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The objective of this paper is concerned with the estimation problem for linear discrete-time stochastic systems with mixed
uncertainties involving random one-step sensor delay, stochastic-bias measurements, and missing measurements. Three Bernoulli
distributed random variables are employed to describe the uncertainties. All the three uncertainties in the measurement have
certain probability of occurrence in the target tracking system. And then, an adaptive Kalman estimation is proposed to deal with
this problem. The adaptive filter gains can be obtained in terms of solutions to a set of recursive discrete-time Riccati equations.
Examples in three scenarios of target tracking are exploited to show the effectiveness of the proposed design approach.

1. Introduction

In practical target tracking, the missing phenomenon of the
sensor measurement often occurs. For example, the meas-
urement value may contain noise only due to the shelter
of the obstacles, a high noise environment, a failure in the
measurement, intermittent sensor failures, high maneuver-
ability of tracked target, and so forth. Thus, the estimation
for systems with missing measurements has received much
attention during the few years. In general, there are two ways
to describe the missing phenomenon. One way is to model
the uncertainty by using a stochastic Bernoulli binary switch-
ing sequence taking on values of 0 and 1 (see, e.g., [1–18]
and the references therein). The suboptimal filtering algo-
rithm [2] in the minimum variance sense with only missing
measurements has been proposed and the robust filter [14] is
designed. In [3] Sinopoli et al. studied the statistical behavior
of the Kalman filter error covariance with varying Kalman
gain with missing measurements and the existence of a
critical value has been shown for the arrival rate of the
observations. The stochastic stability of the extended kalman
filter with missing measurements is analyzed in [8], while
stochastic stability of the unscented kalman filter with miss-
ing measurements is studied in [13]. For benchmarking

the performance of any estimation algorithm with missing
measurements in advance, the modified Cramer-Rao bound
(CRLB) and modified Riccati equation have been studied
in [1, 15–18]. Another way is to model the uncertainty as a
Markovian jumping sequence (see [19–21] and the references
therein). The convergence for semi-Markov chains has been
studied in [20], where the exponential filter is designed in
[21].

For the case of random delayedmeasurements, the delays
will cause performance degradation or instability with tradi-
tional Kalman filters. Therefore, a large volume of literature
has been published on the topic of filtering problem with
delayed measurements; see, for example, [6, 7, 10–12, 22–
27]. Most of the publications assume that the delayed mea-
surements are always deterministic. However, it is not often
the case in actual target tracking, where the time delays in
the measurement may occur in a random way. A stochastic
Bernoulli binary switching sequence taking on values of 0 and
1 has been employed to describe the randomly delayed meas-
urements. In such case, the minimum variance suboptimal
filter [22, 26] and the robust filter with only delayedmeasure-
ments [25] are obtained.

For the case of stochastic-bias measurements, a two-
stage kalman estimator for state estimation in the presence
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of random bias and for tracking maneuvering targets is
given in [28], while an optimal two-stage kalman filter in
the presence of random bias is obtained in [29]. Moreover,
optimal and suboptimal separate-bias kalman estimators for
a stochastic bias are studied in [30]. The biased bearing-
only parameter estimation for bistatic system is studied in
[31] and the Cramer-Rao lower bound for biased bearings-
only maneuvering target tracking is obtained in [32], where
the stochastic-bias phenomenon is described by a stochastic
Bernoulli binary switching sequence taking on values of 0 and
1.

Based on the stochastic parameterized description,
recently, some suboptimal and optimal filtering algorithms
have been proposed for systems with both sensor delays
and missing measurements [10–12, 21, 24, 33, 34]. Adaptive
kalman filtering [10] is designed mixed with random sensor
delays, multiple packet dropouts, andmissingmeasurements.
The problem of robust state estimation for two-dimensional
stochastic time-delay systems [12] is studied with missing
measurements and sensor saturation. An optimal linear filter
for discrete-time systems with randomly delayed and lost
measurements with/without time stamps is studied in [34].
Up to now, the state estimation problem for systems in target
tracking mixed with random one-step delays, stochastic-
bias measurements, and missing measurements is seldom
reported, which almost exist simultaneously in target track-
ing. Motivated by the results above, a new mathematical
model is developed to describe the random one-step delays,
stochastic-bias measurements, and missing measurements
using three Bernoulli distributed random variables taking
on values of 0 and 1. By state augmentation, it is converted
to a stochastic parameterized system. Based on the model,
An adaptive kalman estimation is obtained in target tracking
via projection theory. The rest of the paper is organized
as follows. Section 2 establishes the new system model and
introduces the augment state Kalman estimation to deal
with the proposed problem. Section 3 presents an adaptive
estimation algorithm. In Section 4, simulation results are
analyzed and are used to evaluate the proposed algorithm. A
summary of our conclusions is given in Section 5.

2. System Model and Problem Formulation

Consider the following stochastic-biased discrete time linear
time-varying state-space systemwithmissingmeasurements:

𝑋𝑘+1 = 𝐹𝑘𝑋𝑘 + 𝑤𝑘, 𝑋𝑘 (𝑘 ≤ 0) = 𝑋0,

𝑦𝑘 = 𝑑𝑘𝐻𝑘𝑋𝑘 + 𝑑𝑘 (1 − 𝑙𝑘) 𝜏𝑘 + V𝑘,
(1)

where 𝑋𝑘 ∈ R𝑛 is the state vector, 𝑦𝑘 ∈ R𝑚 is the measured
output, and 𝑤𝑘 ∈ R𝑝 and V𝑘 ∈ R𝑚 are Gaussian random
vectors with zero mean and covariance matrices 𝜎2

𝑤
≥ 0

and 𝜎2V ≥ 0, respectively. The bias vector 𝜏𝑘 ∈ R𝑚 is
treated as a zero mean Gaussian random vector with a priori
known covariance 𝜎2

𝜏
. 𝐹𝑘 and 𝐻𝑘 are constant matrices with

compatible dimensions. The 𝑑𝑘 is a scalar binary Bernoulli
distributed random variable taking values {1, 0} which are
defined as Prob{𝑑𝑘 = 1} = 𝜆 and Prob{𝑑𝑘 = 0} = 1 − 𝜆.

If 𝑑𝑘 = 1, the measurement at time 𝑘 is available; otherwise,
the measurement is missing; that is, the received observation
is only the measurement noise at time 𝑘. The 𝑙𝑘 is a scalar
binary Bernoulli distributed random variable taking values
{1, 0} which are defined as Prob{𝑙𝑘 = 1} = 𝜂 and Prob{𝑙𝑘 =
0} = 1 − 𝜂. If 𝑑𝑘 = 1 and 𝑙𝑘 = 0, the measurement at time
is available and unbiased; else if 𝑑𝑘 = 1 and 𝑙𝑘 = 1, the
measurement at time 𝑘 is available but biased.

Assume that the initial state 𝑋0 satisfies the mean and
covariance conditions:

𝐸 {𝑋0} = 𝜇0, 𝐸 {(𝑋0 − 𝜇0) (𝑋0 − 𝜇0)
T
} = 𝑃0, (2)

where 𝐸{⋅} is the mathematical expectation operator and
the superscript T is the transpose. The initial state 𝜇0 is
uncorrelated with 𝑤𝑘, V𝑘, and 𝜏𝑘.

Next, we will establish a unified model to describe the
mixed uncertainties of missing measurements, one-step
delay, and stochastic biased measurements by Bernoulli dis-
tributed random variables.

Define

𝑋
𝑘+1
= [𝑋

T
𝑘+1
, 𝑋

T
𝑘
, 𝑦

T
𝑘
]
T
. (3)

A compact representation of the system (1) with mixed
uncertainties of missing measurements, one-step delay, and
stochastic-biased measurements can be given in an aug-
mented form as follows:

𝑋
𝑘+1
= 𝐴𝑘𝑋𝑘 + 𝐵𝑘𝑊𝑘 +𝑀𝑘Λ 𝑘,

𝑦𝑘 = 𝐶𝑘𝑋𝑘 + 𝐷𝑘𝑊𝑘 + 𝑁𝑘Λ 𝑘,

(4)

where

𝑊𝑘 = [𝑤
T
𝑘
, VT
𝑘
, VT
𝑘−1
]
T
,

Λ 𝑘 = [𝜏
T
𝑘
, 𝜏

T
𝑘−1
]
T
.

(5)

Further, we have the following statistical information
about𝑊𝑘 and Λ 𝑘:

𝐸 {𝑊𝑘} = 0,

𝐸 {Λ 𝑘} = 0,

𝑃𝑊𝑘
= 𝐸 {𝑊𝑘𝑊

T
𝑘
} = diag {𝜎2

𝑤
, 𝜎
2

V , 𝜎
2

V} ,

𝐸 {V𝑘V
T
𝑟
} = 0, 𝑘 ̸= 𝑟,

𝑃Λ 𝑘
= 𝐸 {Λ 𝑘Λ

T
𝑘
} = diag {𝜎2

𝜏
, 𝜎
2

𝜏
} ,

𝐸 {𝜏𝑘𝜏
T
𝑟
} = 0, 𝑘 ̸= 𝑟.

(6)

Let {𝐴𝑞
𝑘
, 𝐵
𝑞

𝑘
, 𝐶
𝑞

𝑘
, 𝐷
𝑞

𝑘
,𝑀
𝑞

𝑘
, 𝑁
𝑞

𝑘
| 𝑞 = 1, 2, 3} denote the

three models corresponding, respectively, to systems with no
missing measurement, one-step sensor delay, and missing
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measurement. They are defined by the following system
matrices:

(a) current measurement case:

𝐴
1

𝑘
= [

[

𝐹𝑘 0 0

𝐼 0 0

𝐻𝑘 0 0

]

]

, 𝐵
1

𝑘
= [

[

𝐼 0 0

0 0 0

0 𝐼 0

]

]

,

𝑀
1

𝑘
= (1 − 𝑙𝑘)

[

[

0 0

0 0

𝐼 0

]

]

= (1 − 𝑙𝑘)𝑀
1

𝑘
, 𝐶

1

𝑘
= [𝐻𝑘 0 0] ,

𝐷
1

𝑘
= [0 𝐼 0] , 𝑁

1

𝑘
= (1 − 𝑙𝑘) [𝐼 0] = (1 − 𝑙𝑘)𝑁

1

𝑘
,

(7)

(b) one-step random sensor delay case:

𝐴
2

𝑘
= [

[

𝐹𝑘 0 0

𝐼 0 0

0 𝐻𝑘 0

]

]

, 𝐵
2

𝑘
= [

[

𝐼 0 0

0 0 0

0 0 𝐼

]

]

,

𝑀
2

𝑘
= (1 − 𝑙𝑘)

[

[

0 0

0 0

0 𝐼

]

]

= (1 − 𝑙𝑘)𝑀
2

𝑘
,

𝐶
2

𝑘
= [0 𝐻𝑘−1 0] ,

𝐷
2

𝑘
= [0 0 𝐼] , 𝑁

2

𝑘
= (1 − 𝑙𝑘) [0 𝐼] = (1 − 𝑙𝑘)𝑁

2

𝑘
,

(8)

(c) missing measurement case:

𝐴
3

𝑘
= [

[

𝐹𝑘 0 0

𝐼 0 0

0 0 0

]

]

, 𝐵
3

𝑘
= [

[

𝐼 0 0

0 0 0

0 𝐼 0

]

]

,

𝑀
3

𝑘
= (1 − 𝑙𝑘)

[

[

0 0

0 0

0 0

]

]

= (1 − 𝑙𝑘)𝑀
3

𝑘
,

𝐶
3

𝑘
= [0 0 0] , 𝐷

3

𝑘
= [0 0 0] ,

𝑁
3

𝑘
= (1 − 𝑙𝑘) [0 0] = (1 − 𝑙𝑘)𝑁

3

𝑘
.

(9)

The systems {𝐴𝑘, 𝐵𝑘, 𝐶𝑘, 𝐷𝑘,𝑀𝑘, 𝑁𝑘} can be represented
as follows:

{𝐴𝑘, 𝐵𝑘, 𝐶𝑘, 𝐷𝑘,𝑀𝑘, 𝑁𝑘} :=

3

∑

𝑞=1

𝛽𝑞 {𝐴
𝑞

𝑘
, 𝐵
𝑞

𝑘
, 𝐶
𝑞

𝑘
, 𝐷
𝑞

𝑘
,𝑀
𝑞

𝑘
, 𝑁
𝑞

𝑘
} ,

(10)

where 𝛽𝑞 satisfies

3

∑

𝑞=1

𝛽𝑞 = 1, 𝛽𝑞 = 0 or 1. (11)

Assume that we are able to model the real system at time
𝑘 by analyzing the system. The probability of the system
{𝐴
𝑞

𝑘
, 𝐵
𝑞

𝑘
, 𝐶
𝑞

𝑘
, 𝐷
𝑞

𝑘
,𝑀
𝑞

𝑘
, 𝑁
𝑞

𝑘
| 𝑞 = 1, 2, 3} at time 𝑘 is 𝜌𝑞. Obvi-

ously, we have ∑3
𝑞=1
𝜌𝑞 = 1.

Remark 1. In this paper, the uncertain model subject to
missing measurements, one-step delay, and stochastic-biased
measurements is considered; that is, the probabilities of the
stochastic uncertainties are known. Here the missing mea-
surements are replaced by zeros; that is, the measurement
containing only noise is not a valid value.We can examine the
“error detection” bits before sending them to the estimator.
The delay may be much longer and the receiver (estimator
side) cannot know the values without time stamps.Therefore,
we cannot have an exact model {𝐴𝑞

𝑘
, 𝐵
𝑞

𝑘
, 𝐶
𝑞

𝑘
, 𝐷
𝑞

𝑘
,𝑀
𝑞

𝑘
, 𝑁
𝑞

𝑘
|

𝑞 = 1, 2, 3}; that is, the value of 𝑞 is unknown when the
measurement arrives in an estimator. In this case, we need to
know the probability 𝜌𝑞 (𝑞 = 1, 2, 3) of each model {𝐴𝑞

𝑘
, 𝐵
𝑞

𝑘
,

𝐶
𝑞

𝑘
, 𝐷
𝑞

𝑘
,𝑀
𝑞

𝑘
, 𝑁
𝑞

𝑘
| 𝑞 = 1, 2, 3}.

Define

𝑋̂
𝑘+1
= 𝐸 {[𝑋

T
𝑘+1
, 𝑋

T
𝑘
]
T
} . (12)

That is, 𝑋̂
𝑘+1

is an estimator vector of [𝑋T
𝑘+1
, 𝑋

T
𝑘
]
T.

We can construct an estimator of the following structure:

𝑋̂
𝑘+1
= 𝐴𝑘𝑋̂𝑘 + 𝐺𝑘 (𝑦𝑘 − 𝐶

𝑞

𝑘
𝑋̂
𝑘
) . (13)

Define

𝑆 = [𝐼 0] . (14)

From (12), we know that 𝑋̂
𝑘+1

is an estimate vector for
[𝑋

T
𝑘+1
, 𝑋

T
𝑘
]
T. Therefore, it is obvious that we can choose 𝐴̂

𝑘

and 𝐶̂𝑞
𝑘
as follows:

𝐴𝑘 = [
𝐹𝑘 0

𝐼 0
] , 𝐶

𝑞

𝑘
= 𝐶
𝑞

𝑘
𝑆
T
. (15)

The state estimation error covariance is defined by

𝑃𝑒𝑘
= 𝐸 {𝑒𝑘𝑒

T
𝑘
} , (16)

where

𝑒𝑘 = 𝑋𝑘 − 𝑋𝑘. (17)

In order to obtain the optimal 𝐺𝑘, we can minimize 𝑃𝑒𝑘 .

3. Estimation Algorithm Mixed with One-Step
Sensor Delays, Missing Measurements, and
Stochastic-Biased Measurements

In this section, based on the stochastic system models
{𝐴
𝑞

𝑘
, 𝐵
𝑞

𝑘
, 𝐶
𝑞

𝑘
, 𝐷
𝑞

𝑘
,𝑀
𝑞

𝑘
, 𝑁
𝑞

𝑘
| 𝑞 = 1, 2, 3}, we will derive the

optimal 𝐺𝑘 before giving one-step predictions.
From (3) and (14), we can readily have that

𝑆𝑋
𝑘
= [𝑋

T
𝑘
, 𝑋

T
𝑘−1
]
T
. (18)

Define

𝜉𝑘+1 = 𝑆𝑋𝑘+1 − 𝑋̂𝑘+1. (19)
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Substituting (4) and (13) into (19) yields

𝜉𝑘+1 =

3

∑

𝑞=1

𝛽𝑞 {𝑆𝐴
𝑞

𝑘
𝑋
𝑘
+ (𝐴𝑘 − 𝐺𝑘𝐶

𝑞

𝑘
)𝑋
𝑘

+ (𝑆𝐵
𝑞

𝑘
− 𝐺𝑘𝐷

𝑞

𝑘
)𝑊𝑘 + (𝑆𝑀

𝑞

𝑘
− 𝐺𝑘𝑁

𝑞

𝑘
) Λ 𝑘

−𝐺𝑘𝐶
𝑞

𝑘
𝑋
𝑘
} .

(20)
Observing (7)–(10) and (14), we have the following

results:
𝑆𝐴
𝑞

𝑘
𝑋
𝑘
= 𝐴𝑘𝑆𝑋𝑘,

𝐶
𝑞

𝑘
𝑋
𝑘
= 𝐶
𝑞

𝑘
𝑆
T
𝑆𝑋
𝑘
,

𝐶
𝑞

𝑘
𝑋
𝑘
= 𝐶
𝑞

𝑘
𝑆𝑋
𝑘
.

(21)

Furthermore, substituting (21) into (20), we can obtain
the following equation:

𝜉𝑘+1 =

3

∑

𝑞=1

𝛽𝑞 {(𝐴𝑘 − 𝐺𝑘𝐶
𝑞

𝑘
) 𝜉𝑘

+ (𝑆𝐵
𝑞

𝑘
− 𝐺𝑘𝐷

𝑞

𝑘
)𝑊𝑘 + (𝑆𝑀

𝑞

𝑘
− 𝐺𝑘𝑁

𝑞

𝑘
) Λ 𝑘

+𝐺𝑘 (𝐶
𝑞

𝑘
𝑆
T
− 𝐶
𝑞

𝑘
) 𝑆𝑋
𝑘
} .

(22)

Noting that 𝐶𝑞
𝑘
= 𝐶
𝑞

𝑘
𝑆
T, (22) can be rewritten as

𝜉𝑘+1 =

3

∑

𝑞=1

𝛽𝑞 {(𝐴𝑘 − 𝐺𝑘𝐶
𝑞

𝑘
) 𝜉𝑘 + (𝑆𝐵

𝑞

𝑘
− 𝐺𝑘𝐷

𝑞

𝑘
)𝑊𝑘

+ (𝑆𝑀
𝑞

𝑘
− 𝐺𝑘𝑁

𝑞

𝑘
) Λ 𝑘} .

(23)

Using the statistics of 𝑊𝑘 and Λ 𝑘 in (6), the covariance
matrix of 𝜉𝑘 can be computed by

𝑃𝜉𝑘+1
=

3

∑

𝑞=1

𝛽𝑞 {(𝐴𝑘 − 𝐺𝑘𝐶
𝑞

𝑘
) 𝑃𝜉𝑘
(𝐴𝑘 − 𝐺𝑘𝐶

𝑞

𝑘
)
T

+ (𝑆𝐵
𝑞

𝑘
− 𝐺𝑘𝐷

𝑞

𝑘
) 𝑃𝑊𝑘

(𝑆𝐵
𝑞

𝑘
− 𝐺𝑘𝐷

𝑞

𝑘
)
T

+ (1 − 𝜂) (𝑆𝑀
𝑞

𝑘
− 𝐺𝑘𝑁

𝑞

𝑘
)

× 𝑃Λ 𝑘
(𝑆𝑀
𝑞

𝑘
− 𝐺𝑘𝑁

𝑞

𝑘
)
T
} .

(24)

From (17) and (19), we can easily have
𝑒𝑘+1 = Φ𝜉𝑘+1, Φ = [𝐼 0] . (25)

Therefore, the problem of minimizing 𝑃𝑒𝑘 is equivalent to

min
𝐺𝑘

𝐸 {Tr {Φ𝑃𝜉𝑘+1Φ
T
}} subject to (24) . (26)

Let 𝐾𝑘 = Φ𝐺𝑘 and left- and right-multiply (24) by Φ and
Φ

T, respectively. The estimation error covariance matrix can
be computed by

𝑃𝑒𝑘+1
=

3

∑

𝑞=1

𝛽𝑞 {(Φ𝐴𝑘 − 𝐾𝑘𝐶
𝑞

𝑘
) 𝑃𝜉𝑘+1

(Φ𝐴𝑘 − 𝐾𝑘𝐶
𝑞

𝑘
)
T
}

+

3

∑

𝑞=1

𝛽𝑞 {(Φ𝑆𝐵
𝑞

𝑘
− 𝐾𝑘𝐷

𝑞

𝑘
) 𝑃𝑊𝑘

(Φ𝑆𝐵
𝑞

𝑘
− 𝐾𝑘𝐷

𝑞

𝑘
)
T
}

+

3

∑

𝑞=1

𝛽𝑞 { (1 − 𝜂) (Φ𝑆𝑀
𝑞

𝑘
− 𝐾𝑘𝑁

𝑞

𝑘
)

× 𝑃Λ 𝑘
(Φ𝑆𝑀

𝑞

𝑘
− 𝐾𝑘𝑁

𝑞

𝑘
)
T
} .

(27)

Differentiate 𝐸{Tr𝑃𝑒𝑘+1} with respect to 𝐾𝑘 and set the
derivative to zero. We can obtain the optimal𝐾𝑘 as follows:

𝐾𝑘 = [

3

∑

𝑞=1

𝛽𝑞Φ𝐴𝑘𝑃𝜉𝑘+1
(𝐶
𝑞

𝑘
)
T
+

3

∑

𝑞=1

𝛽𝑞Φ𝑆𝐵
𝑞

𝑘
𝑃𝑊1
𝑘

(𝐷
𝑞

𝑘
)
T

+

3

∑

𝑞=1

𝛽𝑞 (1 − 𝜂)Φ𝑆𝑀
𝑞

𝑘
𝑃Λ 𝑘
(𝑁
𝑞

𝑘
)
T
]

× [

3

∑

𝑞=1

𝛽𝑞𝐶
𝑞

𝑘
𝑃𝜉𝑘+1
(𝐶
𝑞

𝑘
)
T
+

3

∑

𝑞=1

𝛽𝑞𝐷
𝑞

𝑘
𝑃𝑊𝑘
(𝐷
𝑞

𝑘
)
T

+

3

∑

𝑞=1

𝛽𝑞 (1 − 𝜂)𝑁
𝑞

𝑘
𝑃Λ 𝑘
(𝑁
𝑞

𝑘
)
T
]

−1

.

(28)

Therefore the covariance matrices of the estimation error
for any (i.e., not necessarily optimal) 𝐾𝑘 can be computed
by a set of recursive discrete-time Riccati-like equations. The
corresponding optimal 𝐺𝑘 can be computed by

𝐺𝑘 = [𝐾
T
𝑘
0]

T
. (29)

Let 𝐴𝑘 = 𝐼, 𝐵
𝑞

𝑘
= 0, and 𝐿𝑘 = 𝐾𝑘. We may obtain the

relevant formula for measurement update as follows:

𝑃𝑒𝑘+1|𝑘+1
=

3

∑

𝑞=1

𝛽𝑞 {(Φ −𝑀𝑘𝐶
𝑞

𝑘
) 𝑃𝜉𝑘+1

(Φ −𝑀𝑘𝐶
𝑞

𝑘
)
T

+ 𝐿𝑘𝐷
𝑞

𝑘
𝑃𝑊𝑘
(𝐷
𝑞

𝑘
)
T
𝑀

T
𝑘
}

+ (1 − 𝜂)

3

∑

𝑞=1

𝛽𝑞𝐿𝑘𝑁
𝑞

𝑘
𝑃Λ 𝑘
(𝑁
𝑞

𝑘
)
T
,

𝐿𝑘 = [

3

∑

𝑞=1

𝛽𝑞Φ𝑃𝜉𝑘+1
(𝐶
𝑞

𝑘
)
T
+ (1 − 𝜂)Φ𝑆𝑀

𝑞

𝑘
𝑃Λ 𝑘
(𝑁
𝑞

𝑘
)
T
]

× [

3

∑

𝑞=1

𝛽𝑞𝐶
𝑞

𝑘
𝑃𝜉𝑘+1
(𝐶
𝑞

𝑘
)
T
+

3

∑

𝑞=1

𝛽𝑞𝐷
𝑞

𝑘
𝑃𝑊𝑘
(𝐷
𝑞

𝑘
)
T

+

3

∑

𝑞=1

𝛽𝑞 (1 − 𝜂)𝑁
𝑞

𝑘
𝑃Λ 𝑘
(𝑁
𝑞

𝑘
)
T
]

−1

.

(30)

We may propose the following adaptive filtering scheme.
Consider the conceptual algorithm.
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Step 1. The required input parameters are

𝐹𝑘, 𝐻𝑘, 𝜎
2

𝑤
, 𝜎
2

V , 𝜎
2

𝜏
, 𝑃0, 𝜌𝑞 (𝑞 = 1, 2, 3) , 𝐸 {𝑋0} = 𝜇0. (31)

Step 2. Initialization is as follows:

{𝐴
𝑞

𝑘
, 𝐵
𝑞

𝑘
, 𝐶
𝑞

𝑘
, 𝐷
𝑞

𝑘
,𝑀
𝑞

𝑘
, 𝑁
𝑞

𝑘
| 𝑞 = 1, 2, 3} ,

𝑃𝑊𝑘
= diag {𝜎2

𝑤
, 𝜎
2

V , 𝜎
2

V} ,

𝑃Λ 𝑘
= diag {𝜎2

𝜏
, 𝜎
2

𝜏
} ,

𝑃𝜉0
= [
𝑃0 𝑃0

𝑃0 𝑃0
] ,

(32)

where we have assumed 𝑋−1 = 𝑋0 to derive the above
initialization.

Perform the following equations:

𝑋̂
0
= 𝐸 {[𝑋

T
0
𝑋

T
0
]
T
} = [𝜇

T
0
𝜇
T
0
]
T
,

𝐶0 =

3

∑

𝑞=1

𝜌
𝑞

0
𝐶
𝑞

0
𝑆
T
,

𝐾0 = (

3

∑

𝑞=1

𝛽
𝑞

0
Φ𝑃𝜉0
(𝐶
𝑞

0
)
T
)

× (

3

∑

𝑞=1

𝛽
𝑞

0
{𝐶
𝑞

0
𝑃𝜉0
(𝐶
𝑞

0
)
T
+ 𝐷
𝑞

0
𝑃𝑊0
(𝐷
𝑞

0
)
T

+ (1 − 𝜂)𝑁
𝑞

0
𝑃Λ 0
(𝑁
𝑞

0
)
T
})

−1

,

𝑋0|0 = 𝑋0 + 𝐾0 (𝑦0 − 𝐶0𝑋̂0) ,

𝑃𝑒0|0
=

3

∑

𝑞=1

𝜌
𝑞

0
(𝐼 − 𝐾0𝐶

𝑞

0
) 𝑃𝜉0
(𝐼 − 𝐾0𝐶

𝑞

0
)
T

×

3

∑

𝑞=1

𝜌
𝑞

𝑘
𝐾0𝐷
𝑞

0
𝑃𝑊0
(𝐷
𝑞

0
)
T
𝐾

T
0

+

3

∑

𝑞=1

𝜌
𝑞

0
(1 − 𝜂)𝐾0𝑁

𝑞

0
𝑃Λ 0
(𝑁
𝑞

0
)
T
𝐾

T
0
.

(33)
Step 3. Consider the state prediction

𝑋𝑘+1 = 𝐹𝑋𝑘|𝑘,

𝑋̂
𝑘+1
= [𝑋

T
𝑘+1
, 𝑋

T
𝑘
]
T (34)

and the prediction covariance computation

𝑃𝜉𝑘+1
= 𝐴𝑘𝑃𝜉𝑘|𝑘

𝐴
T
𝑘

+

3

∑

𝑞=1

𝛽
𝑞

𝑘
{𝑆𝐵
𝑞

𝑘
𝑃𝑊𝑘
(𝐵
𝑞

𝑘
)
T
𝑆
T

+ (1 − 𝜂) 𝑆𝑀
𝑞

𝑘
𝑃Λ 𝑘
(𝑀
𝑞

𝑘
)
T
𝑆
T
} .

(35)

Step 4. Innovation update is as follows.

If 𝑑𝑘 = 0, then𝐾𝑘 = 0. Else if 𝑑𝑘 = 1, then

𝐾𝑘 = (

3

∑

𝑞=1

𝛽
𝑞

𝑘
Φ𝑃𝜉𝑘+1

(𝐶
𝑞

𝑘
)
T
)

× (

3

∑

𝑞=1

𝛽
𝑞

𝑘
{𝐶
𝑞

𝑘
𝑃𝜉𝑘+1
(𝐶
𝑞

𝑘
)
T
+ 𝐷
𝑞

𝑘
𝑃𝑊𝑘
(𝐷
𝑞

𝑘
)
T

+ (1 − 𝜂)𝑁
𝑞

𝑘
𝑃Λ 𝑘
(𝑁
𝑞

𝑘
)
T
})

−1

.

(36)

Step 5. Update 𝑘 = 𝑘 + 1:

𝑋𝑘|𝑘 = 𝑋𝑘 + 𝐾𝑘 (𝑦𝑘 − 𝐶𝑘𝑋̂𝑘) . (37)

Considering error covariance matrix update, perform the
following equations:

𝐺𝑘 = [𝐾
T
𝑘
0]

T
,

𝑃𝜉𝑘+1|𝑘+1
=

3

∑

𝑞=1

𝛽
𝑞

𝑘
{(𝐼 − 𝐺𝑘𝐶

𝑞

𝑘
) 𝑃𝜉𝑘
(𝐼 − 𝐺𝑘𝐶

𝑞

𝑘
)
T

+ 𝐺𝑘𝐷
𝑞

𝑘
𝑃𝑊𝑘
(𝐷
𝑞

𝑘
)
T
𝐺
T
𝑘

+ (1 − 𝜂)𝐺𝑘𝑁
𝑞

𝑘
𝑃Λ 𝑘
(𝑁
𝑞

𝑘
)
T
𝐺
T
𝑘
} .

(38)

Remark 2. We consider that the model {𝐴𝑞
𝑘
, 𝐵
𝑞

𝑘
, 𝐶
𝑞

𝑘
, 𝐷
𝑞

𝑘
,𝑀
𝑞

𝑘
,

𝑁
𝑞

𝑘
| 𝑞 = 1, 2, 3} is unknown when the measurement arr-

ives in an estimator. In this case, we need to know the
probability 𝜌𝑞 (𝑞 = 1, 2, 3) of each model. However, we
can get an exact model {𝐴𝑞

𝑘
, 𝐵
𝑞

𝑘
, 𝐶
𝑞

𝑘
, 𝐷
𝑞

𝑘
,𝑀
𝑞

𝑘
, 𝑁
𝑞

𝑘
| 𝑞 =

1, 2, 3} when the measurement with time stamp arrives in an
estimator, in which case, we may have an improved adaptive
algorithm with time stamp.

4. Simulation Results

In this section, Monte Carlo simulations were conducted to
verify the performance of the algorithms in three scenarios of
target tracking: uniform rectilinearmotion scenario, uniform
circular motion scenario, and uniformly accelerated motion
scenario. A total of 100 runs were executed in each case.

(A) Uniform Rectilinear Motion Scenario. Consider the sys-
tem (1) with parameters

𝐹𝑘 = 𝐼3×3 ⊗ [
1 𝑇

0 1
] ,

𝜎
2

𝑤
= 𝐼3×3 ⊗

[
[
[

[

𝑇
3

3

𝑇
2

2

𝑇
2

2
𝑇

]
]
]

]

, 𝜎
2

V = 25m
2
, 𝜎

2

𝜏
= 25m2,

(39)

where 𝑇 is the sampling period, ⊗ is the Kronecker product,
and 𝐼3×3 denotes the unity matrix of 3 orders.

Assume that the initial state of target is𝑋0 = [−8000, 200,
0, 500, 0, 0, 1000, 0, 0]

T, the sampling period is set to be
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Figure 1: Comparison of the RMSEs for the proposed algorithm with different 𝜌𝑞 (𝑞 = 1, 2, 3): (a) position RMSE; (b) velocity RMSE.

𝑇 = 0.2 s, the probability of stochastic-bias measurement
is 1 − 𝜂 = 0.1. The simulation results are obtained by the
proposed adaptive estimation algorithm in Section 4. The
root mean square error (RMSE) for the states of position and
velocity with different 𝜌𝑞 (𝑞 = 1, 2, 3) is given in Figures 1–
4. Seen from Figures 1–4, the proposed adaptive estimation
algorithm is effective. Besides, it can be seen from Figure 1
that the tracking performance is better with higher proba-
bility when the delay probability is constant, where the black
curves denote position and velocity RMSEs, respectively, with
detection probability 𝜌1 = 0.8, delay probability 𝜌2 = 0.1,
and the probability of missing probability 𝜌3 = 0.1, the green
curve with 𝜌1 = 0.7, 𝜌2 = 0.1, and 𝜌3 = 0.2, and the red
curve with 𝜌1 = 0.6, 𝜌2 = 0.1, and 𝜌3 = 0.3. Figure 2 gives
comparison curves of position RMSE and velocity RMSE,
respectively, where the black curves denote position RMSE
with 𝜌1 = 0.8, 𝜌2 = 0.1, and 𝜌3 = 0.1, the green curve with
𝜌1 = 0.8, 𝜌2 = 0.05, and 𝜌3 = 0.15, and the red curve with
𝜌1 = 0.8, 𝜌2 = 0.15, and 𝜌3 = 0.05. FromFigure 3, it is obvious
that the estimation performance is better with lower missing
measurement when the detection probability is constant.
From Figure 4, we can see that the estimation algorithm has
worse performance with a higher delay probability when the
probability of missing measurement is constant.

Next, we consider the tracking performances with
stochastic-bias probability 1 − 𝜂. Figure 4 gives comparison
curves of position RMSE and velocity RMSE with 𝜌1 = 0.8,
𝜌2 = 0.1, and 𝜌3 = 0.1, respectively, where the black curves
denote position RMSE and velocity RMSE with 1 − 𝜂 = 0.1,

the green curve with 1 − 𝜂 = 0.5, and the red curve with
1 − 𝜂 = 0.8. From Figure 4, we can obtain that the estimation
performance is better with lower probability of stochastic-
bias measurement.

To further demonstrate the effectiveness of our pro-
posed algorithm, simulation scenarios of uniform rectilinear
motion and uniform accelerated motion are given in the
following.

(B) Uniform Rectilinear Motion Scenario. Consider the sys-
tem (1) with parameters.

𝐹𝑘 = 𝐼3×3 ⊗

[
[
[
[
[
[

[

1
sin (𝜔𝑇)
𝜔

[1 − cos (𝜔𝑇)]
𝜔2

0 cos (𝜔𝑇) sin (𝜔𝑇)
𝜔

0 −𝜔 sin (𝜔𝑇) cos (𝜔𝑇)

]
]
]
]
]
]

]

,

𝜎
2

𝑤
= 𝐼3×3 ⊗ 𝑆, 𝜎

2

V = 25m
2
, 𝜎

2

𝜏
= 25m2,

𝑆 = [

[

𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

]

]

,

𝐴11 = 6𝜔𝑇 − 8 sin (𝜔𝑇) +
sin (2𝜔𝑇)
4𝜔5

,

𝐴12 =
[2 sin (𝜔𝑇/2)]4

𝜔4
,
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Figure 2: Comparison of the RMSEs for the proposed algorithm with different 𝜌𝑞 (𝑞 = 1, 2, 3): (a) position RMSE; (b) velocity RMSE.
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Figure 3: Comparison of the RMSEs for the proposed algorithm with different 𝜌𝑞 (𝑞 = 1, 2, 3): (a) position RMSE; (b) velocity RMSE.
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Figure 4: Comparison of the RMSEs for the proposed algorithm with different 𝜌𝑞 (𝑞 = 1, 2, 3): (a) position RMSE; (b) velocity RMSE.

𝐴13 =
[−2𝜔𝑇 + 4 sin (𝜔𝑇) − sin (2𝜔𝑇)]

4𝜔3
,

𝐴21 =
2[sin (𝜔𝑇/2)]4

𝜔4
,

𝐴22 =
[2𝜔𝑇 − sin (2𝜔𝑇)]

4𝜔3
,

𝐴23 =
[sin (𝜔𝑇)]2

2𝜔2
,

𝐴31 =
[−2𝜔𝑇 + 4 sin (𝜔𝑇) − sin (2𝜔𝑇)]

4𝜔3
,

𝐴32 =
[sin (𝜔𝑇)]2

2𝜔2
,

𝐴33 =
[2𝜔𝑇 + sin (2𝜔𝑇)]

4𝜔
,

(40)

where 𝑇 is the sampling period, ⊗ is the Kronecker product,
and 𝐼3×3 denotes the unity matrix of 3 orders.

Assume that the initial state of target is 𝑋0 = [−5000,
200, −1, 500, 0, 0, 1000, 0, 0]

T, the sampling period is set to
be 𝑇 = 0.2 s, the angular velocity is set to be 𝜔 =

0.05 rad/s, and the probability of stochastic-bias measure-
ment is 1 − 𝜂 = 0.1. The simulation results can be obtained as
in Figures 5, 6, 7, and 8 in this scenario.

(C) Uniform Accelerated Motion Scenario. Consider the sys-
tem (1) with parameters

𝐹𝑘 = 𝐼3×3 ⊗

[
[
[
[

[

1 𝑇
𝑇
2

2

0 1 𝑇

0 0 1

]
]
]
]

]

,

𝜎
2

𝑤
= 𝐼3×3 ⊗

[
[
[
[
[
[
[
[
[

[

𝑇
5

20

𝑇
4

8

𝑇
3

6

𝑇
4

8

𝑇
3

3

𝑇
2

2

𝑇
2

2

𝑇
2

2
𝑇

]
]
]
]
]
]
]
]
]

]

,

𝜎
2

V = 25m
2
, 𝜎

2

𝜏
= 25m2,

(41)

where 𝑇 is the sampling period, ⊗ is the Kronecker product,
and 𝐼3×3 denotes the unity matrix of 3 orders. Assume that
the initial state of target is 𝑋0 = [−5000, 100, −5, 500, 0, 0,
1000, 0, 0]

T, the sampling period is set to be 𝑇 = 0.2 s, and
the probability of stochastic-bias measurement is 1 − 𝜂 = 0.1.
The simulation results can be obtained as in Figures 9, 10, 11,
and 12 in this scenario.

From Figures 5–8 in scenario B and Figures 9–12 in sce-
nario C, it is clear that the proposed algorithm is effective. On
the other hand, the estimation performance can be influenced
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Figure 5: Comparison of the RMSEs for the proposed algorithm with different 𝜌𝑞 (𝑞 = 1, 2, 3): (a) position RMSE; (b) velocity RMSE.
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Figure 6: Comparison of the RMSEs for the proposed algorithm with different 𝜌𝑞 (𝑞 = 1, 2, 3): (a) position RMSE; (b) velocity RMSE.
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Figure 7: Comparison of the RMSEs for the proposed algorithm with different 𝜌𝑞 (𝑞 = 1, 2, 3): (a) position RMSE; (b) velocity RMSE.
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Figure 8: Comparison of the RMSEs for the proposed algorithm with different 𝜌𝑞 (𝑞 = 1, 2, 3): (a) position RMSE; (b) velocity RMSE.
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Figure 9: Comparison of the RMSEs for the proposed algorithm with different 𝜌
𝑞
(𝑞 = 1, 2, 3): (a) position RMSE; (b) velocity RMSE.
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Figure 10: Comparison of the RMSEs for the proposed algorithm with different 𝜌𝑞 (𝑞 = 1, 2, 3): (a) position RMSE; (b) velocity RMSE.
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Figure 11: Comparison of the RMSEs for the proposed algorithm with different 𝜌𝑞 (𝑞 = 1, 2, 3): (a) position RMSE; (b) velocity RMSE.
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Figure 12: Comparison of the RMSEs for the proposed algorithm with different 𝜌𝑞 (𝑞 = 1, 2, 3): (a) position RMSE; (b) velocity RMSE.

by detection probability, one-step delay probability, missing
probability, and stochastic-bias probability. Moreover, we
have the corresponding results in scenarios B and C as well
as in scenario A.

5. Conclusions

This paper presented an adaptive estimation algorithm in
target tracking mixed with one-step delayed measurements,
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stochastic-bias measurements, and missing measurements.
The contributions of this paper are as follows. First, the
stochastic-bias measurement was incorporated into the pro-
posed adaptive estimation algorithm. Second, the adaptive
estimation algorithm mixed with one-step delayed measure-
ments, stochastic-bias measurements, and missing measure-
ments was implemented by augmenting the state vector.
Examples and simulations are given to demonstrate the
performances of the designed estimator. Through Monte
Carlo simulations, the proposed algorithm was shown to
be effective. Besides that, all the probabilities of missing
measurements, stochastic-bias measurements, and one-step
randomly delayed measurements have an influence on the
estimation performance. Moreover, the estimation perfor-
mance can be influenced by stochastic-bias probability. In
this paper, we have only considered one-step sensor delays;
furthermore, we can obtain the corresponding approach with
multiple-step sensor delays by enlarging the state vectors.
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