The moment of inertia of the drill pipe is considered
to be small in comparisonwith themoments of inertia
of the bottom hole assembly and the rotary table and,
therefore, neglected.
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Figure 1: Drill string components [8].
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Figure 2: Representation of drill string/drive system with mechan-
ical and electrical components [9].

(3) The nonzero time propagation of the torsional force
disturbances along the drill string is neglected. The
forces assume to propagate instantaneously along the
drill string.

Under the above described assumptions 1–3, the whole
drill string and drive system with equivalent electro-
mechanical components can be represented by its structural
diagram shown in Figure 2. This system is described by the
following mathematical model [9]. First, the motion of the
drill string is described by the following equation:

𝐽
1
̈𝜙
1
+ 𝑐
1
̇𝜙
1
+ 𝑘 (𝜙

1
− 𝜙
2
) − 𝑇 = 0. (1)
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Here, 𝜙
1
is the angular displacement of bit and drill collars

(BHA), 𝜙
2
is the angular displacement of the rotary table,

𝐽
1
is the equivalent moment of inertia of the collars (BHA)

and the drill pipes, coefficient 𝑐
1
represents equivalent viscous

damping, 𝑘 is the equivalent torsional stiffness of the drill
pipes, and 𝑇 is the torque-on-bit (TOB) generated during the
rock cutting process (see Section 2.2 below).The dynamics of
the rotary table and drive system is described by the following
equation:

𝐽
2
̈𝜙
2
+ 𝑐
2
̇𝜙
2
− 𝑘 (𝜙

1
− 𝜙
2
) − 𝑛𝑇

𝑚
= 0, (2)

where 𝐽
2
is combined moment of inertia of the rotary table

and of the rotor of the electric motor coupled together with
a gearbox that has 1 : 𝑛 gear ratio, 𝑐

2
is aggregated damping

of all the components of the drive system, and 𝑇
𝑚

is the
motor torque. Finally, the electric motor is described by the
following equations:

𝐿 ̇𝐼 + 𝑅𝐼 + 𝑉
𝑏
− 𝑉 = 0, 𝑉

𝑏
= 𝐾 ̇𝜙
3
= 𝐾𝑛 ̇𝜙

2
,

𝑇
𝑚
= 𝐾𝐼,

(3)

where 𝐼 is the armature current, 𝐿 is an equivalent armature
inductance, 𝑅 is an equivalent armature resistance, 𝑉

𝑏
is the

back emf, 𝑉 is the armature voltage, ̇𝜙
3
is the rotor angular

velocity, and 𝐾 is a constant that depends upon the motor
characteristics.

By combining all the above equations, the complete drill
string/drive system can be written in the following state space
form:
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(4)

Here, 𝜔
1
and 𝜔

2
are the angular velocities of the drill bit and

the rotary table, respectively. Equation (4) is valid when the
drill bit rotational velocity is greater than zero, that is, 𝜔

1
> 0.

In order to reduce the number of equations, a variable 𝜙 is
introduced as the difference of 𝜙

2
and 𝜙

1
. In this case, the

original system can be rewritten in the following reduced
state space form:
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Figure 3: Section of the bottom hole profile located between two
successive blades [10].

Equation (5) defines the reduced order model of the drill
string and drive system.Themodel (5) is used for the control
design below.

2.2. RockCutting andVertical PenetrationModels. Astandard
drill bit usually exhibits two kinds of motions: rotational
along its axis of rotation and vertical motion while penetrat-
ing through the rocks. As described in [13], in the normal
mode of operation of the drill bit, the bit rotational velocity 𝜔
is parallel to its axis of rotation, and the penetration velocity V
is directed vertically straight through the rocks. Similarly, the
weight-on-bit𝑊 acts in the vertical direction and the torque-
on-bit 𝑇 is applied in parallel to the direction of rotation
of drill bit. The cutting components of the weight-on-bit
and torque-on-bit depend on the radius of PDC drill bit 𝑎,
intrinsic specific energy 𝜖, a parameter 𝜁 > 0which represents
the ratio of the vertical force to the horizontal force between
rock and cutter contact surfaces, and the depth of cut 𝑑. The
depth of cut 𝑑 plays significant role in the equations to follow
that describe the cutting components of the torque-on-bit 𝑇
and the weight-on-bit𝑊.The equations for these two cutting
components are as follows [13]:

𝑇
𝑐
=
1

2
𝑎
2
𝜖𝑑, (6)

𝑊
𝑐
= 𝑎𝜁𝜖𝑑. (7)

In this work, the system is developed under simplifying
assumption that the friction effects are negligible. In this case,
both variables 𝑇 ≈ 𝑇

𝑐 and 𝑊 ≈ 𝑊
𝑐 are proportional to

the depth of cut 𝑑, according to (6) and (7). As illustrated in
Figure 3, the depth of cut 𝑑 is the thickness of rock ridge in
front of the blade. It is assumed that the drill bit has 𝑛 number
of identical blades, and the difference of angular positions of
these two successive blades is (2𝜋/𝑛). In this case, 𝑑 is the
combined depth of cut of all 𝑛 blades in each revolution of
drill bit, according to the formula

𝑑 (𝑡) := 𝑛𝑑
𝑛
(𝑡) , (8)
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where 𝑑
𝑛
is the depth of cut of each blade. The depth of cut

for each blade is in turn defined according to the formula

𝑑
𝑛
(𝑡) := 𝑈 (𝑡) − 𝑈 (𝑡 − 𝑡

𝑛
) , (9)

where𝑈(𝑡) and𝑈(𝑡 − 𝑡
𝑛
) are the vertical positions of the drill

bit at current time instant 𝑡 and a certain previous instant 𝑡 −
𝑡
𝑛
, respectively [10, 11]. The delay 𝑡

𝑛
in the above formula is

exactly the time that is required for the drill bit to rotate by
an angle 2𝜋/𝑛 to achieve its current angular position 𝜙

1
(𝑡); in

other words, it also satisfies the following equation:

𝜙 (𝑡) − 𝜙 (𝑡 − 𝑡
𝑛
) =

2𝜋

𝑛
. (10)

Using (9) and (10) for calculating 𝑑(𝑡)would significantly
complicate the control design. In this work, we simplify this
problem by assuming that both the vertical and angular
velocities change slowly; specifically, it is assumed that both
V(𝜏) ≡ �̇�(𝜏) and 𝜔

1
(𝜏) ≡ ̇𝜙

1
(𝜏) are approximately constant

during each period 𝜏 ∈ [𝑡 − 𝑡
𝑛
, 𝑡]. Using this assumptions, (9)

and (10) can be rewritten as follows:

𝑑 (𝑡) ≈ 𝑛 ⋅ V (𝑡) ⋅ 𝑡
𝑛
, (11)

𝜔
1
(𝑡) ⋅ 𝑡
𝑛
≈
2𝜋

𝑛
. (12)

Combining (11), (12), and assuming 𝜔
1
(𝑡) ̸= 0, one gets the

following approximate expression for 𝑑(𝑡):

𝑑 (𝑡) ≈
2𝜋 ⋅ 𝑡 (𝑡)

𝜔
1
(𝑡)

. (13)

The above formula has a singularity at 𝜔
1
(𝑡) = 0. To

remove this singularity, note that the drilling occurs when
both 𝜔

1
(𝑡) > 0 and V(𝑡) > 0. On the contrary, 𝜔

1
(𝑡) ≤ 0,

the drill bits do not cut the rock and therefore 𝑑(𝑡) ≡ 0

in this case. Based on the above considerations, one can
approximately define the depth of cut according to the
formula

𝑑 (𝑡) ≈
2𝜋 ⋅ V (𝑡)

max {𝜔
1
(𝑡) , 𝜖
0
}
, (14)

where 𝜖
0
> 0 is sufficiently small positive constant. The

formula (14) does not have singularity at 𝜔
1
(𝑡) = 0; it will be

occasionally used for calculations of 𝑑(𝑡) instead of (13) in the
cases where avoiding singularity is important (in simulations,
etc.).

Finally, the vertical motion of the drill bit is described by
the following equation [12]:

𝑀
𝑑V

𝑑𝑡
= 𝑊
𝑠
−𝑊 −𝐻

0
− 𝐾
𝑓
V. (15)

Here, V is the vertical velocity of the drill bit, 𝑀 is the
combinedmass of the drill string and BHA,𝐻

0
is the constant

upward force applied from the top of drilling rig, and𝑊
𝑠
is

the submerged weight of the drill string and Bottom Hole
Assembly (BHA). In this model, it is assumed that 𝑊

𝑠
and

𝐻
0
to be constants and defined their difference with another

constant𝑊
0
such that𝑊

0
= 𝑊
𝑠
− 𝐻
0
. Also,𝑊 is the applied

weight on bit from the interaction of rock defined by (7), and
𝐾
𝑓
> 0 is the coefficient of viscous friction.
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Figure 4: The block diagram of the drilling system.

3. Controller Design

The block diagram of the overall drilling system is shown
in Figure 4. As it can be seen from this figure, the block
diagram has a complex structure and consists of several
interconnected subsystems. Specifically, the vertical motion
subsystem is described by (15); the output of this subsystem
is the vertical velocity of penetration V(𝑡). The subsystem
that represents the rotational motion is described by (5);
this subsystem has one control input which is the armature
voltage 𝑉(𝑡) and one output which is the angular velocity
of the drill bits 𝜔

1
(𝑡). Both V(𝑡) and 𝜔

1
(𝑡) are the inputs of

the nonlinear static block that represents the cutting process;
this subsystem generates the depth of cut 𝑑(𝑡) according
to (13). Both the torque-on-bit 𝑇 and weight-on-bit 𝑊 are
proportional to 𝑑; they are fed back to rotational motion and
vertical motion subsystems, respectively.

Our goal is to design a control system that maintains a
desired rate of drilling. Specifically, we are looking for the
control algorithm for the armature voltage𝑉 that would guar-
antee that the velocity of the vertical penetration V(𝑡) tends
asymptotically to an arbitrary positive desired value Vref > 0.
We start designing a control algorithm by considering the
equation of vertical motion (15) in some detail.

3.1. Control of the Vertical Motion of a Drill Bit. The vertical
motion of the drilling system is described by (15). For
convenience, this equation is rewritten below in a slightly
modified form, as follows:

V̇ = −
𝐾
𝑓

𝑀
V −

(𝑊
𝑠
− 𝐻
0
)

𝑀
−
𝑊

𝑀
. (16)

The idea of the controller developed in this work is to use the
weight-on-bit𝑊 as the control input to the vertical motion
subsystem (16). More specifically, combining formulas (7)
and (13), one get the following expression for𝑊:

𝑊 = 𝑎𝜁𝜖
2𝜋

𝜔
1

V, (17)

which essentially indicates that 𝑊 is proportional to the
vertical velocity V(𝑡) and inversely proportional to the angular
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velocity of the rotational motion 𝜔
1
(𝑡). Substituting the last

formula into (16), one gets

V̇ =
𝑊
𝑠
− 𝐻
0

𝑀
−
1

𝑀
(𝑎𝜁𝜖

2𝜋

𝜔
1

+ 𝐾
𝑓
) V. (18)

Equation (18) is a linear differential equation with respect to
V which, assuming 𝜔

1
> 0, has one stable equilibrium V = V

0

defined by the formula

𝑊
𝑠
− 𝐻
0

𝑀
−
1

𝑀
(𝑎𝜁𝜖

2𝜋

𝜔
1

+ 𝐾
𝑓
) V
0
= 0. (19)

Solving the above equation with respect to V
0
, one gets

V
0
=

𝑊
𝑠
− 𝐻
0

(𝑎𝜁𝜖 (2𝜋/𝜔
1
) + 𝐾
𝑓
)
. (20)

The above equation (20) indicates that the location of the
stable equilibrium V = V

0
of the vertical motion subsystem

(16) can be controlled if one can control the rotational veloc-
ity 𝜔
1
. Specifically, (20) defines one-to-one correspondence

between 𝜔
1
from the range (0, +∞) and V

0
from the range

(0, (𝑊
𝑠
−𝐻
0
)/𝐾
𝑓
). In particular, for any given Vref ∈ (0, (𝑊𝑠 −

𝐻
0
)/𝐾
𝑓
), there exists an unique 𝜔ref ∈ (0, +∞) such that

if the angular velocity satisfies 𝜔
1
(𝑡) ≡ 𝜔ref, then Vref is a

globally exponentially stable equilibrium of the translational
dynamics (16). For a given Vref ∈ (0, (𝑊

𝑠
− 𝐻
0
)/𝐾
𝑓
), the

corresponding 𝜔ref can be found using formula (20), as
follows:

𝜔ref =
2𝜋𝑎𝜁𝜖

((𝑊
𝑠
− 𝐻
0
) /Vref) − 𝐾𝑓

. (21)

Therefore, the control goal of stabilization of the vertical
penetration velocity V(𝑡) → Vref can be achieved by
designing a controller for rotational motion that guarantees
a sufficiently fast convergence of 𝜔

1
(𝑡) → 𝜔ref. The design of

such a controlled is presented in the next section.

3.2. Stabilization of the Angular Velocity of the Drilling System.
The rotational dynamics of the drilling system together with
the electric drive are described by (5), which is repeated below
for convenience,
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𝑇.

(22)

The above system has one control input which is the armature
voltage of the electric drive 𝑉 and one disturbance input
which is the torque-on-bit 𝑇. Our objective in this section is
to design a control law for𝑉which would track the reference
angular velocity of the drill 𝜔

1
→ 𝜔ref while rejecting the

disturbance 𝑇.
To solve the control problem formulated above, one

can use the approach to feedforward robust servo control
problem presented in [14, 15]. Below, the above approach is
described in a simplified manner which, however, serves our
purpose well. Consider a linear time invariant system of the
form

�̇� = 𝐴𝑥 + 𝐵𝑢 + 𝐷𝑤,

𝑦 = 𝐶𝑥 + 𝐹𝑢 + 𝐻𝑤,
(23)

where 𝑥 ∈ R𝑛 is the state, 𝑢 ∈ R𝑚 is the control input,
𝑦 ∈ R𝑝 is the output, 𝑤 ∈ R𝑟 are the disturbances, and 𝐴,
𝐵, 𝐶, 𝐷, 𝐹, and 𝐻 are matrices of appropriate dimensions.
Consider a control problem described as follows. Suppose
the disturbances𝑤(𝑡) are measurable. Given a desired output
signal 𝑦ref(𝑡), design a control algorithm that guarantees
𝑦(𝑡) → 𝑦ref(𝑡) as 𝑡 → +∞. This problem was addressed
in [14, 15] in a very general setting. In this work, a simple
case is addressed where both 𝑦ref and 𝑤(𝑡) are assumed to be
constant signals, 𝑦ref(𝑡) ≡ 𝑦ref and𝑤(𝑡) ≡ 𝑤𝑚. In this case, the
following two conditions are necessary and sufficient for the
existence of a linear time-invariant controller that solves the
above described problem.

(i) The pair (𝐴, 𝐵) is stabilizable, which means that

rank [𝐵, 𝐴𝐵, 𝐴2𝐵, . . . , 𝐴𝑛−1𝐵] = 𝑛; (24)

(ii) Consider

rank [𝐴 𝐵

𝐶 𝐹
] = 𝑛 + 𝑝. (25)

If the above two conditions hold (and only in this case),
the linear time-invariant controller that solves the above
described problem is given according to the formula

𝑢 = 𝐾𝑥 +G
†
𝑦ref +G

∗
𝑤
𝑚
, (26)

where 𝐾 ∈ R𝑛×𝑛 is the feedback gain matrix which is to
be chosen such that 𝐴 − 𝐵𝐾 is stable and has the required
dynamic properties

G = −𝐶(𝐴 − 𝐵𝐾)
−1
𝐵, (27)

G
∗
= G
†
𝐶(𝐴 − 𝐵𝐾)

−1
𝐷, (28)

where G† is the Moore-Penrose pseudoinverse of the matrix
G in (27), defined by the formula

G
†
= G
𝑇
(GG
𝑇
)
−1

. (29)

The above described control approach can be applied to
the problem of stabilization of the angular velocity of drilling
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as follows. Equations (22), which describe the rotational
dynamics of a drilling system, can be rewritten in the form
(23), where 𝑥 := [𝜔1 𝜙 𝜔

2
𝐼]
𝑇

∈ R4, 𝑢 := 𝑉 ∈ R1,
𝑦 := 𝜔

1
∈ R1, 𝑤 := 𝑇 ∈ R1, and the corresponding matrices

are

𝐴 :=

[
[
[
[
[
[
[
[
[
[
[

[

−𝑐
1

𝐽
1

𝑘

𝐽
1

0 0

−1 0 1 0

0
−𝑘

𝐽
2

−𝑐
2

𝐽
2

𝐾𝑛

𝐽
2

0 0
−𝐾𝑛

𝐿

−𝑅

𝐿

]
]
]
]
]
]
]
]
]
]
]

]

, 𝐵 =

[
[
[
[

[

0

0

0
1

𝐿

]
]
]
]

]

,

𝐷 =

[
[
[
[
[

[

−1

𝐽
1

0

0

0

]
]
]
]
]

]

,

(30)

𝐶 = [1 0 0 0] , 𝐹 = [0] , 𝐻 = [0] . (31)

Below, we consider the drilling system with specific values of
the parameters that are listed in Table 1.With these values, the
matrices 𝐴, 𝐵, and𝐷 become

𝐴 :=

[
[
[
[
[

[

−0.1123 1.2647 0 0

−1 0 1 0

0 −0.2231 −0.2005 0.0204

0 0 −8640 −2

]
]
]
]
]

]

,

𝐵 =

[
[
[
[
[

[

0

0

0

200

]
]
]
]
]

]

, 𝐷 =

[
[
[
[
[

[

−0.0027

0

0

0

]
]
]
]
]

]

,

(32)

while 𝐶, 𝐹, and𝐻 are given by (31).
For the above system, the necessary and sufficient con-

ditions for stabilization (24), (25) are satisfied. Indeed, the
stabilizability condition (24) is satisfied since

rank [𝐵, 𝐴𝐵, 𝐴2𝐵, . . . 𝐴𝑛−1𝐵]

= rank
[
[
[
[
[

[

0 0 0 5.154273

0 0.000000 4.075472 −8.968

0 4.075 −8.968 −700.339

200 −400 −34412 146307

]
]
]
]
]

]

= 4.

(33)

Table 1: Numerical values for drilling system parameters.

Parameter Description Value Unit
𝐽
1

BHA + drill string inertia 374 [kgm2]
𝐽
2

Rotary table + drive inertia 2120 [kgm2]
𝑐
1

BHA damping 42 [Nms/rad]
𝑐
2

Rotary table damping 425 [Nms/rad]
𝑘 Drill string stiffness 473 [Nm/rad]
𝑅 Motor armature resistance 0.010 [Ω]

𝐿 Motor armature inductance 0.005 [H]
𝐾 Motor constant 6 [Vs]

𝑛
Combined gear ratio for
bevel and gear box 7.2 —

𝑎 Drill bit radius 0.108 [m]

𝜁
Ratio of drilling strength to
drilling specific energy 0.7 —

𝑀

Mass of drill string
(28120Kg) + BHA
(25080Kg)

53000 [kg]

𝑊
𝑠
− 𝐻
0

Submerged weight𝑊
𝑠
−

applied weight from top of
the Rig𝐻

0

100 or 1000 [N]

𝐾
𝑓 Viscous friction coefficient 20 [Nm/rad]

On the other hand, the rank condition (25) is also satisfied
because

rank [𝐴 𝐵

𝐶 𝐹
]

= rank

[
[
[
[
[
[
[

[

−0.112299 1.264706 0 0 0

−1 0 1 0 0

0 −0.223113 −0.200472 0.020377 0

0 0 −8640 −2 200

1 0 0 0 0

]
]
]
]
]
]
]

]

= 5.

(34)

Therefore, a controller of the form (26), (27), (28), and (29)
guarantees that the angular velocity of the drill approach the
reference angular velocity 𝜔

1
→ 𝜔ref as 𝑡 → ∞, while

rejecting the disturbance 𝑇
𝑏
.

The design of controller (26), (27), (28), and (29) begins
by choosing the desired location of the closed-loop system’s
poles. For the purpose of simulations presented below, we
consider two specific set of poles. The first set, denoted by 𝑃

1
,

is chosen as follows:

𝑃
1
:= [−10 −2 + 2𝑖 −2 − 2𝑖 −4] . (35)

The set 𝑃
1
consists of two real poles and two complex

conjugate poles. On the other hand, the set 𝑃
2
contains only

poles on the real axis as follows:

𝑃
2
= [−5.5 −2 −4.5 −1] . (36)
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The feedback gain matrix 𝐾
1
such that the poles of 𝐴 − 𝐵𝐾

1

are located according to 𝑃
1
is

𝐾
1
= [32.24 57.45 −19.41 0.0784] . (37)

The coefficientsG∗,G† in (26) are calculated according to the
formulas (27)–(29); the results are

G
∗

1
= 0.123497, G

†

1
= 60.0844. (38)

On the other hand, the feedbackmatrix𝐾
2
such that the poles

of 𝐴 − 𝐵𝐾
2
are located according to 𝑃

2
is

𝐾
2
= [−5.167 16.943 −30.62 0.0534] . (39)

The corresponding coefficientsG∗
2
,G†
2
are

G
∗

2
= 0.037286, G

†

2
= 9.603682. (40)

3.3. Rock Stiffness Estimation. In the controller design pre-
sented above, it was assumed that the “hardness” of the rock,
represented by the intrinsic specific energy 𝜖, is constant and
exactly known.This knowledge of 𝜖was used explicitly in the
controller design, in particular, in formula (21). In practical
geological drilling, however, the hardness of different layers
of rock lying underneath the surface can be different and
usually is not exactly known beforehand. More specifically,
different characteristics of the rock, such as hardness, density
and porosity, typically remain constant through each layer,
but differs from layer to layer. On the other hand, control
engineers frequently deal with the problem of designing
a controller without a priori knowledge of the exact val-
ues of one or more parameters involved in the process.
Often, the processes can be robustly controlled without the
actual knowledge of some of the parameters. In other cases,
the unknown parameters can be identified using specially
designed estimators. Below, a simple online estimator of the
rock intrinsic specific energy 𝜖 is designed following the
methods described in [16], and the resulting estimate is then
used in the controller for for drilling system.

Specifically, during the cutting process, the torque-on-
bit 𝑇 is produced by bit rock interaction, according to the
formula

𝑇 =
1

2
𝑎
2
𝜖𝑑, (41)

where 𝑎 is the radius of drill bit, 𝑑 is the depth of cut,
and 𝜖 > 0 is the intrinsic specific energy. The intrinsic
specific energy 𝜖 > 0 depends on the properties of the
media and typically unknownbeforehand.However, since the
torque on bit 𝑇(𝑡) can typically be measured with advanced
transducers located in the bottom hole assembly [17], 𝑎 > 0
is constant and known, and 𝑑(𝑡) can be calculated according
to formula (13), one can use the method described in the
previous section to design an online estimation scheme for
𝜖. In particular, considering (1/2)𝑎2𝑑(𝑡) as the input and
torque-on-bit 𝑇 as the measured output, one can follow the
procedure described in the previous section to design an
estimator for an unknown parameter 𝜖.The predicted torque-
on-bit �̂�

𝑏
is defined according to the formula

�̂� (𝑡) :=
1

2
𝑎
2
𝜖𝑑 (𝑡) , (42)

where 𝜖(𝑡) is the current estimate of actual rock strength 𝜖.
The algorithm for online estimation of the intrinsic specific
energy 𝜖 has a form

̇̂𝜖 = 𝛾
0
(𝑇 − �̂�)

1

2
𝑎
2
𝑑, (43)

where 𝛾
0
> 0 is an arbitrary gain.

A natural question regarding the algorithm (43) is if it
guarantees the convergence of the parameter estimate to the
true value of the parameter 𝜖; mathematically, is 𝜖(𝑡) → 𝜖

as 𝑡 → +∞. It is known [16], that the convergence can
be guaranteed if the “input” signal (1/2)𝑎2𝑑(𝑡) is persistently
exciting. A signal 𝑢(𝑡) is said to be persistently exciting which
is to say that there exist 𝛼

0
> 0,𝑇

0
> 0 such that the inequality

∫

𝑡+𝑇0

𝑡

𝑢
2
(𝜏) 𝑑𝜏 ≥ 𝛼

0
𝑇
0

(44)

holds for all 𝑡. In particular, 𝑢(𝑡) is persistently exciting if
𝑢
2
(𝑡) ≥ 𝛼

0
for all 𝑡. Since 𝑑(𝑡) is the depth of cut, we see

that, during normal cutting process, 𝑑(𝑡) ≥ 𝑑
0
> 0, which

results in persistent excitation of the input (1/2)𝑎2𝑑(𝑡). The
parameter convergence 𝜖(𝑡) → 𝜖, therefore, is guaranteed
during normal cutting process. This is also confirmed by the
simulation results presented below.

The obtained estimate of the rock strength 𝜖 is then
used in the control algorithm. Specifically, in the original
formulation of the control algorithm, for a given reference
vertical velocity Vref, the reference rotational velocity 𝜔ref is
calculated according to formula (21), which depends on the
parameter 𝜖. In case 𝜖 is unknown, it is substituted by its
estimate 𝜖(𝑡) obtained above. The new formula for 𝜔ref has
the form

𝜔ref :=
2𝜋𝑎𝜁𝜖

((𝑊
𝑠
− 𝐻
0
) /Vref) − 𝐾𝑓

. (45)

The obtained estimate of the rock stiffness 𝜖 will also be
used to update the stiffness of the virtual spring in the haptic
teleoperator drilling system described below.

3.4. Simulation Results. In this Section, some results of sim-
ulations of the drilling control system with intrinsic specific
energy estimator are presented. The vertical motion of the
drilling system is described by (15), and it is interconnected
with the rotational dynamics (5) through nonlinear equa-
tion (13) that describes the depth of cut 𝑑(𝑡). For a given
reference velocity of the vertical penetration Vref > 0, the
corresponding reference rotational velocity 𝜔ref is calculated
according to formula (45). The controller (21), (26)–(29) has
been implemented to guarantee that the angular velocity
of the drill bits 𝜔

1
(𝑡) tracks 𝜔ref, which in turn stabilizes

the vertical penetration velocity V(𝑡) converges to Vref. The
algorithm (43) provides an estimate of the intrinsic specific
energy parameter 𝜖 which is then used in the calculation
of the reference angular velocity according to formula (45).
Specific values of the parameters appearing in these equations
are given in Table 1. The simulations are carried out using
MATLAB, where the integration step for each simulation is
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for𝑊
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= 5000N, 𝜖 = 20MPa, and 𝛾

0
= 5 ⋅ 10

9.

equal to 0.005 s. The feedback gain matrix is chosen 𝐾 = 𝐾
1
,

where𝐾
1
is defined by (37).

In the simulations described below, the performance
of the system was evaluated for different values of actual
intrinsic specific energy 𝜖, different gains 𝛾

0
and different

values of the applied weight 𝑊
0
:= 𝑊
𝑠
− 𝐻
0
. Figures 5 and

6 show the response of the vertical penetration velocity V(𝑡),
the intrinsic specific energy estimate 𝜖(𝑡), the torque-on-bit
𝑇(𝑡), the predicted value of the torque-on-bit �̂�(𝑡), and the
rotational velocity 𝜔

1
(𝑡), all for the case where the applied

weight on bit 𝑊
0
= 5000N, the intrinsic specific energy

𝜖 = 20MPa, and the desired vertical velocity Vref is set to
0.005m/s. The estimator gain is set to 𝛾

0
= 5 ⋅ 10

9. The plots
show that V(𝑡) converges to Vref in less than 8 sec whereas
the estimate 𝜖(𝑡) converges to the actual value of 𝜖 in less
than 4 sec. Figures 7 and 8 show the output responses of
described parameters where 𝑊

0
= 2500N and the desired

vertical velocity Vref is set to 0.01m/s. It can be clearly seen that

the convergence becomes slower with reducing the applied
weight on the drill string𝑊

0
; specifically, both V(𝑡) and 𝜖(𝑡)

approach their reference values in about 12 sec. Reducing
𝑊
0
also results in that 𝜔

1ref increases, the steady-state value
of 𝑇
𝑏
(𝑡) drops to around 200N, and the steady-state value

of 𝑑(𝑡) also drops to less than 2mm. On the other hand,
Figures 9 and 10 demonstrate the response of the system with
the same parameters except the intrinsic specific energy 𝜖
is reduced to 5MPa. This results in decreased convergence
time for V(𝑡) and 𝜖(𝑡). The steady state value of rotational
velocity 𝜔

1
(𝑡) is also decreased to under 10 rad/s, and steady

state value of the depth of cut 𝑑(𝑡) is increased to 6.5mm.
Figures 11 and 12 present the output response for the case
where the estimator gain is decreased to 𝛾

0
= 5⋅10

8, while the
rest of the parameters are the same as in the last simulation
except the intrinsic specific energy is set to 𝜖 = 10MPa.
The resulting response is predictably characterized by much
slower convergence, which takes about 25 sec for V(𝑡) and 𝜖(𝑡)
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to approach their steady-state values. Finally, Figures 13 and
14 correspond to to the case where𝑊

0
= 5000N, 𝜖 = 20MPa,

and 𝛾
0
= 1 ⋅ 10

8.
Overall, simulation results show that the control system

with intrinsic specific energy estimation demonstrate good
stability and performance characteristics for a wide range of
the parameters. In particular, the vertical velocity converges
to the desired value, and the estimate of the intrinsic specific
energy 𝜖(𝑡) converges to an actual value of 𝜖.

4. Telerobotic Drilling System with
Haptic Feedback

In this section, a telerobotic drilling system with haptic feed-
back is designed and experimentally evaluated. Haptics can
be defined as the physical or virtual interaction through touch
sensation for the purpose of perception and manipulation of
objects [18, 19]. Haptic feedback provides the operator with
kinaesthetic clues of the physical features of virtual or real

remote environment. The structure of a telerobotic drilling
system with haptic feedback is shown in Figure 15. In this
system, the human operator controls the drilling process
using a haptic device. Specifically, the position of an end-
effector of the haptic device defines the reference vertical
velocity of the drilling. The reference vertical velocity is then
transmitted to the drilling control system, designed in above
in Section 3, which stabilizes the actual vertical penetration
velocity to the level equal to the reference vertical velocity.
On the other hand, an estimate of the intrinsic specific energy
𝜖(𝑡), which is generated online by an estimator described
in above in Section 3.3, is sent back to the haptic device.
The end-effector of the haptic device interacts with a virtual
spring of variable stiffness; the stiffness of this virtual spring is
updated in real time proportionally to the current estimate of
the intrinsic specific energy 𝜖(𝑡).Thus, the telerobotic drilling
system provides haptic feedback to the human operator
which creates an intuitive feeling of the hardness of the
remotely drilled material.
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(𝑡) (a), torque-on-bit 𝑇(𝑡) versus estimated torque-on-bit �̂�(𝑡) (b), and the depth of cut 𝑑(𝑡) (c)
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4.1. Experimental Setup. The above described telerobotic
drilling system is implemented in a semiexperimental setup,
as follows. The setup consists of a PC based on Intel Pentium
4 processor with operational frequency of 1 GHz and RAM of
1GB, and a PHANTOMOmni Haptic device, a product from
SensAble Technologies Inc. The PHANTOM Omni Haptic
device is designed for kinematic interaction with the virtual
or real environment while providing the kinesthetic feedback
to the operator. The device is equipped with a pen-based
stylus, and is able to provide three degrees-of-freedom force
feedback. The human operator uses the haptic device to (i)
generate a desired vertical velocity Vref(𝑡) which is used as
an input to the drilling control system, and (ii) to haptically
perceive the stiffness 𝜖 of the rock layers.The remaining parts
of the above described telerobotic system, including the drill
string and drive system, the drilling process, as well as the
control and estimation algorithms, are simulated in real time
in virtual environment which is implemented using theOpen
Haptics tool kit and Microsoft Visual C++.

The human operator assigns the desired velocity Vref(𝑡)
by controlling the position of the end-effector of the PHAN-
TOMdevice along its vertical (𝑌) axis.More exactly, a specific
range along the 𝑦-axis is assigned to each desired vertical
velocity, as follows:

Vref(𝑡) = 0.001m/s if the position of stylus 𝑦
𝑛
(𝑡) is

≥80mm;
Vref(𝑡) = 0.003m/s if the position of stylus 𝑦

𝑛
(𝑡) is

≤80mm and ≥60mm;
Vref(𝑡) = 0.005m/s if the position of stylus 𝑦

𝑛
(𝑡) is

≤60mm and ≥40mm;
Vref(𝑡) = 0.008m/s if the position of stylus 𝑦

𝑛
(𝑡) is

≤40mm and ≥25mm;
Vref(𝑡) = 0.01m/s if the position of stylus 𝑦

𝑛
(𝑡) is

≤25mm and ≥10mm;
Vref(𝑡) = 0.015m/s if the position of stylus 𝑦

𝑛
(𝑡) is

≤10mm and ≥0mm;
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Figure 15: The structure of a telerobotic drilling system.

Vref(𝑡) = 0.018m/s if the position of stylus 𝑦
𝑛
(𝑡) is

≤0mm.

Another function of the haptic device is to allow the
human operator to feel the stiffness of the rocks. As explained
above, this is achieved by updating the stiffness of the virtual
spring proportionally to the current estimate of the rock
stiffness (intrinsic specific energy 𝜖(𝑡)). The coefficient of
proportionality between the estimate of the intrinsic specific
energy (with units of Pascals) and the stiffness of the virtual
spring (with units of is N/m) is set in our experiments equal
to 10−7. The feedback force 𝐹est(𝑡) due to the virtual spring is
therefore calculated according to the formula

𝐹est (𝑡) = 10
−7
⋅ 𝜖 (𝑡) ⋅ 𝑦

𝑛
(𝑡) . (46)

4.2. Experimental Results. In this Section, some experimen-
tal results are presented. In these experiments, we have

attempted to simulate a real drilling case scenario where the
composition, characteristics, and types (which all contribute
to the intrinsic specific energy) of various rock strata vary at
different depths during drilling. Specifically, in every exper-
iment, several layers of rocks with different intrinsic specific
energy 𝜖 ranging from 4MPa to 60MPa are simulated. In all
experiments presented here, the applied weight𝑊

0
= 5000N;

the rest of the parameters, if not explicitly mentioned, are
same as in Section 3.4.

In the experiment shown in Figures 16, 17, and 18, three
layers of rocks with different intrinsic specific energy 𝜖 are
simulated. The top layer has the stiffness of 5MPa and its
thickness is 20 cm from the surface. The second layer has a
stiffness value of 12MPa and lies between 20 cm and 30 cm
from the surface (total thickness is 10 cm). The third layer
starts at the depth of 30 cm and continues downward. It has
a stiffness value of 20MPa. The experiment is performed
with the estimator gain 𝛾

0
= 10

9. Figure 16 shows the
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Figure 16: Experiment 1: Actual stiffness 𝜖(𝑡) versus the estimated stiffness 𝜖(𝑡) (a); the reflected force 𝐹est(𝑡) (b).
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Figure 17: Experiment 1: Output vertical velocity Vout(𝑡) versus reference vertical velocity Vref(𝑡) (a); output rotational velocity of the drill bit
𝜔
1
(𝑡) versus reference rotational velocity 𝜔

1𝑑
(𝑡) (b).

actual intrinsic specific energy 𝜖(𝑡) and its estimate 𝜖(𝑡) on
the top graph, and the reflected force 𝐹est(𝑡) on the bottom
graph. Due to high estimator gain, 𝜖(𝑡) quickly tracks 𝜖(𝑡)
for all three layers as the drill bit progressed cutting through
these layers. Figure 17 shows the vertical velocity Vout(𝑡) and
the reference vertical velocity Vref(𝑡) on the top graph, and
the reference rotational velocity 𝜔

1𝑑
(𝑡) and the actual drill

bit rotational velocity 𝜔
1
(𝑡) at the bottom graph. Finally,

Figure 18 shows the behaviour of the actual torque-on-bit
𝑇(𝑡) and the estimated torque �̂�(𝑡), along with depth of
cut 𝑑(𝑡). These plots show that the system is stable and
demonstrates good performance; in particular, all the output
variables track their desired (reference) trajectories.

Another set of experimental results is presented in Fig-
ures 19–21, where the estimator gain is increased to 𝛾

0
= 5 ⋅

10
9, and the depth of the rock layers and their corresponding

stiffness values have been altered. Specifically, the first rock
layer has depth 20 cm and the intrinsic specific energy 𝜖 is
set to 20MPa for this layer. Second layer lies between 20 cm
and 40 cm with 𝜖 = 40MPa.The third layer lies below 40 cm,
and its intrinsic specific energy 𝜖 = 60MPa. Figure 19 shows
the corresponding plots of 𝜖(𝑡), 𝜖(𝑡) and 𝐹est(𝑡). Figure 20
shows the response of Vref(𝑡) and Vout(𝑡) on the top graph,
and the responses of 𝜔

1𝑑
(𝑡) and 𝜔

1
(𝑡) on the bottom graph,

respectively. The response of �̂�(𝑡) and 𝑇(𝑡) along with 𝑑(𝑡)
are shown in Figure 21.Overall, our experiments demonstrate
stability and good performance of the designed telerobotic
drilling system with haptic feedback, for a wide range of
parameters and control gains.

5. Conclusions

This paper deals with control design for a teleoperator system
with haptic feedback for an oil well drilling process. A
mathematical model of the drilling process was described,
and the control algorithm was designed that guarantees
the convergence of the vertical penetration velocity to an
arbitrary reference value. The control algorithm has a cas-
caded structure, where the velocity of vertical penetration is
controlled indirectly through stabilization of the rotational
motion of the drill bit. In order to guarantee the convergence
of the angular velocity to a desired value in the presence
of disturbances in the form of torque-on-bit, a robust
servo controller was designed. However, the design of such
controller depends on the parameter of environment called
the intrinsic specific energy, which is generally unknown
beforehand. To solve this issue, an online parameter estimator
was designed that provides an estimate of the intrinsic specific
energy. This estimate is substituted for the actual value of the
parameter in the control algorithm, and the corresponding
adaptive control system is evaluated through simulations.
Finally, a telerobotic drilling system with haptic feedback is
designed and verified through semi-experiments. The haptic
feedback for the human operator is provided by creating
a virtual spring that interacts with the haptic device; the
stiffness of the spring is adjusted in real time depending on
the current estimate of the intrinsic specific energy. Semi-
experiments are conducted using PHANTOM Omni Haptic
device, where the drilling process model is implemented
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Figure 18: Experiment 1: Torque-on-bit 𝑇(𝑡) versus estimated torque-on-bit �̂�(𝑡) (a); depth of cut 𝑑cut(𝑡) (b).
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Figure 19: Experiment 2: Actual stiffness 𝜖(𝑡) versus estimated stiffness 𝜖(𝑡) (a); reflected force 𝐹est(𝑡) (b).
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Figure 20: Experiment 2: Output vertical velocity Vout(𝑡) versus reference vertical velocity Vref(𝑡) (a); output rotational velocity of the drill bit
𝜔
1
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Figure 21: Experiment 2: Torque-on-bit 𝑇(𝑡) versus estimated torque-on-bit �̂�(𝑡) (a); depth of cut 𝑑cut(𝑡) (b).
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in C++ environment, and the haptic feedback is provided to
the human operator.

There exists a number of challenges associated with
the real-life drilling operation that were not addressed in
our paper. In particular, the frictional forces at the contact
were neglected in our analysis, while in reality they may
play significant role in the drilling process. Also, in real-life
drilling systems, the rotational velocity and the penetration
rate are typically measured at the surface while the torque-
on-bit should ideally be measured above the bit; thus, there
exists a problem of synchronizing the data obtained at
the surface with those obtained at the bit. The issue of
communication delay between the haptic device and the
drilling process is also not addressed. These, as well as more
detailed experimental evaluation of the designed system, are
the topics for future research.
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