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Given a set of n objects, the objective of the 0-1 multidimensional knapsack problem (MKP_01) is to find a subset of the object set
that maximizes the total profit of the objects in the subset while satisfying m knapsack constraints. In this paper, we have proposed a
new artificial bee colony (ABC) algorithm for the MKP_01. The new ABC algorithm introduces a novel communication mechanism
among bees, which bases on the updating and diffusion of inductive pheromone produced by bees. In a number of experiments
and comparisons, our approach obtains better quality solutions in shorter time than the ABC algorithm without the mechanism.
We have also compared the solution performance of our approach against some stochastic approaches recently reported in the
literature. Computational results demonstrate the superiority of the new ABC approach over all the other approaches.

1. Introduction

Given a set | = {0;,0,,...,0,} of n objects and a knapsack
with a set C = {¢,¢,...,¢,} of m dimensions, the 0-
1 multidimensional knapsack problem (MKP_01) seeks a
subset of ] in such a way that the total profit of objects
included in the subset is maximized, while m resource
constraints remain satisfied. More formally, each objecto; € J
has profit p; and weight r;; in dimension i (1 < i < m),
and each dimension of the knapsack has a capacity ¢;. By
introducing binary decision variable x; to indicate whether
object o; is included into the knapsack (xj = 1) or not (x]- =
0), the MKP_01 can be formulated as

n
Maximize z pjx;
j=1

- 1
Subject to Zr,-jxj <, M

=1

i=1,...,m,

X; €{0,1}, j=1,...,n

The MKP_01 is a well-known NP-Hard problem. There
are many practical applications which can be formulated as
a MKP_01, for example, the capital budgeting problem, the
cargo loading, the processor allocation in distributed systems,
and the project selection. Therefore, more and more people
recently focus on the research for solving the MKP_01. In
general, the solving algorithms can be divided into two kinds:
exact and heuristic methods [1]. The exact methods used
to employ some typical search techniques, such as Enumer-
ation algorithm [2], Branch and Bound method [3], and
Approximate Dynamic programming [4]. These methods can
be only applied to some small-scaled MKP_01 because the
computation complexity is rather high. Subsequently, many
heuristic search methods, including Genetic Algorithm (GA)
[5, 6], Evolutionary Algorithm (EA) [7], Particle Swarm Opti-
mization (PSO) [8], Ant Colony Optimization (ACO) [9-12],
and Artificial Bee Colony (ABC) [13, 14], were proposed by
simulating some natural phenomena. As these population-
based methods are versatile and robust, thus they have
been proved to be very effective methods. Thereinto, ABC
algorithm is a recently proposed method, which employs the



mechanism of combining local and global searches to effec-
tively solve MKPs. However, since the algorithm framework
itself is flawed, there is a main bottleneck that the iteration
number is too large and the convergence time is too long,
which strongly restricts the development of ABC algorithm.
In [15], we proposed an artificial bee colony algorithm for the
MKP_01, which introduced the pheromone into ABC algo-
rithm and gave the corresponding transition strategy. Though
there are still some problems, the preliminary experimental
results in [15] are very encouraging, and these results are
significant motivations for the present research. This paper
conducts a further and thorough investigation along this
line. In comparison with our previous work, the main new
contributions of this paper include the following.

(1) Based on the researches of entomologists, a new algo-
rithm, combining chemical communication way and behav-
ior communication way for solving MKP_01 (ABCPUD-
MKP), has been developed. First, the paper extends our pre-
vious work, analyzes, and explicitly presents the pheromone
communication mechanism. Second, the paper designs the
constructing method of feasible solutions based on the
new mechanism. Third, the paper introduces the special
updating and diffusing strategies of the inductive pheromone.
An important characteristic of the new algorithm is that
the collaborations among bees can be strengthened, and
the intelligent foraging behavior of honey swarm can be
mimicked more faithfully by means of updating and diffusion
of the inductive pheromone.

(2) Systematic experiments have been conducted to
compare the proposed algorithm with the previous work
and some other algorithms proposed recently in respective
literatures on many instances of two benchmark data sets.
Moreover, the sensitivity to algorithmic parameters and
effects of different parameter selections have been experi-
mentally investigated.

The rest of this paper is organized as follows. Section 2
provides an introduction to the artificial bee colony algorithm
and the basic idea of the ABC for the MKP_01. In Section 3, we
describe our new algorithm for the MKP_01. Computational
results are presented in Section 4. Finally, we conclude the
paper in Section 5.

2. ABC Algorithm and Its Application in
the MKP_01

2.1. The Artificial Bee Colony (ABC) Algorithm. The artificial
bee colony algorithm is a population-based metaheuristic
approach proposed recently; it finds near-optimal solutions
to the difficult optimization problems by simulating the
intelligent foraging behavior of a honeybee swarm. There are
three groups of the foraging bees, employed ones, onlookers,
and scouts. All bees that are currently exploiting food sources
are called employed bees. These bees bring nectar from
different food sources to their hive. Onlooker bees are those
bees who are waiting in the hive for the information on
food sources to be shared by the employed bees, and scout
bees are those bees that are currently searching for new
food sources near the hive. By dancing in a common area
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of the hive, employed bees share the information on food
sources with onlooker bees. The duration of a dance of an
employed bee depends on the nectar content of the food
source currently being exploited. After watching numerous
dances, onlooker bees choose a food source according to the
probability proportional to the quality of that food source.
Therefore, the good food sources can attract more onlookers
than the poor ones. Onlooker bees help the employed bee,
who associated with the same food source, to perform the
exploiting job within the neighborhood of the food source.
Whenever a food source is exploited fully, it is abandoned by
the employed bee associated with it. Then, the employed bee
becomes a scout. The task of a scout is to look for a new food
source around the hive that can be viewed as performing the
job of exploration. Once a scout bee finds a new food source
in its global expedition, it again becomes an employed one
and continue its local exploiting job.

Based on such an intelligent foraging behavior of honey
bee swarm, the Artificial Bee Colony (ABC) algorithm is
proposed by Karaboga [16] and further developed in [17,
18]. The overall process of the ABC algorithm is given
in Algorithm 1.

Each cycle of the search consists of three main steps.
The first two steps are moving the employed and onlooker
bees onto the food sources and performing local optimization
in an exploiting way, and the third step employs a scout
bee as an explorer to find a new food source for each
food source exploited fully. A food source represents a
feasible solution to the problem to be optimized. Due to
the nectar amount of a food source corresponds to the
quality of the solution represented by that food source, so
the employed and onlooker bees make use of such a quantity
to perform an exploitive search in a local area. Whenever
a solution representing a food source is not improved by
a predetermined number of cycles, then that food source
is abandoned by its employed bee, and the employed bee
becomes a scout. The number of cycles for releasing a food
source is called a threshold value of limit. Every scout is
an explorer who does not have any guidance while looking
for a new food. That is, a scout may find any kind of
food source. Therefore, sometimes a scout might accidentally
discover more rich and entirely unknown food source. As
a result of such behavior of scout bees, ABC algorithm can
overcome the stagnation phenomenon of solutions which
is a general problem of the stochastic search methods for
solving a combinatorial optimization problem. It is important
to note that exploration and exploitation processes are carried
out together in ABC algorithm. More specially, employed
and onlooker bees accomplish the exploitation process in the
search space, while the scouts control the exploration process.
In the ABC algorithm, local and global searches have been
incorporated into different behaviors of different bees, and
three kinds of bees work together to complete the evolution
of solutions.

Since the ABC algorithm was proposed in 2005, it has
been applied in many research fields in recent years, such as
data clustering [19], flow shop scheduling problem [20, 21],
multiobjective optimization [22], neural network training
[23] and synthesis [24], image processing [25], generalized



Mathematical Problems in Engineering

3. Loop:
Fort =1 to N do:

{

Fori =1 to K do: (food sources)
{IfS;(t) = S;(t - 1) then C; = C; + 1;
If C; = Limit then

C, =0}}

t=t+1;

}

1. Initialization: Initialize parameters K, N, Limit, C, =0 (i = 1,...,K);
2. Initial solutions: Randomly generated K food sources {S;(0) [ i = 1,...,K};

(1) For i = 1 to K do: (employed bees select food sources and perform local searches respectively)
{Associate each employed bee with a food source S;(¢) and compute its nectar amount;
Find a new S;(t) in the neighborhood of S;(¢) and compute its nectar amount;
Take the better one in {Sl{(t), S;(t)} as a new location of the employed bee;}
(2) For j = 1 to K do: (onlooker bees help employed bees to perform further local searches)
{Select a food source S j(t) from {S;(t)} for every onlooker bee;
Find a new S;(t) in the neighborhood of § j(t) and compute its nectar amount;
Take the better one in {S;.(t), S.(t)} as a new location of the corresponding bees;}
(3) Exploiting new food sources (scout bees randomly carry out global searches)

{Abandon the S;(t) and the associated employed bee becomes a scout;
Randomly generate a new S;(t) and the scout becomes an employed bee again;

(4) Memorize the best food source S, ., found so far;

4. Output: Return S, ., while the predefined end condition is met.

ALGgoriTHM 1: ABC.

assignment problem [26], coupled ladder network [27], and
nurse Rostering [28]. Studies [17, 29] have indicated that ABC
algorithms have high search capability to find good solutions
efficiently.

2.2. ABC Algorithm for the MKP_01. Following above the
ideas of ABC algorithm, Sundar et al. presented a method
which integrates ABC algorithm with the MKP_01, called
ABC-MKP [13]. In the algorithm, a food source represents
a feasible solution constituted a subset of objects for the
MKP_0L, so the total profit value of objects in the subset is
viewed as the nectar amount to evaluate the quality of food
sources. Moreover, the ABC-MKP uses binary tournament
selection method for selecting a food source for onlookers,
that is, two different food sources are randomly selected from
the food sources associated with employed bees, then the
food source containing richer nectar amount among these
two food sources is selected with a random probability b,
otherwise the poorer one is selected. For the ABC-MKP algo-
rithm, determination of a new solution in the neighborhood
of a solution is the most important process where two specific
heuristic-based change operators and general local search are
incorporated.

To determine a solution in the neighborhood of a solution
i, the ABC-MKP algorithm randomly selects another solution
s; (sj#s;), then randomly selects two distinct objects with
the maximum profit values from s; which are not present
in s; and add them to s; which makes solution s; infeasible.
When this method fails to find even one object in s; different
from the objects of s;, then it means that s; and s; are the

same solution [30]. There are two different processes for
such a situation. In case of an employed bee, the employed
bee abandons its associated solution to become a scout, and
this scout is again made employed by looking for a new
randomly generated solution. There is no further operations
like change operator and local search. However, if the same
solution occurs while determining a new neighborhood
solution for an onlooker, then another solution s; is selected
randomly. This process is repeated until a solution s; which
is different from the solution s; is found. And then, the
process of making the infeasible solution feasible begins
with a change operator. The change operator includes DROP
PHASE and ADD PHASE [5]. The DROP PHASE drops
objects in a way, which is combined random selection with
greedy search, until the infeasible solution becomes feasible.
With probability p,;, the objects of solution s; are dropped in
the increasing order of their pseudoutility ratios; otherwise,
the objects of the solution s; are dropped randomly. During
ADD PHASE, objects which are not in the solution s; are
sorted in decreasing order in light of their pseudoutility
ratios. Then each sorted and unselected object is checked one
by one whether it can be added to the solution s; without
violating the feasibility. If so, then the object is added to the
solution s;. This process is repeated until all unselected objects
are searched for inclusion.

The ABC-MKP algorithm uses the local search in 1-1
exchange and 2-1 exchange ways to improve the solution
quality [31]. That is, the local search tries to repeatedly
exchange one or two selected objects with an unselected
object if such exchange can increase the total profit while
maintaining the feasibility of the solution. In 1-1 exchange



way, the algorithm repeatedly exchanges a selected object in
the order appeared in the knapsack with the unselected object
of highest profit that will keep the solution feasible after the
exchange. In 2-1 exchange way, the algorithm exchanges a pair
of selected objects with the first unselected object which will
keep the solution feasible after the exchange, and total profit
will increase or remain the same. The 2-1 exchange is also
repeated till a swapping move has been found or all pairs have
been considered. As the local search costs much running time
of ABC algorithm, therefore, the number of application of
the local search is limited empirically. Moreover, 1-1 exchange
and 2-1 exchange are used by a probability P, in a mutually
exclusive manner, that is, a real number p is randomly
generated from [0,1]. If the p < Py, then 1-1 exchange
with maximum five applications is used as the local search;
otherwise a single 2-1 exchange is used as the local search.

3. ABC Algorithm Based on
Pheromone Communication Mechanism
for the MKP_01

Though ABC algorithm has increased tremendously in many
research topics, so far the only communication mechanism
based on the dancing behaviors is employed to exchange
information among bees in almost all applications of the ABC
algorithm. From the view of entomologists, there are many
ways to transfer information among bees, such as a behavior
way (dancing), a chemical way (pheromone), and a physical
way (light and sound). In this paper, we will introduce a
chemical way with the inductive pheromone into the ABC
algorithm for solving the MKP_01.

3.1. Communication Mechanism Based on the Inductive
Pheromone. In nature, an important way in which organisms
can communicate with each other is through the use of
pheromone. Pheromone is produced as a liquid and transmit-
ted by direct contact as a liquid or as a vapor. The pheromone
is a chemical messenger secreted by one individual which
causes a specific response in other members of the same
species. Ants and bees demonstrate two prominent examples
of pheromone usage, which acknowledges their incredible
capability to organize the behaviors of the whole colony. By
means of the communication way of pheromone [32, 33],
ant colony optimization (ACO) algorithm becomes one of
the most well-known algorithms and has been successfully
applied in several real-world problems. The success of the
use of pheromone in ACO inspirits us to incorporate the
communication mechanism of pheromone into a new ABC
algorithm, which is highly possible to improve the perfor-
mance of the ABC algorithm.

In fact, research on the behavior of real bees has greatly
inspired our work. Biologists have discovered that bees
are also well known for communicating through the use
of pheromone [34, 35]. Like ants, bees use pheromone
for a number of different communication and behavior-
control purposes. One pheromone may cause many dif-
ferent responses, depending on environmental conditions
and pheromone concentration. Honeybee pheromone can
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be grouped into releaser pheromone with short-term effects
and primer pheromone with long-term effects; thereinto,
releaser pheromone changes the behavior of the recipient.
Releaser pheromones have a short-term effect, and they
trigger an almost immediate behavioral response from the
receiving bee. The inductive pheromone is a kind of releaser
pheromone which is left by bees when they walk and is useful
in searching for nectar. To mimic such behavior of real bees in
some extent, we establish a new communication mechanism
among bees in our new ABC algorithm, which includes some
new strategies based on the inductive pheromone.

3.2. Construction of Feasible Solutions Based on the New Mech-
anism. At each iteration of our algorithm, each candidate
solution associated to a scout bee is constructed by means
of the inductive pheromone and heuristic information. It
first randomly chooses an initial object and then iteratively
adds objects chosen from an available set, which contains all
the objects that can be selected without violating resource
constraints.

Using the ideas of AS_MKP [9], the quantity of
pheromone laying on an object o; is denoted by ;(¢) (¢ is the
number of iterations). When ¢t = 0, 7;(0) = 1/ Z?:l pj (G =
1,...,n). At each step of the construction of a solution,
a scout / randomly selects the next object o; within the

set of candidates with respect to a probability P;(t). This

probability is defined proportionally to a pheromone factor
and a heuristic factor, that is,

p; ()
[, 0] [n; (5 )]
3 - 5> j € allowed, (t)
= Zicatowea ) [ O] - [1; (S, ()]
0, otherwise,
2)
where §(t) is a partial solution set acquired by the ™" scout

at the time ¢, allowed,(t) < ] — §(¢) is the candidate set
of remaining available objects, 1;(S,(t)) represents a local
heuristic information, and the parameters « and 3 determine
the relative importance of pheromone trail versus heuristic
factor for an object j. Thus, the higher the value of 7;(f) and
qj(Sl(t)), the more profitable it is to select object j in the
partial solution.

3.2.1. Heuristic Function. There are many constraints in a
MKEP, so the heuristic factor depends on not only the set
allowed,(t) of candidate objects but also the whole set S;()
of selected objects. Let u;(I,£) = Y ) ik be the consumed
quantity of the resource i when the bee [ has selected those
objects in S;(t) at the time ¢ and y;(I,t) = ¢; — u;(I,t) be the
remaining capacity of the resource i, then the tightness of a
candidate object j on the resource i can be expressed as

y; (Lt)

8, (1) = (3)
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The equation represents a ratio between r;; and y;(, ©).
Further, when an object is chosen to be included in S;(¢), the
average tightness on all constraints is defined as

Yt 8 (L)
—

8;(Lt) = (4)

From the view of consumption of resources, the lower the
tightness ratio, the more the object is profitable to be selected.
Moreover, the profits p; must be taken in account in order to
get a pseudoutility measure for each candidate object, Thus,
the local heuristic function for the MKP, # j(Sl(t)), can be
defined as follows:

p4
1 (8 0) = 50 (5)
] >

3.2.2. Inductive Pheromone Updating. Once each food source
(solution) has been optimized at every iteration, pheromone
trails of the objects are updated. More specifically, in light of
the profit value of every solution associated by employed bees,
the algorithm updates the pheromone intensity for objects
interrelated, the formula is as follows:

T,(t+1)=(1-p)7;(t) + AT, (£, + 1), (6)

K
At (Lt +1) =Y AT (Lt +1), ?)
=1

Q-L(S), o €S, for Ith bee
0, otherwise,

AT} (8t +1) = { (8)

where 0 < p < 1is a coefficient which represents pheromone
evaporation, the Arf(t,t + 1) represents the pheromone trail
that the Ith bee deposited on the object i in the iteration, and
the A7;(t,t + 1) represents the pheromone increment that all
the bees deposited on the object i. Q is a constant parameter
for an instance of MKP (Q = 1/ Z;‘zl pj), and L(S;) is the
value of the objective function of the solution S; obtained by
the Ith bee.

From these descriptions about the heuristic function
and pheromone updating, we can know that a value of
the transition probability represents a trade-off between
pseudoutility and pheromone intensity. That is, those objects
which consume less resources and have more profit should be
chosen with a high probability. On the other hand, if an object
is included in many solutions, then it is highly desirable due
to having high pheromone intensity.

3.3. Diffusion Strategy of the Inductive Pheromone. Using the
new mechanism for solving MKPs, the key point is how
to decide which components of the constructed solutions
should be rewarded, and how to exploit these rewards when
constructing a new solution. There are two different methods:
(1) the first one is to lay pheromone trails on each object
selected in J, which considers, respectively, the desirability of
each object. The more frequent an object occurs in solutions,
the more likely it would be selected when constructing a new

solution. (2) The other one is to lay pheromone on each pair
(0;,0;) of different objects in ], which considers together the
desirability of two objects in J. If some objects of ] have been
contained in a new partial solution, then the other objects that
often occurred together with these objects in pairs of some
solutions will be more attractive. Our algorithm combines
these two ways into pheromone updating and diffusion.

3.3.1. Associated Distance Based on Top-k Strategy. If we take
a solution acquired by a bee as a transaction while solving a
MKEP, then we can get a transaction database in each iteration
of a bee colony. Observing the transaction database, it is no
difficult to find that some objects occur together with other
objects in pairs. In other words, there are some frequent
object pairs in the feasible solution space, which implies
the relationship between two objects of each pair. Therefore,
we give a definition of an associated distance between two
objects.

Definition I (associated distance). Let D be a database with K
transactions; each transaction p (p = 1,2,..., K) represents
a feasible solution Sy (S, € )s and (o;, 0;) is a pair of objects
in J. If the pair of (0;, 0;) appears f (f =0,1,2,...,K) times
in D, then we define the associated distance of this pair as:

dr(o,-,oj) =1/(f+1).
From this definition, we can observe the two properties:

1) d,(o0;, oj) = d,(oj,oi);
2)0< dr(oi,oj) <1

The first property denotes the symmetry of the associated
distance, which shows that the associated distance is irrelative
with the order of objects. And the second property defines
the value range of the associated distance; it indicates that
the more frequent an object pair appears in D, the shorter
the associated distance. That is, the higher the relation degree
between the two objects, the smaller d,(0;,0;) is. When
d,(0;,0;) = 1, the two objects are absolutely irrelative.

To solve an MKP with the ABC algorithm, the number of
a bee colony is usually proportional to the number of objects
in J. Thus, every iteration for a bee colony may produce a set
of solutions (database), whose size approaches the number
of objects in the MKP. Due to the frequency statistic (f) for
an object pair needs to scan the database in each iteration,
so the computation costs of the associated distances for all
object pairs may be very expensive for the large-scale MKP.
Moreover, the most important idea in swarming intelligence
is to strengthen the effect of good solutions and reduce the
effect of bad solutions; thus, our ABC algorithm did not treat
equivalently all solutions. Therefore, we adopt the idea of Top-
k query widely applied in Web search engine to emphasize
the influence of good solutions. More precisely, we take the
objective function of MKPs as the Top-k function, select the
k solutions which have the higher values of the objective
function to form a transaction database Dry, r, and then
find the associated distances among objects from the Dy, .
This method has two advantages: (1) reduce the computation
complexity. When considering all solutions in each iteration,



mining the associated distances needs O(K - Cfl) =~ O(n).
However, If only considering Top-k solutions (k <« K), the
computation complexity is O(k-n*). And (2) give prominence
to the preference to the better solutions (i.e., Top-k best
solutions), thus strengthen the intellectual insight of the
better solutions to the next optimization.

3.3.2. Pheromone Diffusion Based on Associated Distances.
In our new mechanism, the chemistry substance called
pheromone is an important carrier for a bee colony to
implement swarming intelligence. While the time passing,
the pheromone gradually volatilizes; that is, the pheromone
can diffuse around. To simulate this phenomenon, we present
a pheromone diffusion model and the corresponding algo-
rithm for solving MKPs. The basic idea is to take into account
the pheromone influences among close objects when a bee
constructs a feasible solution. Namely, based on coupling
actions among near strength fields of pheromone diffusions,
the algorithm performs decoupling compensates for the
pheromone of near objects. Thus, the closer the associated
distance, the stronger the coupling action is, and yet the
further the associated distance, the weaker the coupling
action is.

Let Az; be the pheromone trail on an object o; laid
by the bee colony; we can give the pheromone diffusion
model based on the associated distance. Figure 1 shows the
sketch map of the pheromone diffusion, where the red dot(e)
denotes the object o; as an info fountain, those white dots
(o) denote the other different objects influenced by o;, and
different circles can be interpreted as equipotential lines of the
intensity field for different locations. The figure shows that the
pheromone trail diffuses around by taking an info fountain
as a center of the diffusion intensity field, the closer to the
info fountain the location, the stronger the field force of the
intensity field is. More precisely, the pheromone influence of
an info fountain on other objects will gradually reduce as the
associated distance between objects becomes long. Therefore,
we can give a simple diffusion model:

1 At
. i ifd (0.0, ,
ATij: <k+l) dr(oi’oj) 1 r(oz 0])<1 )

0, otherwise.

Based on such a pheromone diffusion model, the behav-
ior of selection of an object for a bee can change the
pheromone intensity not only on the selected object but also
on other objects related with the selected object. Thus, the
pheromone updating of the object 0; in (6) can be revised as
follows:

T (tt+1) =1 (Lt + 1)+ ZA% (10)
r

where r is one of the objects which are associated with the
object o;. This change more faithfully reflects the volatiliza-
tion character of pheromone and then can lead bees to
select objects in an impersonal way. Thus, the pheromone
diffusion model can enhance the collaboration among bees
in a colony, improve the effectiveness of the ABC algorithm,
and in evidence incarnate the idea of swarm intelligence.
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3.4. Algorithm Description and Analysis. Based on
pheromone updating and diffusion, we design and achieve
an ABC algorithm called ABCPUD for the MKPs. The
algorithm holds the basic steps of original ABC algorithms,
however adds the new strategies based on the inductive
pheromone in the generation process of solutions. The
overall process of ABCPUD-MKP algorithm is given in
Algorithm 2.

From Algorithm 2, we can see that the ABCPUD-MKP is
a hybrid algorithm which merges two communication ways
among bees. Based on the behavior communication way, the
employed bees and onlooker bees gradually optimize their
associated solutions in solution neighbors as the iteration car-
rying through. On the other hand, the scout bees constructed
new solutions in light of the chemical communication way
which employs the pheromone accumulated by bees to induct
the selection of objects. The important differences between
the ABC-MKP and the ABCPUD-MKP focus on two phases,
that is, exploring new food sources and generating, diffusing,
and updating the pheromone only used by ABCPUD-MKP.

During exploring new food sources, the ABCPUD-MKP
employs the transition probability based on pheromone trails
and heuristic information to insightfully construct new solu-
tions, which keeps high quality of the new solution. Moreover,
the ABCPUD-MKP not only makes use of solutions acquired
at every iteration to accumulate pheromone on objects but
also emphasizes the pheromone influences among associated
objects by means of the pheromone diffusion model which
stresses the effect of the best Top-k solutions. Therefore,
the ABCPUD-MKP may lead to rapidly select the most
profitable nectar source by means of the new communication
mechanism.

4. Experimental Evaluation

To assess the performance of our algorithm (ABCPUD-
MKP), we conduct a series of experiments on public data sets
taken from the OR library, which are the same as those used
in [5, 7, 11, 12], and so forth. The experimental platform was
a PC with Pentium 4, 2.0 GHz CPU, 1G RAM and Windows
XP. We test our algorithm implemented by MATLAB on some
instances of 5.100 and 10.100 and compare the results with that
of the ABC_MKP and other algorithms recently proposed on
the some data sets. The benchmark set 5.100 has 30 instances
with m = 5 constraints and n = 100 objects. Similarly, the
benchmark set 10.100 also has 30 instances with m = 10
constraints and n = 100 objects. All algorithms are executed
10 times on each instance with a different random seed.

By large numbers of experiments, the main parameters
were set as follows:« = 1, f =5, N =10000, p; = 0.3, p;g =
0.99, b, = 09, K = 80, p = 0.3, k = 25, and limit = 80.
Here K, k, p, and limit are parameters which mainly affect
performances of ABCPUD-MKP. How to select their values
will be emphatically discussed in the following subsection.

4.1. Performance Analysis of ABCPUD-MKP. We study the
factors that affect the performance of ABCPUD-MKP. Par-
ticularly, we wish to investigate the contributions of the
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AT;

(a)

The info fountain o;

(b)

FIGURE 1: The sketch map of the pheromone diffusion of O; and its intensity field. (a) The relationship between the intensity At; and the
associated distance d, for the info fountain O;. (b) The corresponding intensity field and areas of the pheromone diffusion.

pheromone mechanism and the effects of different parameter
selection.

(1) Contributions of the Pheromone Mechanism. Based on the
same running experiment and implemented tools, we devel-
oped three algorithms to solve the MKP_01 on some different
instances. The three algorithms were called the original ABC-
MKP, the ABCPU-MKP (with the pheromone updating),
and the ABCPUD-MKP (with the pheromone updating and
diffusing), respectively. Table 1 gives the experimental results
of three algorithms after running same computational time,
where we evaluate the algorithm performance by means of
three measures such as Best, Avg., and Num. Best denotes the
profit value of the best solution obtained by the correspond-
ing algorithm over 10 executions. Avg. indicates the mean
p and the standard deviation o of the profit values over 10
executions independently carried out by the corresponding
algorithm. Num. is the smallest number of the iterations when
the best solution was found in 10 trails.

From the table, it is seen that these three algorithms
are able to obtain the best solutions known on 10 instances.
As for the Avg., ABCPU-MKP produces better results than
that of ABC-MKP except for the instance of 5.100.03, and
ABCPUD-MKP produces the best results among the three
algorithms. From the iteration process, both ABCPU-MKP
and ABCPUD-MKP show better performance than ABC-
MKP; the latter is more outstanding. Therefore, we can
draw the conclusion that the new pheromone mechanism
introduced in the paper can evidently improve the ABC-MKP
algorithm on the convergence performance while keeping
good solution quality. More specifically, (1) the solution
construction based on the inductive pheromone not only
effectively enhances the convergence performance but also
improves the solution quality on a majority of instances
tested, which shows that the inductive pheromone is an
important media to improve the bee communication in
finding better solutions. (2) The new diffusion mechanism
can also improve the convergence performance while keeping
the solution quality. This suggests that the strategy based on
the diffusion model can effectively strengthen the process of
solution construction and save iteration times. It is obvious

that both of the aforementioned strategies are effective in
the improvement of the performance of the ABC-MKP
algorithm. This fact encourages us to put both strategies into
our algorithm (ABCPUD-MKP) to get even better results.

(2) Effects of Different Parameter Selection. In this experiment,
we give a solving example to show how to determine the
parameter value of ABCPUD-MKP algorithm. The experi-
ment process is that we run ABCPUD-MKP with different
parameter settings on the same instance (5.100.06) and
acquire the best parameter value by comparing experimental
results. During this experimentation, the value of a single
parameter is changed while keeping the values of other
parameters fixed.

ABC algorithm is a swarm optimization algorithm; the
population size of a bee colony determines the number of
solutions at each iteration. Figure 2 summarizes the perfor-
mance of ABCPUD-MKP with 10 different bee colony sizes
(K). The best value, the worst value, and the average value
are, respectively, corresponding the highest, lowest, and mean
profit value of solutions obtained in the 10 trails (shown
in Figure 2(a)). Figure 2(b) illustrates the results about the
running time. The median of each bar is the mean, and the
height of the bar is the standard deviation, which are obtained
from 10 trails.

A large bee colony means that more initial search points
are employed, and then, as reflected by best, worst, and
average values in Figure 4, better solutions are obtained than
in a smaller bee colony. However, after a sufficient value
for the colony size, any increment does not improve the
solution performance of algorithms. On the contrary, the
search time in each iteration will increase as the size of the
bee colony increases. To acquire a balance between getting
a better solution and using less time, we recommend a bee
colony size of 80 (K = 80).

As described in Section 3.2, the coeflicient p is a
value smaller than 1 to avoid unlimited accumulation of
pheromone. In the constructing solution process, the value of
p controls the balance between exploration and exploitation
processes. Therefore, it is an important parameter for the new
mechanism based on the inductive pheromone. To investigate
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1. Initialization: Initialize parameters K, N, Limit, &, 3,Q, 7, C; = 0 (i = 1,...,K) and so on;
2. Initial solutions: Randomly generated K food sources {S; (0) | i = 1,...,K};
3. Loop:
Fort =1to N do:
{
(1) For i = 1 to K do: (local searches performed by employed bees)
{Associate each employed bee with a food source S;(t) and compute its nectar amount;
Find a new S;(t) in the neighborhood of S;(¢) and compute its nectar amount;
Take the better one in {S:(t), S;(1)} as a new location of the employed bee;}
(2) Forj = 1 to K do: (further local searches performed by onlooker bees)
{Select a food source Sj(t) from {S;(t)} for every onlooker bee;
Find a new S;(t) in the neighborhood of § j(t) and compute its nectar amount;
Take the better one in {S;(t), S]-(t)} as a new location of the corresponding bees;}
(3) Exploiting new food sources (global searches with a guidance performed by scout bees)
For ] = 1 to K do: (food sources)
{IfS;(t) =St —1)thenC, =C, + 1;
If C, = Limit then
{Abandon food source / and the associated employed bee becomes a scout;
S;(1)={}, allowed, = J;
Repeat (constructing a new solution)
Select an object j with P]l.(t) given by (2);
Add the object into the current solution: S;(¢) = S;(¢) + {oj};
allowed, = allowed, - {o;};
Until allowed, is empty
The scout bee becomes again an employed bee;
Cl = 0;}}
(4) Generating, diffusing and updating the pheromone
For each object o; in J
Calculate the At; according to (7) and (8).
Select the Top-k solutions from this iteration, and obtain Dr, 43
For each solution S,, € Dy, «
{For each pair of objects ¢; in S,
G;-count++;
Calculate the associated distance d,(0;,0;)
Calculate Aty according to (9);}
For each object o; in |
Update the trail level T, 0n all objects according to (6) and (10);
(5) Perform the local optimization in 1-1 or 2-1 exchange ways;
(6) Memorize the best food source S, found so far;
t=t+1;
}

4. Output: Return S, ., while the predefined end condition is met.

ALGoRITHM 2: ABCPUD-MKP.

TABLE I: The contributions of the pheromone mechanism on ABC-MKP.

Instances  Best known ABC-MKP ABCPU-MKP ABCPUD-MKP

Best Avg. Num. Best Avg. Num. Best Avg. Num.
5.100.00 24381 24381 24381.0+0.0 238 24381 24381.0+0.0 220 24381 24381.0+ 0.0 178
5.100.01 24274 24274 24274.0+0.0 36 24274 24274.0+0.0 32 24274 24274.0+0.0 20
5.100.02 23551 23551 235393 +4.1 4021 23551 23548.0 +5.5 2251 23551 23550.0 3.9 354
5.100.03 23534 23534 23534.0+0.0 2356 23534  23527.0+3.5 2202 23534 23534.0+0.0 1538
5.100.04 23991 23991 239732 +14.8 1746 23991 239824 +13.7 1689 23991  23986.0+10.5 1622
5.100.05 24613 24613 24613.0 £ 0.0 110 24613 24613.0 £ 0.0 76 24613 24613.0 £ 0.0 46
5.100.06 25591 25591 25591.0 £ 0.0 252 25591 25591.0 £ 0.0 224 25591 25591.0 £ 0.0 65
5.100.07 23410 23410 23410.0 £ 0.0 409 23410 23410.0 £0.0 304 23410 23410.0 £ 0.0 259
5.100.08 24216 24216 24216.0 £ 0.0 1051 24216 24216.0 + 0.0 799 24216 24216.0 0.0 755

5.100.09 24411 24411 24411.0£0.0 189 24411 24411.0+0.0 97 24411 24411.0£0.0 81
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FIGURE 2: Comparisons of the results for different bee colony sizes
(K). (a) Best, worst, and average values for different K. (b) The
runtime for different K.

the effect of p on ABCPUD-MKP, we perform experiments
using different values of p. The results are presented in
Figure 3.

From Figure 3(a), we notice that the optimum values on
best, worse, and average values can be obtained for different
parameter values of p. That is, the solution of ABCPUD-MKP
is insensitive to the parameter p. However, the significant
difference focuses on the running time shown in Figure 3(b).
Because the smallest running time is achieved for p = 0.3
among all testings, we select a p value of 0.3 for our ABCPUD-
MKEP.

In our algorithm, we introduce a pheromone diffusion
model based on associated distances. To save computation
costs and strengthen the effect of good solutions, we adopt
the Top-k strategy to compute the associated distances of
every pair of objects. In this section, we perform experiments
using different values of k to investigate the effect of the Top-k
strategy on ABCPUD-MKP. Figure 6 shows the experimental
results. We observe that there is no difference among the
three profit values in Figure 4(a), and only there are some
differences in running time for different values of k in
Figure 4(b). To quickly get the best result, we can select k =
25.

If a solution does not improve for a predetermined
number of iterations (limit), then the solution will be aban-
doned by the employed bee associated, and a new solution
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m]
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40 +
20

Running time (s)
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FIGURe 3: Comparisons of the results for different pheromone
parameters (p). (a) Best, worst, and average values for different p.
(b) The runtime for different p.

will be generated. This is a key strategy to deal with the
solution stagnation in ABC algorithm. To study the effect
of different abandoned frequencies on ABCPUD-MKP, we
perform experiments using different values of limit. The
experimental results are presented in Figure 5.

When limit is too small or too large, the results obtained
by our algorithm are worse than those produced by using
the moderate values of limit. This shows that an appropriate
frequency of new solution production has useful effect on the
running time and the profit values, which can perform some
explorations to improve the search ability of the algorithm.
However, the balance between exploration and exploitation
processes will be broken whether limit is too small or too
large, which will produce worse solutions and cost much
more running time. Thus, we recommend limit = 80
after considering effects on factors of the running time and
solution quality.

4.2. Comparing ABCPUD-MKP with ABC-MKP. We com-
pare the ABCPUD-MKP with ABC-MKP on many instances.
As space is limited, Table 2 only provides a summary of
the performance comparison on 6 different instances. Both
algorithms are independently executed 10 times for each
instance, and the figures are, therefore, the average values of
10 trails.
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FIGURE 4: Comparisons of the results for different Top-k parameters
(k). (a) Best, worst, and average values for different k. (b) The
runtime for different k.

In Table 2, the meanings of Best, Avg., and Num. are
same as those of Table1 while the meaning of Time is the
same as that of Figure 2. Hit. represents the number of the
best solution obtained in 10 trails. Moreover, numbers in
parentheses of the best column are the best results known
for each corresponding instance, and numbers in parentheses
of the Num. and Time columns are the smallest numbers of
the iterations and the shortest running time when the best
result was obtained. Compared with ABC-MKP, ABCPUD-
MKEP can always find better or equally good solutions for all
the instances in terms of both profit values. Since the Num. is
reduced on all instances, hence the Time of ABCPUD-MKP
is greatly improved. Moreover, the ABCPUD-MKP algorithm
also outperforms ABC-MKP algorithm according to the item
of Hit.

In Figure 6, we compare the iteration numbers and the
runtime of an iteration of two algorithms on ten instances of
10.100. For each algorithm, we record the iteration number
averaged over 10 runs and compute the runtime of an iteration
averaged over 10 runs when obtaining the profit values
shown as Table 1 on respective instances. From Figure 6(a),
we observe that the iteration numbers of both algorithms vary
with different instances. Furthermore, the new pheromone
mechanism adopted by ABCPUD-MKP can improve the iter-
ation process for all instances. However, the new pheromone
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FIGURe 5: Comparisons of the results for different abandoned
frequencies (limit). (a) Best, worst, and average values for different
limit. (b) The runtime for different limit.

mechanism will increase some computation cost; thus, the
runtime per an iteration of ABCPUD-MKP may be longer
than that of ABC-MKP on some instances as shown in
Figure 6(b).

Figure 7 gives the time performance comparison between
two algorithms, which corresponds to Figure 6. We can see
that ABCPUD-MKP performs better than ABC-MKP in
terms of the runtime on all instances. The main reason is
that ABCPUD-MKP can effectively decrease the iteration
number. As shown in Figure 7, the advantage in runtime is
the most remarkable on almost all instances. This denotes
that the pheromone updating and diffusing can accelerate the
optimization process by strengthening the communication
among bees.

4.3. Comparing ABCPUD-MKP with Other Algorithms. To
further evaluate the new algorithm, we compare the solution
performance of different algorithms on some large problems.
Our main objective in this section is to determine whether
ABCPUD-MKP is more efficient and effective on comparable
performances than these state-of-the-art approaches which
employed various stochastic search schemes in recent years.

We compare the performance of ABCPUD-MKP with
that of GA-MKP [5], B&B-EA-MKP [7], Ant-knapsack [11],
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TABLE 2: The results for two algorithms on some instances.

Instance statistic Algoritm
ABC-MKP ABCPUD-MKP
Best 24274 (24274) 24274 (24274)
Avg. 24274 + 0.0 24274+ 0.0
5100.01 Num. 130.25+ 108.78 (53) 87.60 + 74.02 (35)
Hit. 10 10
Time (s) 12.50 + 10.87 (4.88) 7.44 + 6.56 (2.70)
Best 23534 (23534) 23534 (23534)
Avg. 23534 £ 0.0 23534 £ 0.0
5.100.03 Num. 4118.33 +782.49 (2356) 2571.0 + 551.54 (2181)
Hit. 10 10
Time (s) 389.45 +70.26 (223.03) 216.21 + 5111 (197.92)
Best 24613 (24613) 24613 (24613)
Avg. 24613 + 0.0 24613 + 0.0
5100.05 Num.  178.8+63.33 (110) 96.0 + 21.74 (74)
Hit. 10 10
Time (s) 14.24 +5.05 (8.67) 8.03 + 1.80 (5.89)
Best 22801 (22801) 22801 (22801)
Avg. 22801+ 0.0 22801+ 0.0
10.100.01 Num. 3824.67 +2959.10 (844) 3161.79 + 2331.48 (103)
Hit. 10 10
Time (s) 318.72 + 304.74 (88.52) 276.22 + 244.62 (10.41)
Best 22772 (22772) 22772 (22772)
Avg. 22772 £ 0.0 22772 £ 0.0
10.100.03 Num. 5707.0 + 1035.23 (4483) 4441.5 + 1469.34 (2855)
Hit. 10 10
Time (s) 506.3 + 97.47 (400.33) 399.15 + 133.47 (254.10)
Best 22777 (22777) 22777 (22777)
Avg. 22761.8 +£29.50 22771.3 +19.30
10.100.05 Num. 5887.6 +2743.9 (585) 3706.8 + 2345.87 (258)
Hit. 7 9

Time (s) 633.32 + 349.37 (65.16) 338.09 + 209.85 (23.07)

ACOMPD-MKP [12], and ABC-MKP. GA-MKP incorpo-
rates a heuristic operator which utilizes problem-specific
knowledge into the genetic algorithm to solve the multi-
dimensional knapsack problem. B&B-EA-MKP is a hybrid
approach which cooperates an evolutionary algorithm (EA)
with the branch and bound method (B&B) by exchanging
information. Ant-knapsack is an ACO algorithm for the
multidimensional knapsack problem, which lays pheromone
trails not only on the edges of the visited paths but on all
edges connecting any pair of nodes belonging to the solution.
ACOMPD-MKP proposed in our prophase research is a
novel Ant algorithm, which employs a pheromone diffusion
model and a solution mutation strategy to get high quality
results. Moreover, as described in Section 2.2, ABC-MKP
is a new algorithm which applies ABC algorithm to solve
the multidimensional knapsack problem. Therefore, these
algorithms are stochastic search approaches, which need to
be executed time after time for each testing instance.

In Table 3, we summarize the comparative results, where
the results of GA-MKP, B&B-EA-MKP, Ant-knapsack, and
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FIGURE 6: Comparison of the iteration performance on different
instances: (a) the iteration numbers, (b) the runtime of an iteration.

ACOMPD-MKP are derived from the respective literature
(represents no testing) while the results of ABC-MKP and
ABCPUD-MKP algorithms obtained by our experiment over
10 runs.

As it can be seen, ABCPUD-MKP always finds all
best solutions on six instances in terms of the profit value
while other algorithms only find some best solutions. For
instance, ACOMPD-MKP can find the best solutions on
five instances except for 5.500.29, B&B-EA-MKP can find
best solutions on 5.100.00, 10.100.00, 5.250.00, and 5.500.29
instances. As for the average solutions, ABCPUD-MKP is
also competitive with B&B-EA-MKP which provides the
highest quality results so far. More specifically, B&B-EA-
MKP produces better results than that of ABCPUD-MKP
on 5.250.00, 5.250.29, and 5.500.29 instances, and ABCPUD-
MKP produces better results than that of B&B-EA-MKP on
5.100.29 and 10.100.00 instances while both algorithms can
obtain the best results on 5.100.00 instance. Moreover, the
results of average solutions which ABCPUD-MKP produces
on 5.250.00, 5.250.29, and 5.500.29 instances are only inferior
to that of B&B-EA-MKP. Thus, ABCPUD-MKP is the most
outstanding algorithm in terms of the solution quality.
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TABLE 3: Solution comparison among GA [5], B&B-GA [7], Ant-knapsack [11], ACOMPD-MKP [12], ABC-MKP, and ABCPUD-MKP

algorithms.
. . Instance
Algorithm Solution
5.100.00 5.100.29 10.100.00 5.250.00 5.250.29 5.500.29
GA-MKP Best 24381 59960 23064 59243 154668 299885
Avg. 24381 £ 0.0 59960 + 0.0 23050.2 £19.2 59211.7 +£18.0 154626.2 £ 31.7 299842.7 + 26.9
B&B-EA-MKP Best 24381 59965 23064 59312 154668 299904
Avg. 24381 £ 0.0 59965 + 0.0 23059.1 £3.2 59305.1 + 20.7 154668 + 0 299902.3 +5.1
Ant-knapsack Best 24381 59965 23064 — — —
Avg. 24342 +£29.3 59958 + 8.4 23016 £42.2 — — —
ACOMPD-MKP Best 24381 60117 23064 59312 154735 299853
Avg. 24362.8 £25.5 59979.1 +34.4 23051.2+16.7 59152 +67.3 154622.3 +48.3  299817.0 + 24.5
ABC-MKP Best 24381 59965 23064 59243 154668 299885
Avg. 24381+ 0.0 59961.0 £ 2.1 23059.1 +£ 3.9 592152 +17.3 154637.4+15.5 299804.4 + 59.1
ABCPUD-MKP Best 24381 60117 23064 59312 154735 299904
Avg. 24381+ 0.0 60015.4 + 62.6  23060.4 +4.1  59222.6 +355 154649.2 +34.2 299848.0 + 42.4

Running time (s)

0 1 2 3 4 5 6 7 8 9
Ten instances of 10.100

o ABC-MKP
B ABCPUD-MKP

FIGURE 7: Comparison of the time performance on different instan-
ces.

5. Conclusion

In this paper, we propose an ABC algorithm, ABCPUD-
MKEP, to solve the 0-1 multidimensional knapsack problem
effectively and efficiently. This algorithm differs from general
ABC algorithms in the fact that a new communication way
based on an inductive pheromone is introduced. More specif-
ically, the new algorithm applies the pheromone updating and
diffusion to extend the ABC algorithm. The new algorithm
has been tested on many instances of the MKP problem with
encouraging results: the new algorithm is superior in terms
of the computational time on all instances compared to ABC-
MKP algorithm, while it can also achieve best solution quality
on all instances. We have also presented the performance
comparison among GA-MKP, B&B-EA-MKP, Ant-knapsack,
ACOMPD-MKP, ABC-MKP, and ABCPUD-MKP on some
large problems and found that ABCPUD-MKP can find the
best optimization solutions on all problems tested.

The new mechanism employs the chemical communica-
tion way to strength the collaboration among bees, which not

only can keep the balance between exploitation and explora-
tion, but also can effectively look into promising regions of
the search space. Thus, the new mechanism is equally sig-
nificant for ABC algorithms to tackle difficult combinatorial
problems. Our future work is to extend our study to other
NP-hard problems such as traveling salesman problem and
Bayesian network structure learning.
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