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Although most research in density-based clustering algorithms focused on finding distinct clusters, many real-world applications
(such as gene functions in a gene regulatory network) have inherently overlapping clusters. Even with overlapping features, density-
based clustering methods do not define a probabilistic model of data. Therefore, it is hard to determine how “good” clustering,
predicting, and clustering new data into existing clusters are. Therefore, a probability model for overlap density-based clustering is
a critical need for large data analysis. In this paper, a new Bayesian density-based method (Bayesian-OverDBC) for modeling the
overlapping clusters is presented. Bayesian-OverDBC can predict the formation of a new cluster. It can also predict the overlapping
of cluster with existing clusters. Bayesian-OverDBC has been compared with other algorithms (nonoverlapping and overlapping
models). The results show that Bayesian-OverDBC can be significantly better than other methods in analyzing microarray data.

1. Introduction

Clustering, that is, finding similar groups of objects in a
dataset, is an interesting technique especially for large data.
Usually clustering algorithms assume that every object must
belong to one and only one cluster (single-membership), but
there are several real situations in which objects belong to
more than one group (overlapping ormultiple-membership).
One of the applications of overlapping clustering is in bioin-
formatics. In biology, genes have more than one function
carried out by coding proteins that participate in multiple
metabolic pathways. Therefore, overlapping clustering could
be useful in microarray data, which assigns gene expression
data to multiple clusters simultaneously [1].

Density-based clustering can find clusters of different
shapes so that they are useful in finding overlapped clusters.
Furthermore, it is rather robust concerning outliers [2] and is
very effective in clustering microarray data. These methods,
even with the ability of finding overlapping clusters, do not
use a probabilistic model. So, it is difficult to determine

the probability of events and to compare an overlapping
methodwith othermethods.Therefore, a probability density-
based clustering model, which provides overlapping, is
required.

In this paper, the Bayesian-OverDBC algorithm is pre-
sented. This algorithm is a novel density-based clustering
algorithm that has several advantages over traditional algo-
rithms. It defines a probabilistic model of data which can be
used to predict distribution of overlapping clusters. Bayesian
hypothesis could be tested to determine which of the clusters
is an overlapping cluster and which ones are merged or even
discarded. Therefore, the algorithm may be interpreted as a
Dirichlet Process Mixture (DPM) model.

Bayesian-OverDBC is based on OverDBC [3]. In
OverDBC, initial cores (points with high density values)
are formed based on density functions. Clusters are formed
around the core objects and can be improve through local
search. These steps are also taken in Bayesian-OverDBC. But
in this algorithm, the decision to create, merge, or delete
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overlapping clusters is made by using probabilistic models
and Bayesian hypotheses. Similar work has been done by
Heller andGhahramani [4] formodeling overlapping clusters
(IOMM). This method uses an exponential distribution to
model each cluster and creates overlap clusters using the
product of distributions.

Evaluation results show that the Bayesian-OverDBC
algorithm could find overlapped clusters and works more
effectively than DBSCAN (a nonoverlapping density-based
clustering) and IBP (an overlap clusteringmodel) inmicroar-
ray data. Obviously, this method can be generalized to other
datasets in different applications.

The main contributions of the paper can be summarized
as follows:

(1) It introduces a density function to find probable core
objects.

(2) It introduces a probabilistic Bayesian model for
overlapping density-based algorithm. The traditional
density-based algorithms do not define a probabilistic
model of data, so comparison with other models is
hard.

(3) It introduces new parameters which affect overlap-
ping and the possibility of their occurrence.

The rest of the paper is organized as follows. At first, in
Section 2, we give a brief overview of some of the clustering
methods (overlapping and nonoverlapping methods). In
Section 3, the concepts of density-based clustering methods
are reviewed. Section 4 includes concepts of the newBayesian
model. Bayesian-OverDBC is described in Section 5. In
Section 6, the results of the evaluation synthetic microarray-
like datasets and real datasets and also a comparison with
other methods are described.

2. Related Work

Different clustering methods are introduced in statistics,
machine learning, and data mining. The idea of multiple-
membership clustering has recently emerged as an important
topic in some research areas. Multiple-membership cluster-
ing methods were divided into three categories [5]: Soft
Models, Multiple-Membership Extensions to Hierarchical
Agglomerative Clustering, and Similarity-Space Additive
Clustering. In the following, these multiple-membership
clustering techniques and their features are generally
reviewed.

(1) SoftModels: softmodel algorithms allow a point to be
a partial member of some or all clusters.There are two
primary methods for soft clustering: soft 𝑘-means [6]
and SVD-like matrix decompositions [7].

(2) Multiple-Membership Extensions toHierarchical Ag-
glomerative Clustering (HAC): HAC is a simple clus-
tering algorithm and has served as the starting point
for several multi-membership clustering algorithms.
“Jardine-Sibson B-clustering and Articulation Point
Cuts” [8] and “Pyramid Hierarchical Clustering” [9]

are a straightforward extension of single-link agglom-
erative clustering.

(3) Similarity-Space Additive Clustering: ADCLUS [10]
is an additive method for modeling similarity matri-
ces. ADCLUS provides a weight for each cluster
which is convenient for interpretation and discards
unimportant clusters.

In [11], a probabilistic model of a microarray dataset
is proposed. This method (SBK) models each observed
expression value as a sample drawn from a Gaussian sample.
The mean is a sum of real-valued activations of the processes
that a gene participates in. The problem then is to find
𝑀 (binary membership matrix) and 𝐴 (real-valued activity
matrix) so as to maximize the joint probability 𝑝(𝑋; 𝑀;
𝐴), where 𝑋 is the input data. This paper demonstrates the
application of the algorithm on the yeast stress response
dataset finding that the discovered overlapping clusters have
much better performance (as determined by 𝑝 value) than
clusters discovered by other overlapping methods.

SBK uses the expectation-maximization method [12], so
it has the existing problems in this area such as the local
maximum. In addition, the algorithm needs to define conver-
gence threshold. Determining the threshold value is highly
sensitive to data and may directly affect the convergence
or nonconvergence of the algorithm. Also, the algorithm
requires an automatic startup process, so it requires an initial
value for the cluster membership matrix. The initial value
usually is the output of the 𝑘-means or hierarchical clustering
algorithms. All of these algorithms, in initialization phase,
increase time complexity and space requirements.

Cheng and Church in [13] give a biclustering (cocluster-
ing) algorithm for finding biclusters in microarray data. A
bicluster is a submatrix (rows 𝑖 and columns 𝑗) thatminimizes
some objectives such asMSR (mean square residue). In [14] a
Bayesian biclustering method is introduced which is named
BCC. It allows a mixed membership to row and column
clusters. BCC uses separate Dirichlet priors over the mixed
membership and assumes each observation to be generated
by an exponential family distribution corresponding to its
row and column clusters. Some advantages of BCCare the fol-
lowing: the ability to handle sparse collections, being usable to
diverse data types for all exponential family distributions, and
flexible Bayesian priors using Dirichlet distributions; none of
[13] or [14] provides overlapping functionality for clusters.

In [15] a probabilistic nonparametric Bayesian model
for finding multiple clusters is introduced. This model can
discover several possible clustering solutions and the feature
subset views that generated each cluster partitioning simulta-
neously. This model allows for not only learning the multiple
clustering but also automatically learning the number of
views and the number of clusters in each view.

This model and a similar model in [16] both assume
that the features in each view are not overlapping. However,
in many applications, some features may be shared among
views. In other words, although the concept of multifeature
clustering has been considered, themodels are not able to find
overlapping clusters.
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A new nonparametric Bayesian method, the Infinite
Overlapping Mixture Model (IOMM), for modeling overlap-
ping clusters, is presented in [4].The IOMMuses exponential
family distributions to model each cluster and forms an
overlappingmixture by taking products of such distributions.
The IOMM allows an unbounded number of clusters, and
assignments of points to (multiple) clusters are modeled
using an Indian Buffet Process (IBP) [17].

IOMM is implemented using a sampling method with
a high repetition rate which needs a large time. Moreover,
IOMM sampling method accepts all samples; the conver-
gence of the algorithm is not provable in some datasets. In
the next section some details of traditional density-based
clustering algorithms, like DBSCAN, are reviewed. It also
describes some of OverDBC features, that is, a density-based
algorithm able to find overlapping clusters.

3. Traditional Density-Based Clustering

The key idea of density-based clustering is that each object in
a cluster defines the neighborhood of a given radius with at
least aminimumnumber of objects. Density-based clustering
discovers clusters of arbitrary shapes in spatial databases
with noise. Here density can be defined as the number
of points within a specified radius. Density-based cluster-
ing techniques include mainly three techniques: DBSCAN
(Density-Based Spatial Clustering of Application with Noise)
[18], OPTICS (Ordering Points to Identify the Clustering
Structure) [19], and DENCLUE (Density Clustering) [20].

The method presented in this paper (and also in
OverDBC) uses the concepts of DBSCAN for clustering.
So, some of the features of this algorithm are described. To
find a cluster, DBSCAN starts with an arbitrary point 𝑝 and
retrieves all points density-reachable from 𝑝. An object 𝑞 is
directly density-reachable from object 𝑝 if 𝑞 is within the 𝜀-
neighborhood of𝑝 and𝑝 is a core point.This procedure yields
a cluster around the 𝑝. If 𝑝 is a border point (points on the
border of the cluster), no points are density-reachable from 𝑝

and DBSCAN visits the next point of the database.
There are several limitations to the traditional DBSCAN

algorithm. The algorithm provides no guide to choosing
the “correct” number of clusters. The quality of DBSCAN
depends on the distance measure used in the algorithm. It
is often difficult to know which distance metric to choose,
especially for special data such as images or sequences and
also for high-dimensional data. DBSCAN is not entirely
deterministic; border points that are reachable from more
than one cluster can be part of either cluster. This situation
does not arise often but it is not inevitable.

OverDBCwas introduced in Figure 1. It is a density-based
algorithm for finding overlapping clusters which is based on
DBSCAN. OverDBC allows objects to have multimember-
ship in a restricted number of clusters where the total number
of clusters is unbounded. In [3] it is proved that OverDBC is
significantly better than nonoverlapping clustering algorithm
such as DBSCAN in microarray data.

Traditional density-based algorithms do not define a
probabilisticmodel of the data, so it is hard to ask how “good”
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Figure 1: OverDBC algorithm.

a clustering is. Also, it is hard to compare this traditional
method to other models, make predictions, or even cluster
new data into existing clusters. In the following sections,
statistical inference is used to overcome these limitations in
OverDBC.

4. Bayesian-OverDBC Model

In this section, Bayesian-OverDBC is presented. It defines a
probabilisticmodel of data which can predict the distribution
of overlapping clusters. This model obtains the probability of
overlap between a new cluster with previous clusters. If the
overlapping probability with previous clusters is low, local
search is carried out and a new cluster is formed. But, if the
overlapping probability is high, func bound over() will be
invoked.

This function determines a lower bound on the number of
shared objects of two clusters drown from a given dataset. It
is defined based on double counting theory [21] and provides
great improvement in overlap clustering. func bound over()
compares the new cluster with all previous overlapping
clusters. If there is a large number of overlap data points, these
clusters are merged.

To get the overlap probability, effective parameters and
variables must be specified. A Bayesian graphical model
can clearly show these relationships. Definition of variables,
parameters, and hyperparameters in a graphical model is
discussed in inferential statistics in which the value of a latent
variable can be inferred based on the values of other variables.

In this paper, the overlap among clusters is shown with a
binarymatrix ov including𝑀 rows and𝑀 columns. If cluster
𝑖th and cluster 𝑗th overlap, then ov

𝑖𝑗
= 1. One of the effective

factors on overlapping of the 𝑗th cluster is the dataset𝐷which
is under investigation to be used for the 𝑗th cluster formation.
𝐷 has some parameters based on which data are distributed
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(as shown with 𝜃). Most of the data, especially microarray
data, follow a normal distribution; so the parameters 𝜃 of 𝐷
are the mean and the variance of data (in a vector form).

In addition to the data distribution in𝐷, clusters thatwere
created before the 𝑗th cluster can influence overlapping or
nonoverlapping of cluster 𝑗th. If𝐶

𝑖
is considered a symbol for

each of the previous clusters, 𝑖 can have a value between 1 and
𝑗−1. Hypothesis𝐻𝑖

1
is defined by𝐶

𝑖
and it shows that the data

in 𝐶
𝑖
are independent. Alternative hypothesis, 𝐻󸀠𝑖 indicates

that the data in 𝐶
𝑖
are not independent and can be associated

with two or more cores of clusters. The above idea is inspired
by the assumption introduced inHeller andGhahramani [22]
for Bayesian hierarchical clustering.

Transaction matrix (𝑇) is another effective variable on
overlapping. 𝑇 is a 𝑁 ∗ 𝑀 binary matrix (a pattern of 0’s
and 1’s) showing the membership of points in clusters. The
parameter 𝜋 indicates the attraction probability for each of
the core objects. 𝜋 will influence the value of transaction
matrix and is considered as 𝜋 = {𝜋

1
, 𝜋
2
, . . . , 𝜋

𝑚
}, where 𝑚

is the number of clusters. Each of the 𝜋
𝑖
shows the attraction

of the 𝑖th core and consequently the presence probability of
data objects in the 𝑖th cluster.

Based on the above parameters, a Bayesian graphical
model for overlapping clusters is presented in Algorithm 1.
This graphical model is a head-to-head Bayesian model [23],
in which a node has multiple parents which are independent
of each other.

This model shows the interaction among variables and
parameters that affect overlap density-based clustering algo-
rithms. As the graphic model Figure 1 shows that affected
variables on overlapping 𝐷, 𝐶

𝑖
, and 𝑇 are independent. By

considering an occurrence of transaction matrix 𝑇, creation
of clusters 𝐶

𝑖
, and dataset 𝐷, the probability of the overlap of

𝑗th cluster with the 𝑖th cluster (ov
𝑖𝑗

= 1) is computed by

𝑃 (ov
𝑖𝑗

= 1, 𝑇,𝐷, 𝐶
𝑖
) = 𝑃 (ov

𝑖𝑗
= 1 | 𝑇,𝐷, 𝐶

𝑖
) ∗ 𝑃 (𝑇)

∗ 𝑃 (𝐷) ∗ 𝑃 (𝐶
𝑖
) .

(1)

In Section 4.1, we will show how the finite mixture model
concepts can be used to compute 𝑃(𝑇). The computation of
𝑃(𝐶
𝑖
), data distribution 𝑃(𝐷), and conditional probability

𝑃(ov
𝑖𝑗

= 1 | 𝑇,𝐷, 𝐶
𝑖
) will be described in Section 4.2.

4.1. Probability of Transaction Matrix. The computation of
𝑃(𝑇) has been done based on the finite mixture model [24].
In finite mixture models we assume that there are 𝑀 cores,
each associated with a parameter 𝜋

𝑘
, the attraction value of

core 𝑘th for all data points in 𝐷. According to the graphical
model in Figure 1, 𝑃(𝑇) is computed by

𝑃 (𝑇) =

𝑀

∑

𝑘=1

𝑃 (𝑇 | 𝜋
𝑘
) ∗ 𝑃 (𝜋

𝑘
) . (2)

In finite mixture model, 𝑁 objects and 𝑀 cores are
defined.The fact that object 𝑖 belongs to cluster 𝑘 is indicated
by a binary variable 𝑇

𝑖𝑘
. Each object may belong to multiple

clusters, so 𝑖th row of 𝑇(𝑇
𝑖
) does not have any restrictions.

The 𝑇
𝑖𝑗
(𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . ,𝑀), thus, forms a binary

𝑁 ∗ 𝑀 transaction matrix (𝑇). We will assume that each
object belongs to cluster 𝑘 with probability of 𝜋

𝑘
; therefore,

the clusters are generated independently. Under this model,
given 𝜋 = {𝜋

1
, 𝜋
2
, . . . , 𝜋

𝑚
}, the conditional probability of the

matrix 𝑇 with having 𝜋
𝑘
is computed by

𝑃 (𝑇 | 𝜋
𝑘
) =

𝑁

∏

𝑖=1

𝑃 (𝑇
𝑖𝑘

| 𝜋
𝑘
) = 𝜋
𝑚𝑘

𝑘
(1 − 𝜋

𝑘
)
𝑁−𝑚𝑘

, (3)

where 𝑚
𝑘
is the number of data points that are in the

neighborhood of core 𝑘th and have a radius of less than 𝜀.
In the following, computation methods for 𝜋

𝑘
and 𝑃(𝜋

𝑘
) will

be described.
In order to find 𝜋

𝑘
, first we should compute distance

between two points 𝑝 and 𝑘 (𝑑(𝑝, 𝑘)). 𝑑(𝑝, 𝑘) can be com-
puted by Euclidean distance between 𝑝 and 𝑘th core, or it
may be a distance measure which is obtained from Pearson
correlation coefficient. In this paper, the Pearson correlation
coefficient is used.

Lower 𝑑(𝑝, 𝑘) indicates more correlation with the 𝑘th
core and, hence, the greater density of the core object. The
parameter 𝜎 is the computed standard deviation for all data
points in the neighborhood region of 𝑘th core. A core density
function of an object 𝑘 is the impact of all the data points
on its neighborhood. For each of the 𝑚

𝑘
points in the

neighborhood of 𝑘, the density function is defined by the
following [25]:

Density (𝑝, 𝑘) = 𝑒
−𝑑(𝑝,𝑘)

2
/2𝜎
2

. (4)

So 𝐴
𝑘
(the attraction value of core 𝑘th for all data points

in 𝐷) is the sum of the probability density functions for all
points, which is specified in the following [25]:

𝐴
𝑘
=

𝑁

∑

𝑝=1

Density (𝑝, 𝑘) =

𝑁

∑

𝑝=1

𝑒
−𝑑(𝑝,𝑘)

2
/2𝜎
2

. (5)

We define 𝜋
𝑘
as the event of the attraction by the 𝑘th core. So

𝜋
𝑘
is specified in the following:

𝜋
𝑘
=

𝐴
𝑘

∑
𝑀

𝑗=1
𝐴
𝑗

. (6)

If we assume that a prior on𝜋
𝑘
follows a beta distributionwith

the parameters 𝑟 and 𝑠 and is conjugate to the binomial. The
probability of any 𝜋

𝑘
under the Beta(𝑟, 𝑠) distribution and the

concept of Bayesian inference [24] is given by

𝑃 (𝜋
𝑘
) =

𝜋
𝑟−1

𝑘
(1 − 𝜋

𝑘
)
𝑠−1

𝐵 (𝑟, 𝑠)
, (7)

where 𝐵(𝑟, 𝑠) is the beta function and is computed by

𝐵 (𝑟, 𝑠) = ∫

1

0

𝜋
𝑟−1

𝑘
(1 − 𝜋

𝑘
)
𝑠−1

𝑑𝜋
𝑘
=

Γ (𝑟) Γ (𝑠)

Γ (𝑟 + 𝑠)
. (8)

If in (8) 𝑟 = 𝛼/𝑀 and 𝑠 = 1 (𝛼 is the concentration parameter
for each core density and 𝑀 is the number of cores) are
assumed then (7) is rewritten as

𝐵(
𝛼

𝑀
, 1) =

Γ (𝛼/𝑀)

Γ (1 + 𝛼/𝑀)
=

𝑀

𝛼
. (9)
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Overlapping Density Based Clustering Algorithm (OverDBC)
Input: Expression Matrix (𝑋)
output: Overlap clusters set (𝐶new)
//phase 1: For each two point 𝑔

𝑖
and 𝑔

𝑗
in 𝑋

Find the value of Similarity matrix (𝑆
𝑖𝑗
)

//phase 2: Find core list(𝑋, 𝑆);
//phase 3: For all 𝑂

𝑖
of core list do

𝐶
𝑖
= next cluster

expandcluster(𝑂
𝑖
, 𝐶
𝑖
, Neighbors);

add 𝐶
𝑖
to 𝐶

//phase 4: Func bound over(𝐶,𝐶new);

Expandcluster(𝑂
𝑖
, 𝐶
𝑖
, Neighbors)

𝐶
𝑖
= Link list.new ( );

For each point 𝑔 in neighbors
If 𝑔 is in Volume(𝑂

𝑖
)

Neighbors = neighbors 𝑈 neighbors’ 𝑔
Return 𝐶

𝑖

Find core list(𝑋, 𝑆)
Core list = undefined
For each 𝑔

𝑖
in 𝑋

If Density(𝑔
𝑖
) > avg Density

Core list.insert(𝑔
𝑖
);

Core list. Sort( ) base on Closeness Centrality value
Return Sorted Core list;

Func bound over(𝐶,𝐶new)
Compute 𝜆 (the maximum number of overlap point)
For all 𝐶

𝑖
, 𝐶
𝑗
in C

If 𝐶
𝑖
∩ 𝐶
𝑗
>= 𝜆 then

𝐶
𝑖
= merge(𝐶

𝑖
, 𝐶
𝑗
);

Delete 𝐶
𝑗
from 𝐶

Return 𝐶

Algorithm 1: Graphic Bayesian model for overlap clustering.

Equation (8) is achieved by exploiting the recursive definition
of the gamma function, where we have used the fact that
Γ(𝑥) = (𝑥−1)∗Γ(𝑥−1) for 𝑥 > 1 [24]. So (7) can be rewritten
as

𝑃 (𝜋
𝑘
) =

𝛼

𝑀
𝜋
𝑟−1

𝑘
(1 − 𝜋

𝑘
)
𝑠−1

. (10)

4.2. Probability Model of Clusters and Data Distribution.
According to the Bayesian model presented in the previ-
ous section, computing methods of 𝑃(𝐶

𝑖
) and 𝑃(𝐷) will

be described in this section. As defined in Section 4, the
hypothesis 𝐻

𝑖

1
shows that all the data in cluster 𝑖 are in fact

generated independently and only belong to cluster 𝑖. The
alternative hypothesis 𝐻

󸀠𝑖

1
states that data in cluster 𝑖 may

belong to two or more clusters. Obviously, the relation (11)
exists between 𝐻

𝑖

1
and 𝐻

󸀠𝑖

1
:

𝑃 (𝐻
󸀠𝑖

1
) = 1 − 𝑃 (𝐻

𝑖

1
) . (11)

Thus, considering the graphical model (Figure 1), 𝑃(𝐶
𝑖
) is

computed by

𝑃 (𝐶
𝑖
) = 𝑃 (𝐶

𝑖
| 𝐻
𝑖

1
) ∗ 𝑃 (𝐻

𝑖

1
) + 𝑃 (𝐶

𝑖
| 𝐻
󸀠𝑖

1
)

∗ 𝑃 (𝐻
󸀠𝑖

1
) .

(12)

𝑃(𝐻
𝑖

1
) is the prior probability of 𝐻𝑖

1
. To compute 𝑃(𝐶

𝑖
) from

(12), first, 𝑃(𝐻
󸀠𝑖

1
) is computed. If 𝑥

𝑗
represents a point and

𝑇
𝑗𝑘

is the value of transaction matrix for 𝑗th point and 𝑘th
core (whose value is zero or one) then the expected number
of presence 𝑥

𝑗
in different clusters (𝐸[𝑥

𝑗
]) will be computed

by

𝐸 [𝑥
𝑗
] =

𝑀

∑

𝑘=1

𝑇
𝑗𝑘
. (13)

The greater value for 𝐸[𝑥
𝑗
] shows the more probability of the

presence of 𝑥
𝑗
in some clusters. If 𝐸[𝑥

𝑗
] is computed for all

expected 𝑥
𝑗
in 𝐶
𝑖
, then 𝑃(𝐻

󸀠𝑖

1
) is obtained by

𝑃 (𝐻
󸀠𝑖

1
) =

𝑛

∏

𝑗=1

(1 −
𝐸 [𝑥
𝑗
]

𝑘
) ∀𝑥

𝑗
where 𝑇

𝑗𝑖
= 1. (14)

𝑃(𝐻
𝑖

1
) can be obtained based on (11) and (14).

To compute 𝑃(𝐶
𝑖
| 𝐻
𝑖

1
), the IBP model [24] will be used.

IBP is a simple generative process obtained from the case
of customers eating from Indian buffets. 𝑁 customers (i.e.,
data points in our clustering model) line up on one side of
an Indian buffet with infinite number of dishes (i.e., clusters).



6 Mathematical Problems in Engineering

Thefirst customer serves himself fromPoisson (𝛼) dishes (𝛼 is
the concentration parameter of clusters). The next customers
serve themselves dishes in proportion to the dish popularity,
such that customer 𝑖 serves herself the dish 𝑘with probability
𝑚
𝑘
/𝑖, where 𝑚

𝑘
is the number of previous customers which

had served themselves with dish 𝑘. 𝑃(𝐶
𝑖
| 𝐻
𝑖

1
) is obtained in

𝑃 (𝐶
𝑖
| 𝐻
𝑖

1
)

=
𝑃 (𝐻
𝑖

1
) ∗ 𝑃 (𝐻

𝑖

1
| 𝐶
𝑖
)

𝑃 (𝐻𝑖
1
) ∗ 𝑃 (𝐻𝑖

1
| 𝐶
𝑖
) + 𝑃 (𝐻󸀠𝑖

1
) ∗ 𝑃 (𝐻󸀠𝑖

1
| 𝐶
𝑖
)
.

(15)

By using the IBP model, 𝑃(𝐻
𝑖

1
| 𝐶
𝑖
) is computed by

𝑃 (𝐻
𝑖

1
| 𝐶
𝑖
) =

𝑛
𝑐𝑖

− 𝑛
𝑐𝑖(ov) + 𝛼/𝑀

𝑁 + 𝛼/𝑀
, (16)

where 𝑛
𝑐𝑖
is the number of objects in 𝐶

𝑖
. 𝑛
𝑐𝑖(ov) is defined

as a new symbol for the expected number of objects in 𝐶
𝑖

presented in multiple clusters; the value of 𝑛
𝑐𝑖(ov) is equal to

the number of 𝑥
𝑖
in which for them 𝐸[𝑥

𝑖
] > 1 is satisfied.

Therefore, 𝑃(𝐶
𝑖
| 𝐻
󸀠𝑖

1
) is computed by

𝑃 (𝐻
󸀠𝑖

1
| 𝐶
𝑖
) =

𝑛
𝑐𝑖(ov) + 𝛼/𝑘

𝑁 + 𝛼/𝑘
. (17)

Based on (17), It is clear that the greater value for 𝑛
𝑐𝑖(ov)

reduces the probability of 𝐶
𝑖
formation. 𝑃(𝐶

𝑖
| 𝐻
󸀠𝑖

1
) can be

obtained in a similar way in (15). By placing (14) and (15) in
(12), the value of 𝑃(𝐶

𝑖
) will be computed.

In the following, the computation of 𝑃(𝐷) will be
described. Graphical model in Figure 1 represents a dataset
𝐷 = {𝑥

1
, . . . , 𝑥

𝑁
}, which is generated independently and

uniquely from a probability model with vector parameters
𝜃. Each of the 𝑥

𝑖
is a one-dimensional vector. Generally,

microarray data (which are used for the evaluation algorithm)
have a normal distribution, so 𝜃 could be normal distribution
parameters (𝜇 and 𝜎 vectors) which are the median and
variance, respectively. By using dataset 𝐷, the conditional
probability of𝐷 can be computed by using the following [25]:

𝑃 (𝐷 | 𝜇, 𝜎
2
) =

𝑛

∏

𝑖=1

𝑃 (𝑥
𝑖
| 𝜇, 𝜎
2
)

= (2𝜋𝜎
2
)
−𝑛/2

exp{−
1

2𝜎2

𝑛

∑

𝑖=1

(𝑥
𝑖
− 𝜇)
2
} .

(18)

In the graphic model, some of the variables may be latent
or unobserved. For examplewemight not know themean and
variance of the Gaussian distribution which generated our
data, andwemay also be interested in inferring these values. If
there is information about𝐷, values of hidden variables could
be inferred using Variational Bayes method [26].

To complete the last part of (1), that is, the overlap
probability for 𝑖th and 𝑗th clusters, 𝑃(ov

𝑖𝑗=1
| 𝑇, 𝐷, 𝐶

𝑖
) is

computed based on the number of data points expected to
be present in two clusters simultaneously by the following:

𝑃 (ov
𝑖𝑗=1

| 𝑇, 𝐷, 𝐶
𝑖
) =

󵄨󵄨󵄨󵄨󵄨
𝑛
𝑐𝑖𝑗(ov)

󵄨󵄨󵄨󵄨󵄨

𝑛
𝑐𝑖

+ 𝑛
𝑐𝑗

. (19)

In (16), 𝑛
𝑐𝑖
is the expected number of points in𝐶

𝑖
, 𝑛
𝑐𝑗
is the

expected number of points in 𝐶
𝑗
, and 𝑛

𝑐𝑖𝑗(ov) is the expected
number of points in both 𝐶

𝑖
and 𝐶

𝑗
. These parameters are

computed using transaction matrix (𝑇).
By computing 𝑃(ov

𝑖𝑗
= 1, 𝑇,𝑋, 𝐶

𝑖
) in (1), prediction of

overlap degree between the new cluster and all other previous
clusters is possible. In Section 5, this prediction will be used
to provide an overlap Bayesian clustering algorithm.

5. Bayesian-OverDBC Algorithm

In this section, Bayesian-OverDBC algorithm will be intro-
duced. This algorithm defines a probability model for the
data which can be used to predict the distribution of over-
lap clusters. This algorithm completes OverDBC algorithm.
More details ofOverDBCare in [3].OverDBCconsists of four
phases which are as follows:

(1) Selection of the original core points.
(2) Density estimation and determining whether a

selected point is really a core or not.
(3) Improving clustering by using local search around

core points.
(4) Merging clusters if it is possible (in case clusters have

excessive same genes).

The first phases ((1)–(3)) in Bayesian-OverDBC are the
same as in OverDBC. The primary difference of these two
algorithms is in phase (4). In this phase, based on Bayesian
model shown in Figure 1, the overlap probability of a new
cluster is computed in comparison to all other previous
clusters. If the overlap probability is smaller than 𝜃, the local
search is continued around the core and a new cluster is
formed. Value of 𝜃 will be determined by trial and error
method on the dataset. If the overlap probability is more than
𝜃, func bound over() is invoked. This function determines
a lower bound on the number of shared objects of two
clusters drown from a given dataset. The func bound over()
is defined based on double counting theory [21] and provides
great improvement in overlap clustering. Output of the
function is represented as 𝜆. If the number of overlap points
of two clusters is greater than 𝜆, the two clusters should be
merged to form a larger cluster. Obviously, with these changes
the membership matrix 𝑍 is also changed.

Bayesian-OverDBC (Algorithm 2) has many advantages
over traditional density-based clustering methods. It defines
a probabilistic model of data which can be used to predicate
distribution of overlap clusters. Bayesian hypothesis testing
could be used to decide which of the clusters exists as overlap
clusters and which one merges or even is discarded. In the
next section the results of comparison of Bayesian-OverDBC
with other algorithms will be described.

6. Evaluation

Our evaluation experiments were performed on two different
types of data: synthetic microarray-like data and real dataset
of microarray. By using microarray techniques; it is possible
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Baysian Overlapping Density Based Clustering Algorithm (OverDBC)
Input: Expression Matrix (𝐷) 𝑛 ∗ 𝑝, Data model 𝑃(𝐷 | 𝜃)

Output: Bayesian overlap clusters, 𝑍 (membership-matrix).
New cluster may be merged based on 𝑃(ov

𝑖𝑗
) probability.

//phase 1
(1) compute transaction matrix (𝑇) 𝑁 ∗ 𝑀

//phase 2
(2) Find Core genes based on Density and Closeness Centrality
(3) Add gene 𝑔

𝑖
to Core genes (𝑂) based on density and Cc relations.

//phase 3
(4) For All 𝑔

𝑗
in 𝑂 (Set of Core Object) Repeat:

(5) If 𝑗 = 1 Start Local Search to find nearest neighbors 𝑔
1
, Save cluster 𝐶

1
.

Else For 𝑖 = 1 to 𝑗 − 1

𝑃 (ov
𝑖𝑗

= 1, 𝑇,𝐷, 𝐶
𝑖
) = 𝑃 (ov

𝑖𝑗=1
| 𝑇, 𝑋, 𝐶

𝑖
) ∗ 𝑃 (𝑇) ∗ 𝑃 (𝐷) ∗ 𝑃 (𝐶

𝑖
)

Based above probability select one of these paths:
if 𝑃 < 𝜃 then Start local search to construct new cluster 𝐶

𝑗
.

Else invoke func bound over( ) and return results
End of For

End of If

Algorithm 2: Bayesian-OverDBC.

Table 1: Comparison of precision, recall, and 𝐹1 measures.

Dataset
Precision Recall 𝐹1

Algorithm
DBSCAN IOMM Bayesian-OverDBC DBSCAN IOMM Bayesian-OverDBC DBSCAN IOMM Bayesian-OverDBC

Small-synthetic .81 .83 .76 .53 .57 .63 0.6886 0.6758 0.6889
Medium-synthetic .66 .73 .73 .72 .67 .69 0.8335 0.6987 0.7094
Large-synthetic .87 .81 .87 .80 .83 .86 0.5192 0.8198 0.8649
DS1 .42 .67 .79 .68 .73 .82 0.6182 0.6987 0.804
DS2 .56 .74 .74 .64 .70 .76 0.5966 0.7194 0.7498

to measure the expression levels of thousands of genes under
several experimental conditions. Microarray data provide
a lot of information about the molecule transaction in
genome level, which is important for gene regulatory network
detection. In a formal representation, microarray data were
represented as a matrix. Rows represent genes and columns
represent conditions. 𝑖

󸀠th and 𝑗
󸀠th matrix member shows

the expression level of gene 𝑖 in condition 𝑗. In [11], apart
from demonstrating their approach on gene microarray data
and evaluating standard biology databases, they also showed
results on microarray-like synthetic data. We employed three
synthetic datasets of different sizes:

(1) Small-synthetic dataset: a dataset with 𝑛 = 75.
(2) Medium-synthetic dataset: a dataset with 𝑛 = 200.
(3) Large-synthetic dataset: a dataset with 𝑛 = 1000.

Bayesian OverDBC has been evaluated on two real
datasets of microarray gene expression data. The algorithm
has been implemented on the Arabidopsis thaliana abiotic
stress dataset (DS1) [27] and on the yeast cell cycle dataset
(DS2) [28].

DS1 is a 3D dataset from multiple sclerosis patients
which has been published in 2003. The condition dimension
consisted of 13 multiple-sclerosis patients, monitored over 7

time points after IFN-𝛽 injection. The Arabidopsis thaliana
datasets were composed of different abiotic stress stimulus
experiments conducted in the root and shoot tissue.

DS2 was extracted from a dataset that shows the fluctu-
ation of expression levels of approximately 6000 genes over
two cell cycles (17 time points).

To evaluate the clustering results, precision, recall, and 𝐹-
measure were calculated over pairs of points.These measures
try to determine whether the prediction of the pair existing
in the same cluster was correct with respect to the underlying
true categories in the data. Precision is calculated as the
fraction of pairs correctly put in the same cluster. Recall is
the fraction of actual pairs that were identified. 𝐹-measure is
the harmonic mean of precision and recall.

We compared Bayesian-OverDBC results with DBSCAN,
which can only assign each object to a single cluster. We
compared these algorithms using an 𝐹1 score, which takes
into accounts both precision and recall and which can be
computed from the true gene assignments to clusters. Also,
we compared Bayesian-OverDBC with IOMM that allows
genes to belong to multiple overlap clusters (Table 1).

The first column is the name of the datasets, the second
column is precision value, and the third and fourth columns
are recall and 𝐹1 measure.
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Table 2: Notations for omega index.

Method 1\method 2 𝑐1 𝑐2 ⋅ ⋅ ⋅ 𝑐|𝐶| Sums
𝑡1 𝑛11 𝑛12 ⋅ ⋅ ⋅ 𝑛1|𝐶| 𝑛1.
𝑡2 𝑛21 𝑛22 ⋅ ⋅ ⋅ 𝑛2|𝐶| 𝑛2.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

𝑡|𝑇| 𝑛|𝑇|1 𝑛|𝑇|2 ⋅ ⋅ ⋅ 𝑛|𝑇||𝐶| 𝑛|𝑇|.
Sums 𝑛.1 𝑛.2 ⋅ ⋅ ⋅ 𝑛.|𝐶| 𝑛

Although in a few positions the values of precision or
recall for Bayesian-OverDBC is lower than other algorithms,
the 𝐹1 measure has higher values in comparison with
other methods indicating the good performance of Bayesian-
OverDBC algorithm.

We compared our method with IOMM using omega
index. The omega index extends the Adjusted Rand Index
(ARI) [29] to overlapping clustering [30]. In addition to
counting the number of common pairs occurring together in
0 cluster or 1 cluster, Omega index also counts the number of
pairs occurring together in 2, . . . ,𝑀 clusters. Using the terms
from Table 2 omega index (Ω) and expected omega (𝐸[Ω])
are computed by the following, respectively:

Ω =
∑

min(|𝜏|,|𝑐|)
𝑗=0

𝑛
𝑗

𝑁
, (20)

𝐸 [Ω] =
∑

min(|𝜏|,|𝑐|)
𝑗=0

𝑛
𝑗.
𝑛
.𝑗

𝑛2
. (21)

Table 2 shows parameters used in omega index. It contains
symbols which are required to compare two methods of
clustering.

In Table 2, clusters in the first algorithm (Bayesian-
OverDBC) form rows and clusters in the second algorithm
(IOMM) form columns. So, |𝜏| is the number of clusters in the
first algorithm and |𝑐| is the number of clusters in the second
algorithm. In this table, 𝑛

𝑖𝑗
is the number of objects which

are in 𝑖th cluster by method 1 and in 𝑗th cluster be method
2. 𝑛
𝑖𝑖
(𝑛
𝑖
as a brief form) is the number of objects which are

the same clusters by method 1 and method 2. More details
about omega index are in [30]. The omega index requires an
adjustment to remove clusters sharing the same number of
labels by chance which is computed by (22)

Ωadj =
(∑

min(|𝜏|,|𝑐|)
𝑗=0

𝑛
𝑗
) /𝑁 − 𝐸 [Ω]

1 − 𝐸 [Ω]

=
observed index − expected index
maximun index − expected index

.

(22)

Of the other metrics such as NMI, PNMI, and aligned
NMI [30], the omega index gives themost optimisticmeasure
of multiple-membership similarity. We compared Bayesian-
OverDBC and IOMM using omega index and we found
Ωadj = .83 for DS1 and Ωadj = .86 for DS2. It indicates that
Bayesian-OverDBC assigns data points to overlap clusters in
a similar way with IOMM.

These results also show that Bayesian-OverDBC is an
effective density-based method for overlap clustering and
its performance in finding relevant pairs is very similar to
or even better than IOMM. Furthermore, IOMM sampler
should be run for 2000–3000 iterations. Time complexity
of IOMM is 𝑂(𝑛

2
) and the time complexity of Bayesian-

OverDBC is 𝑂(𝑁 ⋅ 𝑀). As a result, Bayesian-OverDBC has
better performance in time complexity compared to IOMM.

7. Discussion

This paper explained Bayesian-OverDBC which is a new
density-based clustering method modelling overlapped clus-
ters. The Bayesian-OverDBC extends traditional density-
based model using probabilistic method to find and predict
overlap clusters. While most of the research in this area has
focused on disjoint clustering,many realmicroarray datasets,
and as a result many gene regulatory networks, have inherent
overlapping partitions. Density-based clustering methods,
even with the ability of producing overlapping clusters, do
not use a probabilistic model. So, it is difficult to determine
probability of events and to compare an overlapping method
with other methods. Therefore, a probability density-based
clustering model, which provides overlapping, is required.
It is proved that Bayesian overlapping clustering may be
significantly better than other similar methods of clustering.
As overlapping clustering is a still-developing field, there are
several subjects for future development such as techniques
for visualization and interpretation, new algorithms and new
means of comparison, and techniques for model selection.
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