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An autopilot inner loop that combines backstepping control with adaptive function approximation is developed for airdrop
operations. The complex nonlinear uncertainty of the aircraft-cargo model is factorized into a known matrix and an uncertainty
function, and a projection-based adaptive approach is proposed to estimate this function. Using projection in the adaptation law
bounds the estimated function and guarantees the robustness of the controller against time-varying external disturbances and
uncertainties. The convergence properties and robustness of the control method are proved via Lyapunov theory. Simulations are
conducted under the condition that one transport aircraft performs a maximum load airdrop task at a height of 82 ft, using single
row single platform mode. The results show good performance and robust operation of the controller, and the airdrop mission
performance indexes are satisfied, even in the presence of ±15% uncertainty in the aerodynamic coefficients, ±0.01 rad/s pitch rate
disturbance, and 20% actuators faults.

1. Introduction

Heavyweight airdrop is an essential capability of a large
transport aircraft, and it is critical to the success of many
military tasks, such as precision delivery of heavyweight
equipment and supplies [1, 2]. To perform these tasks with
accurate allocation of the payload and to also guarantee flight
safety, highly stable aircraft dynamics are required. However,
the continuous movement and sudden delivery of the heavy
cargo can exert large disturbances on the aircraft, thus leading
to considerable deviation of the aircraft dynamics from the
trim position [3–5]. Therefore, the design of an aircraft
controller that is compatible with heavyweight airdrop tasks
is necessary, and the large and sudden disturbances, strong
coupling between the cargo and aircraft dynamics, and
multiple uncertainties make this a challenging task [6–11].

Over recent years, variousmeaningful achievements have
been reported in developing advanced aircraft controllers
that are compatible with airdrop tasks. Several control meth-
ods that use a linearizedmodel at a given operating point have
been proposed in the literature, including 𝐿1 adaptive control

[6], robust control [7], and active disturbance rejection con-
trol [12, 13]. Although these approaches can improve various
aspects of system performance, one shortcoming is that satis-
factory performance and robustness are difficult to achieve
in the event that the cargo becomes increasingly heavy. In
such an event, the aircraft dynamics can change rapidly and
deviate far from the operating point, which yields a highly
nonlinear system. Many nonlinear control approaches have
been developed to handle systems with strong nonlinearities.
The theoretically established feedback linearization method
is the one that is most widely applied [14–18].

The nonlinear system can be decoupled via exact state
transformations rather than linear approximations. However,
to perform perfect linearization, accurate knowledge of the
plant dynamics must be available. This is not the case for
airdrop flight controller design, as the complex nonlinear
aerodynamic characteristics are very difficult to ascertain
and model precisely [4, 6, 7, 10]. Moreover, aerodynamic
data obtained from wind tunnel tests, augmented by com-
putational fluid dynamics results, always contain a certain
degree of uncertainty. The problem of model deficiencies
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can be dealt with by closing the control loop with robust
controllers, for instance, combining feedback linearization
with sliding mode control [8–10] or backstepping sliding
mode control [11]. These methods devise control laws based
on the knowledge of the bounds on the relevant uncertainties.
However, the bounds of the complex nonlinear uncertainties,
which are composed of aircraft-cargo dynamics coupled with
aerodynamic perturbations, are difficult to obtain in advance.
Thus, the control gains need to be set large enough to operate
correctly under a variety of conditions, which is generally
a very conservative strategy. This approach might also lead
to severe chattering phenomena and could damage actuators
and systems [19–21].

In these cases, nonlinear adaptive control methods are
called for. Adaptive backstepping control [22–26], which
allows uncertainties of both matched and mismatched type,
has been widely applied to flight control projects [23–26]. To
be able to estimate the nonlinear uncertainties of the system,
it is possible to employ neural networks within the parameter
update laws of the adaptive backstepping controller [22, 23].
The neural networks are used to parameterize the nonlinear
uncertainties, and this allows the update laws to adapt to the
network weights. In spite of their obvious conceptual appeal,
the complicated computations are time-consuming and the
stability analysis is tedious. These considerations might limit
the application of this method in the design of airdrop
flight controllers from a purely practical perspective. One
interesting technique is to separate the uncertain parameters
from the complex nonlinearities and use update laws to adapt
the uncertain parameters directly [26].The design procedure,
as well as the performance analysis of such an approach, is
relatively easy when compared with that using the neural
networks method.

The main motivation for the current work is to propose
a simplified controller design for the airdrop mode that can
accommodate large changes in aircraft dynamics and reject
uncertainties of both constant and time-varying types, as well
as matched and unmatched types. The contributions of this
paper are (1) a flight controller design that inherits the merits
of the backstepping approach, thus solving the unmatched
control problem of cargo airdrop; (2) the introduction of
adaptation theories to estimate the system uncertainties,
which overcomes the conservative drawbacks of [8–11] as
discussed above; (3) the formation of adaptation laws using
the projection operator to bound the estimated functions
and theoretically guarantee the robustness of the controller
against time-varying disturbances and uncertainties while
avoiding singularity of the control law; and (4) a proof of the
convergence properties and robustness of the controlmethod
based on Lyapunov theory.

The structure of this paper is as follows. The aircraft-
cargo model with cargo extraction is presented in Section 2.
The control law for the airdrop mode is derived in Section 3,
along with a discussion of the stability properties. Section 4
presents simulation results that verify the correct operation
of the proposed controller, and conclusions are presented in
Section 5.

2. Aircraft-Cargo Model with Cargo Extraction

As stated in the previous section, this paper studies the
design of a flight control law for the airdrop operations. The
governing equations of motions are recalled from [10] as

�̇� =

(𝑇 cos𝛼 − 𝐷 − 𝑚𝑏𝑔 sin 𝛾 + 𝐹𝑐𝑥)
𝑚𝑏

, (1)

̇𝛾 =

(𝑇 sin𝛼 + 𝐿 − 𝑚𝑏𝑔 cos 𝛾 + 𝐹𝑐𝑧)
𝑚𝑏𝑉

, (2)

̇𝑞 =

(𝑀𝑦 +𝑀𝑐)

𝐼𝑦

, (3)

̇𝜃 = 𝑞, (4)

where𝑚𝑏 is the mass of the aircraft;𝑉 is the airspeed; 𝛼 is the
angle of attack (AOA); 𝛾 is the climb angle and 𝜃 = 𝛾+𝛼with 𝜃
being the pitch angle; 𝑞 is the pitch rate; 𝐼𝑦 is the pitchmoment
of inertia; 𝑇, 𝐷, 𝐿, and 𝑀𝑦 are the engine thrust, drag, lift,
and pitch aerodynamic moment, respectively; and 𝐹𝑐𝑥, 𝐹𝑐𝑧,
and𝑀𝑐 are the disturbance forces and moment, respectively,
that the cargo imposes on the aircraft.

The pitch aerodynamic moment is obtained as

𝑀𝑦

= 𝑞𝑆𝑐𝐴 [𝐶𝑚0 + 𝐶𝑚𝛼 (𝛼 − 𝛼0) + 𝐶𝑚𝑞

𝑞𝑐𝐴

2𝑉

+ 𝐶𝑚𝛿
𝑒

𝛿𝑒] ,

(5)

where 𝑞 is the dynamic pressure; 𝑆 is the wing area; 𝛿𝑒 is the
elevator deflection; 𝑐𝐴 is the mean aerodynamic chord; and
𝐶𝑚∗ are the pitch moment coefficients. The drag and lift are
found by

𝐷 = 𝑞𝑆 [𝐶𝐷0 + 𝐶𝐷𝛼 (𝛼 − 𝛼0) + 𝐶𝐷𝛿
𝑒

𝛿𝑒] ,

𝐿 = 𝑞𝑆 [𝐶𝐿0 + 𝐶𝐿𝛼 (𝛼 − 𝛼0) + 𝐶𝐿𝛿
𝑒

𝛿𝑒] ,

(6)

where 𝐶𝐷∗ and 𝐶𝐿∗ are the drag and lift coefficients, respec-
tively. The engine thrust is

𝑇 = 𝑇𝑚𝛿𝑝, (7)

where 𝛿𝑝 is the throttle opening ranging from 0 to 100% and
𝑇𝑚 is the maximal thrust.

𝐹𝑐𝑥, 𝐹𝑐𝑧, and𝑀𝑐 are obtained as

𝐹𝑐𝑥 = (𝑚𝑐𝑔 cos 𝜃 − 2𝑚𝑐𝑞 ̇𝑟𝑐) sin𝛼 − 𝐹𝑝 − 𝑚𝑐𝑟𝑐 sin𝛼 ̇𝑞

− 𝑚𝑐�̇� − (𝑚𝑐𝑔 sin 𝜃 + 𝑚𝑐𝑞
2
𝑟𝑐 − 𝑚𝑐

̈𝑟𝑐) cos𝛼,

𝐹𝑐𝑧 = − (𝑚𝑐𝑔 cos 𝜃 − 2𝑚𝑐𝑞 ̇𝑟𝑐) cos𝛼 − 𝑚𝑐𝑉 ̇𝛾

+ 𝑚𝑐𝑟𝑐 cos𝛼 ̇𝑞

− (𝑚𝑐𝑔 sin 𝜃 + 𝑚𝑐𝑞
2
𝑟𝑐 − 𝑚𝑐

̈𝑟𝑐) sin𝛼,

𝑀𝑐 = 𝑚𝑐𝑟𝑐𝑔 cos 𝜃 − 𝐹𝑝𝑟𝑐 sin𝛼

− 𝑚𝑐𝑟𝑐 (�̇� sin𝛼 − 𝑉 ̇𝛾 cos𝛼 + ̇𝑞𝑟𝑐 + 2𝑞 ̇𝑟𝑐) ,

(8)
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where 𝑚𝑐 is the mass of the cargo; 𝐹𝑝 is the extraction force
where 𝐹𝑝 = 𝑚𝑐𝑔𝜆with 𝜆 denoting the extraction ratio; and 𝑟𝑐
is the position of the cargowith respect to the center of gravity
(CG) of the aircraft. The cargo dynamics are found by

̈𝑟𝑐 = �̇� cos𝛼 + 𝑉 sin𝛼 ̇𝛾 + 𝑔 sin 𝜃 − 𝜇𝑔 cos 𝜃

+

𝜇𝐹𝑝 sin𝛼
𝑚𝑐

+ 𝑟𝑐𝑞
2
+

𝐹𝑝 cos𝛼
𝑚𝑐

+ 𝜇 (�̇� sin𝛼 − 𝑉 ̇𝛾 cos𝛼 + ̇𝑞𝑟𝑐 + 2𝑞 ̇𝑟𝑐) ,

(9)

where 𝜇 is the friction coefficient of rolling between the cargo
and the roller on the floor.

Remark 1. It is observed from (1)–(3) and (8) and (9) that
the aircraft-cargo dynamics form a strongly nonlinear system
subject to the coupling of the aircraft states and the cargo

parameters. The system may be further complicated by
various uncertainties, such as aerodynamic data perturbation
and uncertain machinery faults. Readers can refer to [10] for
detailed discussions about the model.

From (1)–(9), together with the consideration of uncer-
tainties, the aircraft-cargo model can be rewritten in the
following form:

�̇�1 (𝑡) = 𝜎 (𝑡) + Bx2 (𝑡) ,

ẋ2 (𝑡) = F (𝑡) + G (𝑡)𝜔u (𝑡) + ΔF (𝑡) ,
(10)

where 𝑥1 = 𝜃, x2 = [𝑉, 𝑞]
T, u = [𝛿𝑒, 𝛿𝑝]

T, B = [0, 1],
F = [𝑓1, 𝑓2]

T, and G = [
𝑔
11
𝑔
12

𝑔
21
𝑔
22

]; ΔF = [Δ𝑓1, Δ𝑓2]
T is the

uncertainty function; 𝜎(𝑡) ∈ 𝑅 is the unknown time-varying
disturbance; and 𝜔 ∈ 𝑅2×2 is the unknown input gain matrix.
𝑓𝑖 and 𝑔𝑖𝑗 (𝑖 = 1, 2; 𝑗 = 1, 2) are found by

𝑓1 =

[−𝑚𝑐𝑟𝑐 sin𝛼𝑓2 + 𝑇0 cos𝛼 − 𝑚𝑏𝑔 sin 𝛾 − Λ 1 cos𝛼 + Λ 2 sin𝛼 − 𝑞𝑆 (𝐶𝐷0 + 𝐶𝐷𝛼 (𝛼 − 𝛼0)) − 𝐹𝑝]
(𝑚𝑏 + 𝑚𝑐)

,

𝑓2 =

𝑞𝑆𝑐𝐴 (𝐶𝑚0 + 𝐶𝑚𝛼 (𝛼 − 𝛼0) + 𝐶𝑚𝑞𝑞𝑐𝐴/2𝑉)

Λ 3

+
𝑟𝑐Λ 2

Λ 3

−

𝑟𝑐𝐹𝑝 sin𝛼
Λ 3

+

𝑚𝑐𝑟𝑐 [−Λ 2 + 𝐹𝑝 sin𝛼 + 𝑚𝑏𝑔 sin 𝛾 sin𝛼 − 𝑚𝑏𝑔 cos 𝛾 cos𝛼 + 𝑞𝑆 sin𝛼 (𝐶𝐷0 + 𝐶𝐷𝛼 (𝛼 − 𝛼0)) + 𝑞𝑆 cos𝛼 (𝐶𝐿0 + 𝐶𝐿𝛼 (𝛼 − 𝛼0))]
[(𝑚𝑏 + 𝑚𝑐) Λ 3]

,

𝑔11 = −

(𝑚𝑐𝑟𝑐 sin𝛼𝑔21 + 𝑞𝑆𝐶𝐷𝛿
𝑒

)

(𝑚𝑏 + 𝑚𝑐)

,

𝑔12 =
𝑇𝑚 cos𝛼
(𝑚𝑏 + 𝑚𝑐)

,

𝑔21 =

𝑚𝑐𝑟𝑐𝑞𝑆 (𝐶𝐷𝛿
𝑒

sin𝛼 + 𝐶𝐿𝛿
𝑒

cos𝛼)
[(𝑚𝑏 + 𝑚𝑐) Λ 3]

+

𝑞𝑆𝑐𝐴𝐶𝑚𝛿
𝑒

Λ 3

,

𝑔22 = 0,

(11)

with Λ 𝑖 (𝑖 = 1, 2, 3) being defined as follows:

Λ 1 = 𝑚𝑐𝑔 sin 𝜃 + 𝑚𝑐𝑞
2
𝑟𝑐 − 𝑚𝑐

̈𝑟𝑐,

Λ 2 = 𝑚𝑐𝑔 cos 𝜃 − 2𝑚𝑐𝑞 ̇𝑟𝑐,

Λ 3 = 𝐼𝑦 + 𝑚𝑐𝑟
2

𝑐
−

𝑚
2

𝑐
𝑟
2

𝑐

(𝑚𝑏 + 𝑚𝑐)

.

(12)

The uncertainty function Δ𝑓𝑖 (𝑖 = 1, 2) introduced by the
aerodynamic data perturbation is obtained as

Δ𝑓1 =

[−𝑚𝑐𝑟𝑐 sin𝛼Δ𝑓2 − 𝑞𝑆 (Δ𝐶𝐷0 + Δ𝐶𝐷𝛼 (𝛼 − 𝛼0))]
(𝑚𝑏 + 𝑚𝑐)

,

Δ𝑓2 =

𝑞𝑆𝑐𝐴 (Δ𝐶𝑚0 + Δ𝐶𝑚𝛼 (𝛼 − 𝛼0) + Δ𝐶𝑚𝑞𝑞𝑐𝐴/2𝑉)

Λ 3

+

𝑚𝑐𝑟𝑐𝑞𝑆 [sin𝛼 (Δ𝐶𝐷0 + Δ𝐶𝐷𝛼 (𝛼 − 𝛼0)) + cos𝛼 (Δ𝐶𝐿0 + Δ𝐶𝐿𝛼 (𝛼 − 𝛼0))]
[(𝑚𝑏 + 𝑚𝑐) Λ 3]

.

(13)



4 International Journal of Aerospace Engineering

Nonlinear aircraft-
cargo model

State feedback

Pitch angle
controller

Pitch rate and
velocity controller

Adaptive backstepping control

PID
altitude-hold

controller
Hd = Htrim

H
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Figure 1: Autopilot control architecture with three layers of feedback.

Here, Δ𝐶𝐿∗ , Δ𝐶𝐷∗ , and Δ𝐶𝑚∗ are the perturbation of the
lift, drag, and pitch moment coefficients, respectively. We
introduce the following notations:

𝐸11 = −

𝑞𝑆𝑚
2

𝑐
𝑟
2

𝑐
sin𝛼 cos𝛼

[(𝑚𝑏 + 𝑚𝑐)
2
Λ 3]

,

𝐸12 = −
𝑞𝑆

(𝑚𝑏 + 𝑚𝑐)

−

𝑞𝑆𝑚
2

𝑐
𝑟
2

𝑐
sin2𝛼

[(𝑚𝑏 + 𝑚𝑐)
2
Λ 3]

,

𝐸13 = −
𝑞𝑆𝑐𝐴𝑚𝑐𝑟𝑐 sin𝛼
[(𝑚𝑏 + 𝑚𝑐) Λ 3]

,

𝐸21 =
𝑞𝑆𝑚𝑐𝑟𝑐 cos𝛼

[(𝑚𝑏 + 𝑚𝑐) Λ 3]

,

𝐸22 =
𝑞𝑆𝑚𝑐𝑟𝑐 sin𝛼

[(𝑚𝑏 + 𝑚𝑐) Λ 3]

,

𝐸23 =
𝑞𝑆𝑐𝐴

Λ 3

,

E (𝑡)

= [

𝐸11 𝐸12 𝐸13

𝐸21 𝐸22 𝐸23

]

⋅

[
[
[
[

[

1 𝛼 − 𝛼0 0 0 0 0 0

0 0 1 𝛼 − 𝛼0 0 0 0

0 0 0 0 1 𝛼 − 𝛼0

𝑞𝑐𝐴

2𝑉

]
]
]
]

]

,

P (𝑡)

= [Δ𝐶𝐿0, Δ𝐶𝐿𝛼, Δ𝐶𝐷0, Δ𝐶𝐷𝛼, Δ𝐶𝑚0, Δ𝐶𝑚𝛼, Δ𝐶𝑚𝑞]

T
.

(14)

Then, ΔF(𝑡) can be written as

ΔF (𝑡) = E (𝑡)P (𝑡) . (15)

We will use the following assumptions throughout this
analysis.

Assumption 2 (uniform boundedness of 𝜎(𝑡) and P(𝑡)). Here,
|𝜎(𝑡)| ≤ 𝜙 and P(𝑡) ∈ Θ, where 𝜙 > 0 is a known bound of
𝜎(𝑡) and Θ is a known compact set.

Assumption 3 (partial knowledge of the input gain matrix).
𝜔 is a constant diagonal matrix defined as 𝜔 = diag(𝜔11, 𝜔22)

with 0 < 𝜔11, 𝜔22 ≤ 1. There exists a known compact set Ω
such that 𝜔 ∈ Ω ⊂ 𝑅

2×2.

Assumption 4 (uniform boundedness of the rate of variation
of parameters). 𝜎(𝑡) and P(𝑡) are continuously differentiable
with uniformly bounded derivatives; that is, |�̇�(𝑡)| ≤ 𝑑𝜎 < ∞

and ‖Ṗ(𝑡)‖ ≤ 𝑑P < ∞ with ‖(⋅)‖ denoting the 2-norm of the
vector.

3. Control Law and Stability Properties

The overall control system is designed using three feedback
loops, as shown in Figure 1. The third loop (outer loop) uses
an altitude-hold controller designed using the regular PID
control law.This loop generates a pitch angle command input
𝜃𝑑 for the angular control loop in the second layer. The inner
loop contains two controlled variables that are [𝑞, 𝑉]T. The
pitch rate command 𝑞𝑑 is generated by the angular control
loop, and the velocity command 𝑉𝑑 is the trim value.

3.1. Adaptive Backstepping Control Law. The steps in the
adaptive backstepping control law are described below.

Step 1. Consider the first equation in system (10):

�̇�1 (𝑡) = 𝜎 (𝑡) + Bx2 (𝑡) . (16)

The desired pitch angle is 𝑥1𝑑(𝑡) = 𝜃𝑑, and design the virtual
control law of (16) as

x2𝑑 (𝑡) = −BT
[𝑘1 (𝑥1 (𝑡) − 𝑥1𝑑 (𝑡)) + �̂� (𝑡) − �̇�1𝑑 (𝑡)]

+ [𝑉𝑑 0]
T
,

(17)

where 𝑘1 > 0 and �̂�(𝑡) is the estimation of 𝜎(𝑡), which is
governed by

̇̂
𝜎 (𝑡) = Γ ⋅ Proj [�̂� (𝑡) , 𝑥1 (𝑡) − 𝑥1𝑑 (𝑡)] , (18)

where Γ > 0 is the adaptation gain and Proj(⋅, ⋅) is the
projection operator (see the appendix for details) which
ensures that |�̂�| ≤ 𝜙.

Step 2. Consider the second equation in system (10):

ẋ2 (𝑡) = F (𝑡) + G (𝑡)𝜔u (𝑡) + E (𝑡)P (𝑡) . (19)
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The control law is designed as

u (𝑡) = − [G (𝑡) �̂� (𝑡)]
−1
[k2 (x2 (𝑡) − x2𝑑 (𝑡))

+ Ε (𝑡) P̂ (𝑡) + F (𝑡) + BT
(𝑥1 (𝑡) − 𝑥1𝑑 (𝑡))

− ẋ2𝑑 (𝑡)] ,

(20)

where k2 > 0 is a constant matrix represented by k2 =

diag(𝑘21, 𝑘22, 𝑘23). �̂�(𝑡) and P̂(𝑡) are governed by

̇̂
𝜔 (𝑡) = Γ ⋅ Proj [�̂� (𝑡) ,GT

(𝑡) (x2 (𝑡) − x2𝑑 (𝑡)) u
T
(𝑡)] ,

̇̂P (𝑡) = Γ ⋅ Proj [P̂ (𝑡) ,ET
(𝑡) (x2 (𝑡) − x2𝑑 (𝑡))] ,

(21)

where the projections are confined to the sets Ω and Θ,
respectively; that is, �̂�(𝑡) ∈ Ω and P̂(𝑡) ∈ Θ.

Remark 5. The projection-based adaptation law ensures that
�̂�(𝑡) is nonsingular. For instance, we can set

Ω = [

[0.5, 1] [0, 0.01]

[0, 0.01] [0.5, 1]

] . (22)

From �̂�(𝑡) ∈ Ω, it follows that �̂�(𝑡) is always nonsingular. For
−2/𝜋 < 𝛼 < 2/𝜋, we have |𝑔11𝑔22| ≪ |𝑔12𝑔21| [8, 10], which,
together with the condition that �̂�(𝑡) is nonsingular, implies
that G(𝑡)�̂�(𝑡) is nonsingular.

3.2. Stability Analysis. Theproof of stability of the control law
is achieved by augmenting Lyapunov functions for the state
tracking errors and parameter estimation errors. We define

�̃� (𝑡) = �̂� (𝑡) − 𝜎 (𝑡) ,

�̃� (𝑡) = �̂� (𝑡) − 𝜔,

P̃ (𝑡) = P̂ (𝑡) − P (𝑡) ,

𝑥1 (𝑡) = 𝑥1 (𝑡) − 𝑥1d (𝑡) ,

x̃2 (𝑡) = x2 (𝑡) − x2d (𝑡) .

(23)

Taking the time derivative of 𝑥1(𝑡) yields

̇̃𝑥1 (𝑡) = �̇�1 (𝑡) − �̇�1𝑑 (𝑡) = 𝜎 (𝑡) + Bx2 (𝑡) − �̇�1𝑑 (𝑡)

= 𝜎 (𝑡) − 𝑘1 (𝑥1 (𝑡) − 𝑥1𝑑 (𝑡)) − �̂� (𝑡) + Bx̃2 (𝑡)

= −𝑘1𝑥1 (𝑡) − �̃� (𝑡) + Bx̃2 (𝑡)

(24)

and the time derivative of x̃2(𝑡) is

̇̃x2 (𝑡) = ẋ2 (𝑡) − ẋ2𝑑 (𝑡) = F (𝑡) + G (𝑡)𝜔u (𝑡) + E (𝑡)

⋅ P (𝑡) − ẋ2𝑑 (𝑡) = F (𝑡) + E (𝑡)P (𝑡) − [k2x̃2 (𝑡)

+ Ε (𝑡) P̂ (𝑡) + F (𝑡) + BT
𝑥1 (𝑡) − ẋ2𝑑 (𝑡)] − G (𝑡)

⋅ �̃�u (𝑡) − ẋ2𝑑 (𝑡) = −E (𝑡) P̃ (𝑡) − k2x̃2 (𝑡)

− BT
𝑥1 (𝑡) − G (𝑡) �̃�u (𝑡) .

(25)

Theorem 6. Given the system in (10) controlled by (20) with
the adaptation laws defined via (18) and (21), the state tracking
errors 𝑥𝑖(𝑡), 𝑖 = 1, 2, are uniformly bounded:


𝑥𝑖 (𝑡)


≤ √

2𝑙

Γ

, ∀𝑡 ≥ 0, (26)

where 𝑙 = (1/𝑘min)(𝑑𝜎𝜙 + maxP∈Θ‖P‖𝑑P) + 2(𝜙
2
+

max
𝜔∈Ω tr(𝜔𝑇𝜔) + maxP∈Θ‖P‖2), 𝑘min = min{𝑘1, 𝑘



2
}, and

𝑘


2
= min{𝑘21, 𝑘22, 𝑘23}.

Proof. Consider the Lyapunov function candidate:

𝜐 (𝑡) =
1

2

2

∑

𝑖=1

𝑥
T
𝑖
𝑥𝑖 +

1

2Γ

[�̃�
2
+ tr (�̃�T�̃�) + P̃TP̃] . (27)

First, we prove that 𝜐(𝑡) ≤ 𝑙/Γ. Since the aircraft should
maintain a straight and level flight condition before the cargo
is unlocked [6–11], we have 𝑥𝑖(0) = 0.Then, we can verify that

𝜐 (0) ≤
1

2Γ

(4𝜙
2
+ 4max
𝜔∈Ω

tr (𝜔T𝜔) + 4max
P∈Θ

‖P‖2)

≤
𝑙

Γ

.

(28)

The time derivative of 𝜐(𝑡) along the solutions of (24) and (25)
is

̇𝜐 (𝑡)

= −𝑘1


𝑥1 (𝑡)



2
− 𝑥1 (𝑡) �̃� (𝑡) + 𝑥1 (𝑡)Bx̃2 (𝑡)

− x̃T
2
(𝑡) k2x̃2 (𝑡) − x̃T

2
(𝑡)E (𝑡) P̃ (𝑡)

− x̃T
2
(𝑡)BT

𝑥1 (𝑡) − x̃T
2
(𝑡)G (𝑡) �̃�u (𝑡)

+
1

Γ

[�̃� (𝑡)
̇̂
𝜎 (𝑡) + P̃T

(𝑡)
̇̂P (𝑡) + tr (�̃�T (𝑡) ̇̂

𝜔 (𝑡))]

−
1

Γ

[�̃� (𝑡) �̇� (𝑡) + P̃T
(𝑡) Ṗ (𝑡)]

≤ −𝑘1


𝑥1 (𝑡)



2
− 𝑘



2


x̃2 (𝑡)



2

−
1

Γ

[�̃� (𝑡) �̇� (𝑡) + P̃T
(𝑡) Ṗ (𝑡)]

+
1

Γ

tr [�̃�T (𝑡) ( ̇̂
𝜔 (𝑡) − ΓGT

(𝑡) x̃2 (𝑡) u
T
(𝑡))]

+
1

Γ

[P̃T
(𝑡) (

̇̂P (𝑡) − ΓET
(𝑡) x̃2 (𝑡))]

+
1

Γ

[�̃� (𝑡) (
̇̂
𝜎 (𝑡) − Γ𝑥1 (𝑡))] .

(29)
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Substituting (18) and (21) into (29) leads to

̇𝜐 (𝑡) ≤ −𝑘1


𝑥1 (𝑡)



2
− 𝑘



2


x̃2 (𝑡)



2
−
1

Γ

[�̃� (𝑡) �̇� (𝑡)

+ P̃T
(𝑡) Ṗ (𝑡)] + 1

Γ

tr [�̃�T (𝑡) (Γ

⋅ Proj (�̂� (𝑡) ,GT
(𝑡) x̃2 (𝑡) u

T
(𝑡))

− ΓGT
(𝑡) x̃2 (𝑡) u

T
(𝑡))] +

1

Γ

[P̃T
(𝑡) (Γ

⋅ Proj (P̂ (𝑡) ,ET
(𝑡) x̃2 (𝑡)) − ΓE

T
(𝑡) x̃2 (𝑡))]

+
1

Γ

[�̃� (𝑡) (Γ ⋅ Proj (�̂� (𝑡) , 𝑥1 (𝑡)) − Γ𝑥1 (𝑡))] .

(30)

Using Property A.2 of the projection operator (see the
appendix for details), we can obtain that

�̃�
T
(𝑡) [Γ ⋅ Proj (�̂� (𝑡) ,GT

(𝑡) x̃2 (𝑡) u
T
(𝑡))

− ΓGT
(𝑡) x̃2 (𝑡) u

T
(𝑡)] ≤ 0,

P̃T
(𝑡) [Γ ⋅ Proj (P̂ (𝑡) ,ET

(𝑡) x̃2 (𝑡)) − ΓE
T
(𝑡) x̃2 (𝑡)]

≤ 0,

�̃� (𝑡) [Γ ⋅ Proj (�̂� (𝑡) , 𝑥1 (𝑡)) − Γx̃1 (𝑡)] ≤ 0,

(31)

which implies that

̇𝜐 (𝑡) ≤ −𝑘1


𝑥1 (𝑡)



2
− 𝑘



2


x̃2 (𝑡)



2

−
1

Γ

[�̃� (𝑡) �̇� (𝑡) + P̃T
(𝑡) Ṗ (𝑡)]

≤ 𝑘1


𝑥1 (𝑡)



2
− 𝑘



2


x̃2 (𝑡)



2

+
1

Γ


�̃� (𝑡) �̇� (𝑡) + P̃T

(𝑡) Ṗ (𝑡)

.

(32)

From |�̂�(𝑡)| ≤ 𝜙, P̂(𝑡) ∈ Θ, and Assumption 4, we have

1

Γ


�̃� (𝑡) �̇� (𝑡) + P̃T

(𝑡) Ṗ (𝑡)


≤
2

Γ

(𝑑𝜎𝜙 +max
P∈Θ

‖P‖ 𝑑P) ,
(33)

max
𝑡≥0

(
1

Γ

[�̃�
2
(𝑡) + tr (�̃�T (𝑡) �̃� (𝑡)) + P̃T

(𝑡) P̃ (𝑡)])

≤
4

Γ

(𝜙
2
+max
𝜔∈Ω

tr (𝜔T𝜔) +max
P∈Θ

‖P‖2) .
(34)

If there exists 𝑡 > 0 such that 𝜐(𝑡) > 𝑙/Γ, it then follows from
(27) and (34) that

2

∑

𝑖=1

𝑥
T
𝑖
(𝑡

) 𝑥𝑖 (𝑡


) >

2

𝑘minΓ
(𝑑𝜎𝜙 +max

P∈Θ
‖P‖ 𝑑P) (35)

which further leads to

𝑘1


𝑥1 (𝑡


)


2

+ 𝑘


2


x̃2 (𝑡


)


2

≥ 𝑘min

2

∑

𝑖=1

𝑥
T
𝑖
(𝑡

) 𝑥𝑖 (𝑡


)

>
2

Γ

(𝑑𝜎𝜙 +max
P∈Θ

‖P‖ 𝑑P) .

(36)

Thus, if 𝜐(𝑡) > 𝑙/Γ, then from (32), (33), and (36), we obtain

̇𝜐 (𝑡

) < 0. (37)

Since 𝜐(0) ≤ 𝑙/Γ, 𝜐(𝑡) ≤ 𝑙/Γ holds for every 𝑡 ≥ 0. Notice that
if (1/2)‖𝑥𝑖(𝑡)‖

2
≤ 𝜐(𝑡), then (1/2)‖𝑥𝑖(𝑡)‖

2
≤ 𝑙/Γ. This proves

the bounds in (26).

Remark 7. Such a projection-based adaptation law can bound
the estimated function, and this theoretically guarantees
the robustness of the controller against time-varying distur-
bances and uncertainties. However, the stability properties
of systems using conventional adaptation laws are provable
only under the assumption of constant disturbances and
uncertainties [23, 26].

Remark 8. It follows from (26) that one can prescribe the
arbitrary desired tracking performance by increasing the
adaptation gain Γ. However, a large gain requires more
control power and can also lead to control signal oscillations.
Thus, the adaptation gain needs to be tuned in a trial-and-
error way.

4. Simulation Analysis

To verify the proposed controller design, a 24,955 kg trans-
port aircraft performing an airdrop of cargo weighing
8,000 kg is simulated. The cargo is initially locked at the
CG of the aircraft. The aircraft is trimmed at the following
conditions: 𝐻0 = 82ft, 𝑉0 = 229ft/s, and 𝛼0 = 𝜃0 =

5.9813 deg. with 𝛿𝑝 = 34.1%, 𝛿𝑒 = 0 deg., the horizontal
stabilizer 𝛿ℎ = −5.4093 deg., and the flap 𝛿𝑓 = 25 deg.

To satisfy the requirements of mission completeness and
flight safety, the performance indexes for the heavyweight
airdrop are given as follows [8]: (1) |Δ𝐻| ≤ 45ft and 𝐻min >
20ft; (2) |Δ𝑉| ≤ 0.13𝑉0; (3) |Δ𝜃| ≤ 5 deg. and 𝜃 > 2 deg.; and
(4) 𝛼max ≤ 0.7𝛼s with 𝛼s denoting the stalling AOA.

The performance and robustness of the controller are
first tested in the presence of constant disturbances, actuators
faults, and uncertainties. The following three cases are simu-
lated and compared.

Case 1. In the first case, 𝜎 = 0, P = [0 0 0 0 0 0 0]
T, and

𝜔 = diag(1, 1).

Case 2. In the second case, 𝜎(𝑡) = 0.01 rad/s, P =

15% [𝐶𝐿0 𝐶𝐿𝛼 𝐶𝐷0 𝐶𝐷𝛼 𝐶𝑚0 𝐶𝑚𝛼 𝐶𝑚𝑞]
T, and 𝜔 =

diag(0.8, 0.8).

Case 3. In the third case, 𝜎(𝑡) = −0.01 rad/s, P =

−15% [𝐶𝐿0 𝐶𝐿𝛼 𝐶𝐷0 𝐶𝐷𝛼 𝐶𝑚0 𝐶𝑚𝛼 𝐶𝑚𝑞]
T, and 𝜔 =

diag(0.8, 0.8).
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Figure 2: Aircraft responses of the dropping process in the presence of constant disturbances and uncertainties (Cases 1, 2, and 3).

The compact sets can be conservatively set to 𝜙 = 0.3,Θ =

{b = (𝑏𝑖)7×1 ∈ 𝑅
7×1

: 𝑏𝑖 ∈ [−2, 2]}, andΩ is set as in Remark 5
(in Section 3.1). After experimental tuning, we select 𝑘1 = 8,
k2 = diag(3, 5, 1), and Γ = 20. The outer-loop altitude-hold
PID controller parameters are set as 𝐾𝑝 = 0.05, 𝐾𝐼 = 0.033,
and𝐾𝐷 = 0.009. Figure 2 shows simulation results of the drop
process for these three cases, and we can see that the criteria
for a successful drop have all been met. In all three cases, the
altitude increment is controlled in the range of 2 ft. After the
cargo is dropped out, the altitude and the velocity are well
maintained at the predefined trim position and fully stabi-
lizedwithin 12 seconds. Owing to the loss of heavyweight, the
final AOA and pitch angle become smaller when compared to
that of the trim position, especially in Case 2. The observed
change in value is less than 5 deg., and the final pitch angle
is greater than 2 deg., which meets the mission performance
indexes. The elevator deflection and the throttle opening are
within themagnitude limits, and there is no severe chattering
problem. To summarize, the pitch-up motion of the aircraft
by the release of the cargo is suppressed effectively through
appropriately configuring the elevator and the throttle, even

in the presence of±15% aerodynamic coefficients uncertainty,
±0.01 rad/s pitch rate disturbance, and 20% actuators faults.

Next, we test the performance and robustness of the
control system for the condition of time-varying disturbances
and uncertainties, without retuning the parameters of the
controller. Note that no actuators faults are considered in the
following test (i.e., 𝜔 = diag(1, 1)). The external disturbances
and uncertainty function are set as follows.

Case 4. In this case, 𝜎(𝑡) = 0.01 sin(𝑡) rad/s, P =

[0 0 0 0 0 0 0]
T.

Case 5. In this case, 𝜎 = 0, P(𝑡) =

15%sin(𝑡) [𝐶𝐿0 𝐶𝐿𝛼 𝐶𝐷0 𝐶𝐷𝛼 𝐶𝑚0 𝐶𝑚𝛼 𝐶𝑚𝑞]
T.

Case 6. In this case, 𝜎(𝑡) = 0.01 sin(𝑡) rad/s, P(𝑡) =

15%sin(𝑡) [𝐶𝐿0 𝐶𝐿𝛼 𝐶𝐷0 𝐶𝐷𝛼 𝐶𝑚0 𝐶𝑚𝛼 𝐶𝑚𝑞]
T.

Figure 3 shows that the flight altitude is controlled in
the range of [81 f t, 83 f t], the velocity increment is less than
0.3ft/s, and the pitch angle as well as the AOA converges
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Figure 3: Aircraft responses of the dropping process in the presence of time-varying disturbances and uncertainties (Cases 4, 5, and 6).

to within [4 deg., 5.5 deg.]. The responses of the aircraft
can meet the mission performance indexes for Cases 4–6,
which verifies the robustness of the control method against
time-varying disturbances and uncertainties.

5. Conclusions

This paper focused on the problem of designing an aircraft
controller compatible with heavyweight airdrop operations.
To achieve good stability and robust characteristics, a novel
flight controller combining backstepping control with adap-
tive function approximation was developed for pitch attitude
and velocity control. This method uses projection-based
adaptation strategies to achieve robustness against uncer-
tainties. Lyapunov-based analysis shows that the controller
ensures uniformly bounded steady-state tracking errors
in the presence of constant actuators faults, time-varying
external disturbances, and aerodynamic uncertainties. The
performance of the controller was evaluated in a maximum
load airdrop mission. Simulation results verified that the
controller performance satisfies the airdrop mission perfor-
mance indexes in the presence of pitch rate disturbances,

aerodynamic uncertainties, and actuators faults.The applica-
tion of this research can be used to achieve higher levels of
performance and safety in practical airdrop missions.

Appendix

Projection Operator

The projection operator introduced in [27] bounds the
estimated parameters by definition. We recall the main
definitions from [27].

Definition A.1. Consider a convex compact set with a smooth
boundary given by

Ω𝑐 = {𝜃 ∈ 𝑅
𝑛
| 𝑓 (𝜃) ≤ 𝑐} , 0 ≤ 𝑐 ≤ 1, (A.1)

where 𝑓 : 𝑅𝑛 → 𝑅 is the following smooth convex function:

𝑓 (𝜃) =

𝜃
T
𝜃 − 𝜃

2

max
𝜀
𝜃

, (A.2)

where 𝜃max is the norm bound imposed on the vector 𝜃 and
0 < 𝜀

𝜃
< 1 stands for the projection tolerance bound of
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our choice. For any given y ∈ 𝑅
𝑛, the projection operator is

defined as

Proj (𝜃, y)

=

{
{
{
{

{
{
{
{

{

y, if 𝑓 (𝜃) < 0

y, if 𝑓 (𝜃) ≥ 0, ∇𝑓
Ty ≤ 0

y−g (𝑓, y) , if 𝑓 (𝜃) ≥ 0, ∇𝑓
Ty > 0,

(A.3)

where ∇𝑓(𝜃) is the gradient vector of 𝑓(⋅) evaluated at 𝜃 and

g (𝑓, y) = ∇𝑓∇𝑓
Ty


∇𝑓



2
𝑓 (𝜃) . (A.4)

The properties of the projection operator are given by the
following lemma.

Lemma A.2. Let

𝜃
∗
∈ Ω0 = {𝜃 ∈ 𝑅

𝑛
| 𝑓 (𝜃) ≤ 0} (A.5)

and let the parameter 𝜃(𝑡) evolve according to the following
dynamics:

�̇� (𝑡) = Proj (𝜃 (𝑡) , y) , 𝜃 (𝑡0) ∈ Ω𝑐. (A.6)

Then

𝜃 (𝑡) ∈ Ω𝑐 (A.7)

for all 𝑡 ≥ 𝑡0, and

(𝜃 − 𝜃
∗
)
𝑇
(Proj (𝜃, y) − y) ≤ 0. (A.8)

PropertyA.1. Theprojection operator Proj(𝜃, y)does not alter
y if 𝜃 belongs to the setΩ0. In the set {0 ≤ 𝑓(𝜃) ≤ 1}, Proj(𝜃, y)
subtracts a vector normal to the boundary of Ω𝑐 to obtain a
smooth transformation from the original vector field y to an
inward or tangent vector field for 𝑐 = 1. Therefore, on the
boundary of Ω𝑐, �̇�(𝑡) always points toward the inside of Ω𝑐

and 𝜃(𝑡) never leaves the set Ω𝑐.

Property A.2. From the convexity of function 𝑓(𝜃), it follows
that, for any 𝜃∗ ∈ Ω0 and 𝜃 ∈ Ω𝑐, the inequality

(𝜃 − 𝜃
∗
)
T
∇𝑓 (𝜃) ≤ 0 (A.9)

holds. It then follows from Definition A.1 that

(𝜃 − 𝜃
∗
)
T
(Proj (𝜃, y) − y)

=

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

0, if 𝑓 (𝜃) < 0,

0, if 𝑓 (𝜃) ≥ 0, ∇𝑓
Ty ≤ 0,

(𝜃 − 𝜃
∗
)
T
∇𝑓 (𝜃)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≤0

∇𝑓
Ty⏟⏟⏟⏟⏟⏟⏟⏟⏟

≥0

𝑓 (𝜃)⏟⏟⏟⏟⏟⏟⏟⏟⏟

≥0


∇𝑓



2
, if 𝑓 (𝜃) ≥ 0, ∇𝑓

Ty > 0.

(A.10)
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