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Frictionless contact problems are the simplest and classical contact problems, and the contact conditions of sticking, slipping, and
separation mode all can be ascribed to complementary problems. Consequently, a smooth system of equations approach for the
design and analysis of complementarity problems for frictionless contacts is presented. A compute program based on boundary
element technique is given and applied to two practical contact examples. The validity and accuracy of the proposed method are
demonstrated.

1. Introduction

Contact problems are of particular importance in many
engineering applications [1, 2] such as gears, piles, retaining
walls, and tunnel lining. Since the hertz theory was developed
in 1881,much research has been developed in this area includ-
ing both theoretical and experimental work [3–7]. Hence it
establishes the foundation for modern contact mechanics. In
the analysis of contact problems, special attention must be
required because the actual contact area between the contact-
ing bodies is usually not known in advance, and the character
of interface between contact bodies largely determines the
deformation, movement, and stress distribution.

There is a large literature on numerical methods for
contact problems. Roughly speaking, numerical algorithms
can be classified into three categories.The first class is known
as direct iterative algorithm [8–11], which assumes the contact
region and contact status firstly and then solves the problem
and checks whether the assumption is correct or not. It
solves the problem iteratively by trial-and-error, thus requir-
ing much computational effort; the second class is contact
constraint algorithm [12–14], which deals with the contact
boundary properly, and transforms the constrained opti-
mization problem into nonconstrained optimization prob-
lem. According to the different methods for unconstrained
optimization, the penaltymethod [12], Lagrangemethod [13],

and augmented Lagrange method [14] have been introduced.
The calculation accuracy based on penalty method strongly
depends on the penalty coefficient, and the coefficient is
decided by experience; the number of unknown variables,
computation time, and memory requirement using Lagrange
method are troublesome; to foster strengths and circumvent
weaknesses, the augmented Lagrange method is proposed
for contact problems, which decreases ill-conditioning of
governing equations, and satisfies exactly constraints with
finite penalties [15]. However, these methods can be gener-
alized into the iterative algorithms. The third class is known
as the mathematical programming method [16, 17], and the
solutions are obtained by using either linear programming or
quadratic programming techniques [18–20].The advantage is
that the original problem can be converted to programming
problem by expressing the normal and tangential conditions
into the complementary expression, and mature mathemat-
ical methods can be applied. Furthermore, it is known that
frictionless/frictional contact problems can be formulated
as complementarity problems. Hence, a numerical method
for complementarity problems can be applicable to contact
problems [21]. Here, the system of nonlinear equations
method [22] has been widely used, which transforms the
complementarity problem into a system of nonlinear equa-
tions by employing the nonlinear complementary functions.
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For numerical discretization, the boundary element
method (BEM) [23] is particularly well suited to solve contact
problems [24]. Except for the reduced dimensionality by one,
the most striking feature of the BEM is that the tractions and
displacements are computed to the same degree of accuracy,
which is an important feature if reliable solutions are to be
obtained [25].The BEMwas first applied to contact problems
by Andersson et al. [26] in two-dimensional frictionless
problems and later extended the applications to frictional
problems [27]. Afterwards, other contact problems have been
studied such as elastoplastic contact problems [28] and 3D
frictional problems [29]. However, these problems had been
solved by the iterative algorithms, and the trial-and-error,
calculation accuracy and computation time, and so forth had
frequently appeared. So far, the systemof nonlinear equations
method has not been used to solve contact problems by
BEM.

In this paper, the smooth system of equations is employed
to solve the two-dimensional elastic frictionless contact
problems. It is comprised of the nonlinear complementary
functions describing the relationship between the gap and
contact pressure for any node pair and boundary integral
equations. The presented approach does not need repeatedly
trial calculation to decide the contact mode for any node
pair. Meanwhile, the proposed method is easy to be accepted
and used. According to the results of given load, the contact
state can be observed obviously, and it does not need your
judgment. This algorithm is implemented in a 2D BEM
code and verified using two numerical examples. The results
by the proposed algorithm match well with the analytical
solutions and the FEM results and clearly demonstrate the
feasibility and flexibility of the proposed approach for 2D
contact analysis.

2. Contact Problems and Its
Complementarity Description

2.1. General Description of Contact Problems. In this section,
two contact bodies Ω𝐴 and Ω𝐵 are considered as shown in
Figure 1. The boundary of any body is composed of three
disjoint parts: displacement boundary Γ

𝑢
, traction boundary

Γ
𝑓
, and potential contact region Γ

𝑐
. Nevertheless, the region

Γ
𝑐
has been taken sufficiently large to contain actual contact

regions.
Considering a pair of points 𝑎 and 𝑏 on the bodiesΩ𝐴 and

Ω
𝐵, respectively, on the contact boundary Γ

𝑐
, the following

contact modes shown in Figure 2 may happen: separation,
stick and slipmode. For the convenient description of contact
conditions, it is necessary to define a local coordinate system
for the pair of points 𝑎 and 𝑏. If body Ω𝐵 is selected as
the target body, the coordinate system should be established
in point 𝑏 as show in Figure 3, and 𝑛 and 𝑡 denote unit
normal and tangential directions, respectively. Selecting 𝑡𝑗

𝑖

(the subscript refers to direction of force, and superscript
refers to the contact point) and 𝑔𝑎𝑏 (the subscript refers to
the pair of points) to represent the traction and gap between
the point pair, respectively, the contact conditions are listed
as follows.

ΓAf

ΩA

ΩB

ΓBu

ΓBfΓc

Figure 1: Contact of two bodies.

(1) Separation Mode. The individual traction at the pair of
points 𝑎 and 𝑏 is zero, and the gap could be positive:

𝑡
𝑎

𝑡
= 𝑡
𝑏

𝑡
= 0,

𝑡
𝑎

𝑛
= 𝑡
𝑏

𝑛
= 0,

𝑔
𝑎𝑏
> 0.

(1)

To maintain the consistency below, the relationship 𝑡𝑎
𝑛
=

𝑡
𝑏

𝑛
= 0 can be recast to 𝑡𝑎

𝑛
+ 𝑡
𝑏

𝑛
= 0.

(2) Stick Mode. The individual tangential traction at the pair
of points 𝑎 and 𝑏 is zero, and the total normal tractions are
equal to zero. The gap should be zero:

𝑡
𝑎

𝑡
= 𝑡
𝑏

𝑡
= 0,

𝑡
𝑎

𝑛
+ 𝑡
𝑏

𝑛
= 0,

𝑔
𝑎𝑏
= 0.

(2)

(3) Slip Mode. Because frictionless contact is considered, the
individual tangential traction at the pair of points 𝑎 and 𝑏 is
still zero, and the sum of normal traction is equal to zero.The
gap should be zero:

𝑡
𝑎

𝑡
= 𝑡
𝑏

𝑡
= 0,

𝑡
𝑎

𝑛
+ 𝑡
𝑏

𝑛
= 0,

𝑔
𝑎𝑏
= 0.

(3)

It should bementioned that the individual normal contact
traction at the pair of points 𝑎 and 𝑏 is always less than zero
(i.e., compressive). Here, subjected to the local coordinate
systemof point 𝑏 on the bodyΩ𝐵, the normal contact pressure
can be expressed as

𝑡
𝑎𝑏

𝑛
= 𝑡
𝑏

𝑛
= −𝑡
𝑎

𝑛
. (4)

Furthermore, 𝑔𝑎𝑏 can be expressed as

𝑔
𝑎𝑏
= 𝑔
𝑎𝑏

0
+ (u𝑎 − u𝑏) ⋅ n𝑏, (5)
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Figure 2: Contact modes.
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Figure 3: Local coordinate system.

where 𝑔𝑎𝑏
0

defines the initial gap between the points 𝑎 and 𝑏,
and u𝑎 and u𝑏 define the displacement vector on the bodies
of Ω𝐴 and Ω𝐵, respectively. n𝑏 denotes the unit vector at the
contacting point of bodyΩ𝐵.

2.2. Complementarity Theory for Contact Problems

2.2.1. Complementarity Problem. The complementary prob-
lem [30] is an important optimization problem. It is widely
employed in many problems, such as game theory, economy
analysis, and traffic equilibrium. It is firstly proposed by
Dantzig and Cottle in 1963. It can be stated as follows [31–33].

Definition 1. For a given map 𝐹 from the 𝑛-dimensional
Euclidean space R𝑛 into itself, find 𝑥 ∈ 𝑅𝑛 satisfying

𝑥 ≥ 0,

𝐹 (𝑥) ≥ 0,

𝑥
𝑇
𝐹 (𝑥) = 0.

(6)

When 𝐹 is the form 𝐹(𝑥) = 𝑀𝑥 + 𝑞 (𝑀 ∈ 𝑅
𝑛×𝑛
, 𝑞 ∈ 𝑅

𝑛
), the

above problem is referred to as the linear complementarity
problem (LCP); otherwise, it is called the nonlinear comple-
mentarity problem (NCP).

In the past few decades, the complementary problem has
attracted much attention because of its wide applications.
Consequently, the algorithm has achieved fruitful results
and mainly includes the Lemke algorithm [34], homotopy
method [35], projection algorithm [36], interior point algo-
rithm [37], and system of equations algorithm [22]. One of

the most powerful and popular methods is to reformulate
the complementary problem as the system of equations.
To construct it, a class of functions, called NCP-functions,
defined below, plays an important role.

Definition 2. A function 𝜙:𝑅2 → 𝑅 is called an NCP-
function if it satisfies

𝜙 (𝑎, 𝑏) = 0 ⇐⇒ 𝑎 ≥ 0, 𝑏 ≥ 0, 𝑎𝑏 = 0. (7)

Common NCP functions are as follows:
(1) 𝜑(𝑎, 𝑏) = √𝑎2 + 𝑏2 − 𝑎 − 𝑏,
(2) 𝜑(𝑎, 𝑏) = −𝑎𝑏 + (1/2)min2{0, 𝑎 + 𝑏},
(3) 𝜑(𝑎, 𝑏) = min(𝑎, 𝑏).

The most wonderful feature of NCP function is that
it transforms the problem containing two equalities and
an inequality into a problem only containing an equality.
Therefore, the complex contact problem can be solved by
solution of the system of equations.

2.2.2. NCP-Function for Contact Problems. Using 𝑔 and 𝑡
𝑛

to stand for the gap and contact pressure of any potential
contacting pair of points, the normal contact conditions can
be described as

𝑡
𝑛
= 0 When 𝑔 > 0,

𝑡
𝑛
⩽ 0 When 𝑔 = 0.

(8)

Furthermore, the gap and contact pressure can be
described by the following graph, as shown in Figure 4.

According to (8), the following relationships can be
achieved:

𝑔 ≥ 0,

−𝑡
𝑛
≥ 0,

𝑔 ⋅ (−𝑡
𝑛
) = 0.

(9)

Obviously, it is a complementary description between the
gap 𝑔 and minus normal contact stress −𝑡

𝑛
. Consequently,

the above description can be expressed by the NCP function
mentioned above. Using the function 𝜑(𝑎, 𝑏) = −𝑎𝑏 +

(1/2)min2{0, 𝑎 + 𝑏}, we can express (9) as

𝑔 ⋅ (−𝑡
𝑛
) +

1

2
min2 {0, 𝑔 − 𝑡

𝑛
} = 0. (10)
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Figure 4: Relationship between the gap and normal contact pres-
sure.
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Figure 5: The graph of 𝜑(𝑎, 𝑏) function.

Figure 5 shows the graph of the function above and
it can be observed that the proposed function is smooth
everywhere and well suitable for contact problems.

3. Complementarity Problem
Formulation by BEM

TheBEM formulation for an elastic continuum is well known
and can be found in many classical texts such as Brebbia et al.
[38] and Aliabadi [39]. The elastostatic boundary integral
equation for a boundary point 𝑝 with no body force is given
as follows:

𝑐
𝑖𝑗 (𝑃) 𝑢𝑗 (𝑃) + ∫

Γ

𝑝
𝑖𝑗 (𝑃, 𝑄) 𝑢𝑗 (𝑄) 𝑑Γ (𝑄)

= ∫
Γ

𝑢
𝑖𝑗 (𝑃, 𝑄) 𝑃𝑗 (𝑄) 𝑑Γ (𝑄) ,

(11)

where 𝑃 is the source point and 𝑄 is the field point at the
boundary. 𝑐

𝑖𝑗
is the free coefficient of geometry. 𝑢

𝑖𝑗
(𝑃, 𝑄) and

𝑝
𝑖𝑗
(𝑃, 𝑄) represent the fundamental solutions for displace-

ment and traction components, respectively. The boundary Γ
consists of displacement boundary Γ

𝑢
, traction boundary Γ

𝑡
,

and potential contact region Γ
𝑐
.

In order to perform numerical analysis, the boundary
is discretized into linear elements. Equation (11) can be
conveniently expressed in the following matrix form:

[𝐻] {u} = [𝐺] {t} . (12)

After each domain is treated separately to form the
matrix above, the resulting matrices [𝐻] and [𝐺] are coupled
together according to the relevant contact conditions. The
totalmatrices for two contact bodies can bewritten as follows:

[
[𝐻]
𝐴

0

0 [𝐻]
𝐵
][

[u]𝐴

[u]𝐵
] = [

[𝐺]
𝐴

0

0 [𝐺]
𝐵
][

[t]𝐴

[t]𝐵
] , (13)

where the superscripts 𝐴 and 𝐵 refer to the two bodies
in contact. Note that under this arrangement the matrices
are not fully populated. After the application of boundary
conditions, (13) can be recast as

[𝐴] {𝑥} = {𝑓} , (14)

where {𝑥} denotes the boundary unknowns and {𝑓} is the
contribution of known boundary variables, that is, values
prescribed by the boundary conditions. It is noted that the
matrix [𝐴] is not a square matrix, so the contact conditions
will be incorporated.

For any node pair, there are four unknowns for each node,
namely, normal and tangential displacements and tractions,
{𝑢
𝑡
, 𝑢
𝑛
, 𝑡
𝑡
, 𝑡
𝑛
}, and they are referred to a local coordinate

system. Except for the two boundary integral equations for
every contact node, other four complementary equations will
be listed to solve the system of equations.

Take the pair of nodes 𝑎 and 𝑏 as an example; the following
relationships hold:

𝑡
𝑎

𝑡
= 0,

𝑡
𝑏

𝑡
= 0,

𝑡
𝑎

𝑛
+ 𝑡
𝑏

𝑛
= 0,

𝑔 ⋅ (−𝑡
𝑛
) +

1

2
min2 {0, 𝑔 − 𝑡

𝑛
} = 0.

(15)

So far, the numbers of unknowns are equal to the number
of equations, and the system of equations can be solved by
Newton method [40].

Consequently, the calculation process has been exhibited
as shown in Figure 6, and the corresponding compute
program by BEM is formulated. It should be noted that
the proposed algorithm does not need to judge the contact
modes in the calculating process. After solving the system of
equations, the displacements and tractions for any potential
node pair are shown, and the contactmode is clear at a glance.
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Figure 6: Flow chart of the calculation process.
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Figure 7: Contact of cylinder and base (unit/m).

4. Numerical Examples

It should be mentioned that contact problem widely exists
in the static and dynamic problem. The difference between
static and dynamic problem is that whether the effect of
acceleration can be ignored or not. Although this paper
mainly considers the static contact problem, the proposed
method can be easily extended to dynamic problem.

A computer program by BEM is applied to two practical
contact problems.TheBEMresults are compared to analytical
solutions and FEM results to establish their accuracy.

Example 1 (cylinder and base contact problem). In this
problem, a cylinder with a radius of 5m is pressed against
a 5m deep base under plane strain conditions shown in
Figure 7(a). Due to the symmetry of problem, only the
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(a) Boundary discretization (b) Fine discretization of the potential contact region

Figure 8: Boundary element discretization.

quarter of cylinder and the half of base have been modeled
as shown in Figure 7(b). Here, the uniform load along the
cylinder’s top per unit axial length (𝑃 = 100KN/M) can be
expressed by the load 𝑃 divided by the diameter of cylinder
(𝑝 = 100/(2 ∗ 5) = 10KN/M2). Both the cylinder and base
are given the same properties: elastic modulus 𝐸 = 30MPa
and Poisson’s ratio ] = 0.3.

Such problems are referred to as Hertz-type or Hertzian
contact problems, and the analytical solution can be given as
follows [41]:

𝑎 = √
4𝑝𝑅

𝜋𝐸∗
,

𝑝 (𝑥) = 𝑝max (1 −
𝑥
2

𝑎2
)

1/2

, −𝑎 ≤ 𝑥 ≤ 𝑎,

𝑝max =
𝜋

4

√
𝑝𝐸
∗

𝜋𝑅
,

(16)

where 𝑎 is the half-width of the contact, 𝑝max is themaximum
pressure at the center of the contact, and 𝑝(𝑥) is the pressure
distribution of the contact. 𝐸∗ and 𝑅 are given by

1

𝐸∗
=
1 − ]2
1

𝐸
1

+
1 − ]2
2

𝐸
2

,

1

𝑅
=

1

𝑅
1

+
1

𝑅
2

.

(17)

In the boundary element analysis, the cylinder and base
consist of 31 and 37 linear elements as shown in Figure 8(a),
respectively. In order to obtain more accurate stress, a very
fine mesh of the potential contact region is designed in
Figure 8(b). The boundary conditions are as follows: the
vertical displacements are fixed at the bottom of the base, and
the horizontal displacements are fixed for the left boundaries
of the cylinder and base.

Table 1: Gap between node pairs in potential contact region for
three kinds of element size.

Element size in potential
contact region/m Contact length/m Gap/mm

0.03

0 0
0.03 0
0.06 0
0.09 0
0.12 0
0.15 0
0.18 0
0.21 0.09
0.24 0.65
0.27 1.55
0.3 2.72

0.05

0 0
0.05 0
0.1 0
0.15 0
0.2 0
0.25 0.96
0.3 2.76

0.1

0 0
0.1 0
0.2 0
0.3 2.81

To compare the effects of discretization in potential
contact region, three kinds of fine element size in potential
contact region have been given, that is, element size = 0.03m,
0.05m, and 0.1m. Consequently, the results of proposed
method have been listed in Table 1. It is shown that the
half-width of contact length is about 0.2m, and the gap is
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not sensitive in element size. Because the analytic solutions
exist, the result of proposed method for element size 0.03m
has been compared with them in Figure 9. According to the
formula, the half-width of the contact 𝑎 is equal to 0.197m.

Figure 10 plots the contact pressure distributions along
the contact length, and clearly there is excellent agreement
between the analytical solution and the proposed method. It
is also found that when the element size in potential contact
region is smaller, the result for contact pressure is more
accurate.

In general, the proposed method can give the satisfactory
results. To obtain accurate results, the small element size in
potential contact region is recommended.

Example 2 (laminated beam problem). Considering a lami-
nated beam problem [42] as shown in Figure 11, the size of
every beam is 10 × 1 × 1m. The parameters of material are as
follows: Young’s modulus 𝐸 = 1500MPa and Poisson’s ratio
] = 0.25.There are two cases to consider. In case 1, the point𝐴

v

10

1

1

C

B

A

Figure 11: A cantilever with beam-over-beam.

1.9365

1.9372

1.9416
(a) Downward load

3.874

3.878
(b) Upward load

Figure 12: Deformation pictures (unit/mm).

Table 2: Displacements under different load (unit/mm).

Points 𝐴 𝐵 𝐶

Upward
Proposed method 1.942 1.937 1.937
Reference [29] 2.011 2.007 2.006
Reference [30] 1.989 1.983 1.982

Downward
Proposed method 3.878 3.874 0
Reference [29] 4.016 4.013 0
Reference [30] 3.969 3.964 0

has a downward concentrate force 𝑃 = 1.5KN, while in case
2 the force is upward.The problem is considered under plane
stress condition.

In order to simulate the concentrate load 𝑃, a distributed
load is applied vertically along a very small element near
the point 𝐴. To investigate the accuracy, the displacements
of points 𝐴, 𝐵, and 𝐶 have been selected. Figure 12 shows
the deformation under different load, and the results have
satisfactory agreement with the results by Zheng et al. [42]
and Li [43]. Table 2 lists displacements of specified three
points.

5. Conclusions

Frictionless contact problems in two-dimensional space are
formulated by complementarity theory, where the system
of equations is established by the nonlinear complementary
functions and boundary integral equations. This algorithm
by BEM is established. The accuracy and effectiveness of the
method have been demonstrated by two numerical examples,
and the effect of discretization has also been studied in
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the Hertzian contact problem. The results show that this
technique is very competitive and elegant.

Several extensions of the current work are possible. The
presentedmethod can be easily extended to contact problems
with friction or involving inelastic materials.
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