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Using the base forces as fundamental variables to describe the stress state and the displacement gradients that are the conjugate
variables of the base forces to describe the deformation state for the two-dimensional elasticity problems, a 4-mid-node planemodel
of base force element method (BFEM) based on complementary energy principle is proposed. In this paper, the complementary
energy of an element of the BFEM is constructed by using the base forces. The equilibrium conditions are released by the Lagrange
multiplier method, and amodified complementary energy principle described by the base forces is obtained.The formulation of the
4-mid-node plane element of the BFEM is derived by assuming that the stress is uniformly distributed on each edge of the plane
elements. A procedure of the BFEM on complementary energy principle is developed using MATLAB language. The numerical
results of examples show that this model of the BFEM has high precision and is free frommesh sensitivity. This model shows good
performances.

1. Introduction

The finite element method based on the assumed displace-
ment field has become a method of choice for the solution
of a wide variety of problems in structural mechanics. The
advantages of the finite element method include the efficient
and accurate modeling of domains with complex geometric
configurations and varying material properties and the capa-
bility of accurately analyzing both geometrically and materi-
ally nonlinear problems. Shortcomings of the displacement
model of FEM have been observed in the analyses of certain
classes of problems, such as the large deformation, the treat-
ment of nearly incompressible materials, the bending of thin
plates, and the moving boundary problems. The develop-
ments of finite elements and corresponding formulations
have been a subject of extensive research, which have been
summarized in textbooks by Zienkiewicz [1], Bathe [2, 3], and
Cook [4].

The attempts to extend and generalize the complementary
energy methods that have been proposed over the last almost
50 years for small deformation solid mechanics problems
have led to the development of several complementary energy

principles and corresponding finite element models for non-
linear elastic solid/structural mechanics problems [5–7].

Recently, based on the complementary energy principle,
a hybrid stress-function element method is proposed by Fu
et al. [8] and Cen et al. [9–12] using the mesh distortion
immune technique for developing plane 8-node elements. It
starts from the principle of minimum complementary energy
and employs the fundamental analytical solutions of the Airy
stress function as the trial functions (analytical trial function
method). So as long as the element edges keep straight, the
resulting 8-node element HSF-Q8 can also produce the exact
solutions for quadric displacement fields, and even the ele-
ment shape degenerates into triangle and concave quadran-
gle.

A new concept was introduced by Gao [13], who used the
concept of the “base forces” to replace various stress tensors
for the description of the stress state at a point. These
base forces can be directly obtained from the strain energy.
For large deformation problems, when the base forces were
adopted, the derivation of basic formulae was simplified by
Gao [14, 15]. Based on the concept of the base forces, precise
expressions for stiffness and compliancematrices for the FEM
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were obtained by Gao [13]. The applications of the stiffness
matrix to the plane problems of elasticity using the four-edge
plane element and the polygonal element were researched by
Peng et al. [16]. Using the concept of base forces as state vari-
ables, a three-dimensional formulation of base force element
method (BFEM) on complementary energy principle was
proposed by Peng and Liu [17] for geometrically nonlinear
problems. And the new finite element method based on the
concept of base forces was called the base force element
method (BFEM) by Peng and Liu [17]. A three-dimensional
model of base force elementmethod (BFEM) on complemen-
tary energy principle was proposed by Liu and Peng [18] for
elasticity problems. The application of 2D base force element
method (BFEM) to geometrically nonlinear analysis was pro-
posed by Peng et al. [19].

The objective of the present research is to present a new
two-dimensional formulation of the base forces element
method (BFEM) for elasticity problems. A 4-mid-node plane
element model of the BFEM for elasticity problems will be
derived. In the present formulations of the BFEM, the “base
forces” are treated as unknown variables, and the basic equa-
tions are constructed by means of the complementary energy
principle. The element equilibrium conditions are fulfilled
using the Lagrange multiplier method. Explicit expressions
for the control equations are provided, and a procedure of the
presentmethod is developed.Anumber of elasticity problems
are solved using the present formulation, and the results are
compared with corresponding analytical solutions.

2. Basic Equations

Consider a two-dimensional domain of solid medium, let x𝛼
(𝛼 = 1, 2) denote the Lagrangian coordinate system, where P
and Q are the position vectors of a material point before and
after deformation, respectively. Two triads for original and
current configurations can be defined as

P
𝛼
=

𝜕P
𝜕𝑥
𝛼
, Q

𝛼
=

𝜕Q
𝜕𝑥
𝛼
. (1)

Let u denote the displacement of a point; then

u = Q − P. (2)

The gradient of displacement u
𝛼
can be written as

u
𝛼
=

𝜕u
𝜕𝑥
𝛼
= Q
𝛼
− P
𝛼
. (3)

In order to describe the stress state at a pointQ, a parallel-
ogram with the edges d𝑥1Q1 and d𝑥

2Q
2
is shown in Figure 1.

Define

T𝛼 = dT𝛼

d𝑥𝛼+1
, d𝑥𝛼 󳨀→ 0, (4)

where 3 = 1 for indexes. Quantities T𝛼 (𝛼 = 1, 2) are called
the base forces at pointQ in the two-dimensional coordinate
system 𝑥

𝛼.
The T𝛼 and u

𝛼
can directly be expressed by strain energy.

Thus, u
𝛼
is just the conjugate variable of T𝛼. It can be seen

that the mechanics problem can be completely established by
means of T𝛼 and u

𝛼
.
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Figure 1: Base forces on plane problem.

According to the definitions of Cauchy stress tensors, the
relation between the base forces and Cauchy stress tensors
can be given as

𝜎 = 𝐴
−1

𝑄
T𝛼 ⊗Q

𝛼
, (5)

where ⊗ is the dyadic symbol, the summation rule is implied,
and 𝐴

𝑄
is the current base area

𝐴
𝑄
=
󵄨
󵄨
󵄨
󵄨
Q
1
×Q
2

󵄨
󵄨
󵄨
󵄨
. (6)

For the isotropic material, the complementary energy
density can be expressed as follows:

𝑊C = (2𝐸)
−1

[(1 + ]) 𝐽
2𝑇
− ]𝐽
2

1𝑇
] (7)

in which 𝐸 is Young’s modulus, ] is Poisson’s ratio, and 𝐽
1𝑇

and 𝐽
2𝑇

are the invariants of T𝛼, so

𝐽
1𝑇
= 𝐴
−1

𝑃
T𝛼 ⋅ P

𝛼
, 𝐽

2𝑇
= (𝐴
2

𝑃
)

−1

(T𝛼 ⋅ T𝛽) 𝑝
𝛼𝛽
, (8)

where𝐴
𝑃
is the original base area,𝑝

𝛼𝛽
is ametric tensor in the

original configurations, and there are the following relations:
𝐴
𝑃
=
󵄨
󵄨
󵄨
󵄨
P
1
× P
2

󵄨
󵄨
󵄨
󵄨
,

𝑝
𝛼𝛽
= P
𝛼
⋅ P
𝛽
.

(9)

3. Compliance Matrix

Now, consider a 4-mid-node plane element as shown
in Figure 2. Let 𝐼, 𝐽, 𝐾, and 𝐿 denote its edges and T𝐼, T𝐽,
T𝐾, and T𝐿 the force vectors acting on each of the edges.

Substituting (8) into (7), the complementary energy of an
element can be reduced as follows:

𝑊
𝑒

𝐶
=

1 + ]

2𝐸𝐴

[(T𝐼 ⋅ T𝐽) 𝑝
𝐼𝐽
−

]

1 + ]
(T𝐼 ⋅ PI)

2

] , (10)

where 𝐴 is the original area of the element, T𝐼 is the force
vectors acting on the center of the boundary edge 𝐼 of the
element, 𝑝

𝐼𝐽
is the dot product of position vectors P

𝐼
and P

𝐽

of points 𝐼 and 𝐽, and there are
T𝐼 = 𝑇𝐼1e

1
+ 𝑇
𝐼2e
2
, T𝐽 = 𝑇𝐽1e

1
+ 𝑇
𝐽2e
2

(11)

𝑝
𝐼𝐽
= P
𝐼
⋅ PJ, P

𝐼
= 𝑃
𝐼1
e
1
+ 𝑃
𝐼2
e
2
,

P
𝐽
= 𝑃
𝐽1
e
1
+ 𝑃
𝐽2
e
2

(12)

in which e
1
and e
2
are the unit vectors.
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Figure 2: Four-mid-node plane element.

From (10), we can obtain the generalized displacement
corresponding to T𝐼

𝛿
𝐼
=

𝜕𝑊
𝑒

𝐶

𝜕T𝐼
= C
𝐼𝐽
⋅ T𝐽, (13)

where C
𝐼𝐽
is a second-order tensor that is called the compli-

ance matrix

C
𝐼𝐽
=

1 + ]

𝐸𝐴

(𝑝
𝐼𝐽
U − ]

1 + ]
P
𝐼
⊗ P
𝐽
) (𝐼, 𝐽 = 1, 2, 3, 4) ,

(14)

where U is the unit tensor, and it can be expressed as

U = e
1
⊗ e
1
+ e
2
⊗ e
2
. (15)

Substituting (12) and (15) into (14), the compliancematrix
of an element can be reduced as follows:

C
𝐼𝐽
=

1 + ]

𝐸𝐴

[(

1

1 + ]
𝑃
𝐼1
𝑃
𝐽1
+ 𝑃
𝐼2
𝑃
𝐽2
) e
1
⊗ e
1

−

]

1 + ]
𝑃
𝐼1
𝑃
𝐽2
e
1
⊗ e
2
−

]

1 + ]
𝑃
𝐼2
𝑃
𝐽1
e
2
⊗ e
1

+(𝑃
𝐼1
𝑃
𝐽1
+

1

1 + ]
𝑃
𝐼2
𝑃
𝐽2
) e
2
⊗ e
2
] ,

(16)
or

C
𝐼𝐽
= 𝐶
𝐼1𝐽1

e
1
⊗ e
1
+ 𝐶
𝐼1𝐽2

e
1
⊗ e
2

+ 𝐶
𝐼2𝐽1

e
2
⊗ e
1
+ 𝐶
𝐼2𝐽2

e
2
⊗ e
2
,

(17)

or

C
𝐼𝐽
=

1 + ]

𝐸𝐴

×
[

[

[

1

1 + ]
𝑃
𝐼1
𝑃
𝐽1
+ 𝑃
𝐼2
𝑃
𝐽2

−

]

1 + ]
𝑃
𝐼1
𝑃
𝐽2

−

]

1 + ]
𝑃
𝐼2
𝑃
𝐽1

𝑃
𝐼1
𝑃
𝐽1
+

1

1 + ]
𝑃
𝐼2
𝑃
𝐽2

]

]

]

(𝐼, 𝐽 = 1, 2, 3, 4) .

(18)

For a strain problem, it is necessary to replace 𝐸 with
𝐸/(1 − ]2) and ] with ]/(1 − ]) in (16)–(18).

a
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b

Figure 3: Rectangular plate subjected to shearing forces.

4. Governing Equations

The total complementary energy of the elastic system can be
written as

Π
𝐶
= ∑

𝑛

(𝑊
𝑒

𝐶
− u
𝐼
⋅ T𝐼) . (19)

According to the complementary energy principle, Π𝑛𝑒
𝐶

takes stationary value under equilibrium conditions and
stress boundary conditions for the real displacement and
stress state.

The equilibrium conditions can be released by the
Lagrange multiplier method. For the stress boundary condi-
tion and the corresponding condition of the face forces bet-
ween elements, computational techniques can be applied to
achieve a rotation. Using the Lagrange multiplier method, a
new function for an element can be introduced as follows:

Π
𝑒
∗

𝐶
(T, 𝜆, 𝜆

3
) = Π

𝑒

𝐶
(T)

+ 𝜆(

4

∑

𝐼=1

T𝐼) + 𝜆
3
(T𝐼 × P

𝐼
)

(20)

in which arbitrary vectors 𝜆, 𝜆
3
are the Lagrange multipliers,

and 𝜆 can be expressed as

𝜆 = 𝜆
1
e
1
+ 𝜆
2
e
2
. (21)

For the elastic system, there is

Π
∗

𝐶
= ∑

𝑛

[Π
𝑒

𝐶

∗

(T, 𝜆, 𝜆
3
)] . (22)

And by means of the modified complementary energy prin-
ciple

𝛿Π
∗

𝐶
= ∑

𝑛

[𝛿Π
𝑒

𝐶

∗

(T, 𝜆, 𝜆
3
)] = 0. (23)
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(a) Uniform 4-side elements (b) Arbitrary 4-side elements

Figure 4: Two kinds of meshes for the pure shear problem.

a

pi

b

Figure 5: Thick cylinder with fixed outer edge under internal pres-
sure.

Further, (23) can be expressed as

𝜕Π
∗

𝐶
(T, 𝜆, 𝜆

3
)

𝜕T
= 0,

𝜕Π
∗

𝐶
(T, 𝜆, 𝜆

3
)

𝜕𝜆

= 0,

𝜕Π
∗

𝐶
(T, 𝜆, 𝜆

3
)

𝜕𝜆
3

= 0.

(24)

Equations (24) are the compatibility equations and displace-
ment boundary conditions for the elastic system. These are
the governing equations of the BFEM.

An explicit expression of stress for the 4-mid-node ele-
ment, according to (5), can be written as

𝜎 = 𝐴
−1T𝐼 ⊗ P

𝐼
(25)

or

𝜎 = 𝐴
−1

4

∑

𝐼=1

[𝑇
𝐼1

𝑃
𝐼1
e
1
⊗ e
1
+ 𝑇
𝐼1

𝑃
𝐼2
e
1
⊗ e
2

+𝑇
𝐼2

𝑃
𝐼1
e
2
⊗ e
1
+ 𝑇
𝐼2

𝑃
𝐼2
e
2
⊗ e
2
]

(26)

or

𝜎 =

1

𝐴

[

[

[

[

[

[

4

∑

𝐼=1

𝑇
𝐼1

𝑃
𝐼1

4

∑

𝐼=1

𝑇
𝐼1

𝑃
𝐼2

4

∑

𝐼=1

𝑇
𝐼2

𝑃
𝐼1

4

∑

𝐼=1

𝑇
𝐼2

𝑃
𝐼2

]

]

]

]

]

]

. (27)

An explicit expression for displacement of node, based
on the governing equation of element, can be developed.

For a 4-mid-node plane element, the governing equation can
be written as

𝛿
𝐼
=

𝜕Π
𝑒

𝐶

∗

(T, 𝜆, 𝜆
3
)

𝜕T𝐼
. (28)

Substituting (20) into (28) and considering (19), (10), and
(14), the explicit expression for displacement of nodes can be
written as

𝛿
𝐼
= C
𝐼𝐽
⋅ T𝐽 + 𝜆 + 𝜆

3
𝜀 ⋅ P
𝐼
, (29)

where 𝜀 is the alternating tensor and 𝜀 can be written as

𝜀 = 𝜀
𝛼𝛽e
𝛼
⊗ e
𝛽

(30)

or

𝜀 = e
1
⊗ e
2
− e
2
⊗ e
1
. (31)

Substituting (11), (17), (21), and (31) into (29), the explicit
expression for displacement of nodes can be written as

𝛿
𝐼
= (𝐶
𝐼1𝐽1
𝑇
𝐽1

+ 𝐶
𝐼1𝐽2
𝑇
𝐽2

+ 𝜆
1
+ 𝜆
3
𝑃
𝐼2
) e
1

+ (𝐶
𝐼2𝐽1
𝑇
𝐽1

+ 𝐶
𝐼2𝐽2
𝑇
𝐽2

+ 𝜆
2
− 𝜆
3
𝑃
𝐼1
) e
2

(32)

or

𝛿
𝐼
= {

𝐶
𝐼1𝐽1
𝑇
𝐽1

+ 𝐶
𝐼1𝐽2
𝑇
𝐽2

+ 𝜆
1
+ 𝜆
3
𝑃
𝐼2

𝐶
𝐼2𝐽1
𝑇
𝐽1

+ 𝐶
𝐼2𝐽2
𝑇
𝐽2

+ 𝜆
2
− 𝜆
3
𝑃
𝐼1

} . (33)

5. Numerical Examples

To verify the validity and accuracy of the 4-mid-node plane
model of base force element method proposed in this paper,
a program on the BFEM is made, and a number of the
numerical examples on the BFEM for the typical plane
elasticity problems are presented in this section. The results
obtained from the 2D BFEM are compared with correspond-
ing theoretical solutions. The responses obtained using the
traditional displacement finite elementmethod are also given
for some problems in order to assess the advantages of the
2D BFEM. All calculations of the traditional displacement
finite element method are performed using the four-node
isoparametric element (Q4 model).

Example 1 (pure shear of rectangular plate). Consider the
problem of a rectangular plate subjected to uniformly distrib-
uting shearing forces as shown in Figure 3. Parameters about
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(a) 20 × 10 elements (b) 20 × 7 elements (c) 20 × 5 elements

Figure 6: Three kinds of meshes for cylinder.

Table 1: The values of 𝜎
𝑟
.

Meshes Location 𝜎
𝑟
/(MPa)

Q4 BFEM Theoretical
20 × 10 𝑟 = 2.8000 −0.2066 −0.2072 −0.2069
20 × 7 𝑟 = 3.0000 −0.1914 −0.1926 −0.1919
20 × 5 𝑟 = 3.0000 −0.1912 −0.1935 −0.1919

Table 2: The values of 𝜎
𝜃
.

Meshes Location 𝜎
𝜃
/(MPa)

Q4 BFEM Theoretical
20 × 10 𝑟 = 2.8000 0.0274 0.0253 0.0250
20 × 7 𝑟 = 3.0000 0.0113 0.0107 0.0101
20 × 5 𝑟 = 3.0000 0.0124 0.0116 0.0101

the calculated specimen are taken as 𝑎 = 2.0m, 𝑏 = 1.0m,
𝐸 = 10

5MPa, ] = 0.3, and 𝜏
0
= 1.0MPa for a plane stress

problem.The calculation is done using two different element
meshes with the center nodes of each of the edges as shown
in Figure 4 successively.

The numerical solutions are that the stress component of
various elements is 𝜏

𝑥𝑦
= 1 for two kinds of different meshes.

The results are consistent with the theoretical results [1].

Example 2 (thick cylinder with fixed outer surface under
internal pressure). Consider a thick cylinder with inner
radius 𝑎 and outer radius 𝑏 under inner pressure 𝑝

𝑖
as shown

in Figure 5.
The calculated parameters are taken to be 𝑎 = 1.0m, 𝑏 =

5.0m, 𝐸 = 10
6MPa, ] = 0.3, and 𝑝

𝑖
= 1.0MPa for a plane

strain problem. The calculation is done using three different
element meshes with the center nodes of each of the edges as
shown in Figure 6 successively.

The values of stress components 𝜎
𝑟
, 𝜎
𝜃
, and 𝑢

𝑟
for various

radiuses 𝑟 are listed in Tables 1, 2, and 3, respectively. Com-
parisons of the results from the theoretical solution [1] and
traditional 4-node quadrilateral isoparametric element (Q4
model) are also given in Tables 1, 2, and 3, respectively. The
numerical results of the present model are consistent with
those of the theoretical solutions and have given very good
performance compared with Q4 model.

b

h

L

p/2

p/2

Figure 7: Cantilever beam under uniformly distributed load.

Example 3 (a cantilever under uniformly distributed load). It
consists of a straight cantilever beam under uniformly dis-
tributed load, as shown in Figure 7. The beam has length 𝐿 =
10m, cross-sectional dimensions 𝑏 = 1mand ℎ = 1m, elastic
modulus 𝐸 = 10

9MPa, and Poisson’s ratio ] = 0, respec-
tively. While the applied total load level is 𝑝 = 10MPa. The
calculated specimen was divided into the 4-mid-node base
force elements with the center nodes of each of the edges, as
shown in Figure 8.

The vertical displacement solutions of BFEM at the tip of
the beamwith differentmeshes are listed inTable 4.The verti-
cal displacement of BFEM at the tip of the beam is compared
with that provided by traditional 4-node quadrilateral isopa-
rametric element (Q4 model) and the analytical solution.

Table 4 shows that the results of the present formulation
agree well with those of the analytical solution, and the 4-
mid-node element of BFEM has given very good perfor-
mance compared with Q4 model for the large aspect ratio of
elements.

Example 4 (a cantilever with large aspect ratio under a con-
centrated end load). A clamped cantilever with a concen-
trated end load is carried out as shown in Figure 9.The beam
has length 𝐿 = 5m, cross-sectional dimensions 𝑏 = 1m and
ℎ = 0.1m, elastic modulus 𝐸 = 109N/m2, and Poisson’s ratio
] = 0. While the applied total load level is 𝑃 = 1N. The
calculated specimen was divided into the 4-mid-node base
force elements with the center nodes of each of the edges, as
shown in Figure 10.

The vertical displacement of BFEM at the tip of the beam
is compared with that provided by traditional 4-node quadri-
lateral isoparametric element (Q4 model) and the analytical



6 Mathematical Problems in Engineering

(a) 7 × 7 elements (b) 14 × 7 elements

(c) 20 × 7 elements
Figure 8: Meshes of cantilever beam under uniformly distributed load.

Table 3: The values of 𝑢
𝑟
.

Meshes Location 𝑢
𝑟
/(×10−6m)

Q4 BFEM Theoretical
20 × 10 𝑟 = 1.0000 1.1274 1.1340 1.1346
20 × 7 𝑟 = 1.0000 1.1212 1.1340 1.1346
20 × 5 𝑟 = 1.0000 1.1113 1.1340 1.1346

Table 4: Vertical displacement of the cantilever beam under uni-
formly distributed load.

Meshes V (×10−4)
BFEM Q4 model Analytical

20 × 7 1.4441 1.3447 1.5000
14 × 7 1.4041 1.2062 1.5000
7 × 7 1.2802 0.7528 1.5000

Table 5: Vertical displacement of the cantilever beam with a con-
centrated end load.

Meshes V (×10−4)
BFEM Q4 model Analytical

60 × 9 −5.0633 −3.7122 −5.0000
30 × 9 −5.0623 −2.0935 −5.0000
15 × 9 −5.0581 −0.7629 −5.0000

Table 6: Normalized vertical displacement with the effect of mesh
sensitivity.

Mesh distortion parameters 𝑑 0.0 0.5 1.0 1.5
BFEM 1.0058 1.0014 0.9868 0.9654
Q4 0.0744 0.0463 0.0380 0.0361

solution in Table 5.The results show that the 4-mid-node ele-
ment of BFEM has given very good performance compared
with Q4 model for the large aspect ratio of elements.

Example 5 (a cantilever withmesh distortion under a concen-
trated end load). A clamped cantilever with a concentrated
end load is carried out as shown in Figure 9. The beam has
length 𝐿 = 10m, cross-sectional dimensions 𝑏 = 1m and
ℎ = 1m, elastic modulus 𝐸 = 10

6 Pa, and Poisson’s ratio
] = 0, while the applied total load level is 𝑃 = 1N. The
calculated specimen was divided into the 4-mid-node base
force elements with the center nodes of each of the edges, as
shown in Figure 11.

The normalized vertical displacement of BFEM at the tip
of the beam is compared with that provided by traditional

b

h

L

P

Figure 9: Cantilever beam under a concentrated end load.

4-node quadrilateral isoparametric element (Q4 model) and
the analytical solution in Table 6. The results show that the
4-mid-node element of BFEM has given very good perfor-
mance compared with Q4 model for the distortion mesh
problems.

6. Conclusions

In this paper, a 4-mid-node planemodel of base force element
method (BFEM) on complementary energy principle is pro-
posed for elasticity problems. Based on the complementary
energy principle, the equilibrium conditions are released by
the Lagrangemultipliermethod, and amodified complemen-
tary energy principle described by the base forces is obtained.
The 4-mid-node plane element model is derived by assuming
that the stress is uniformly distributed on each edge of a plane
element. A BFEM procedure is developed using MATLAB
language.The chief features of the method are that the model
does not introduce an interpolating function and can be
used in any coordinate system and is not necessary to intro-
duce Gauss’ integral for calculating the stiffness coefficient at
a point.

The present model is applied for the solution of some
elasticity problems. The comparisons are made with the cor-
responding analytical solutions, and a good agreement of
results is observed.A series of numerical experiments are per-
formed in order to assess the relative performances of the
present model; based on these studies, it is found that the 4-
mid-node planemodel of BFEMwith complementary energy
principle provides reliable predictions for elasticity problems.
A good performance of the 4-mid-node plane element of
BFEM is observed for some problems.

The 4-mid-node plane element model of BFEM is also
compared with the standard displacement method. It has
been demonstrated by the results of numerical calculation
that the new BFEM formulations proposed in this paper are
effective and accurate. The 4-mid-node plane element model
can be used efficiently for the elasticity analysis with increas-
ing element aspect ratios and distortion meshes. The results
presented here revealed a better overall performance of
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(a) 60 × 9 elements

(b) 30 × 9 elements

(c) 15 × 9 elements

Figure 10: Meshes of cantilever beam under a concentrated end load.

(a) Mesh distortion parameters 𝑑 = 0

d

(b) Mesh distortion parameters 𝑑 = 0.5

d

(c) Mesh distortion parameters 𝑑 = 1.0

d

(d) Mesh distortion parameters 𝑑 = 1.5

Figure 11: Distortion meshes of cantilever beam.

the BFEM in calculations. These results provide further con-
firmation that the BFEM can be used successfully and effi-
ciently in the structural analysis, thus serving as an alternative
method, and certain applications, being themethod of choice
for the analysis.
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