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Linear matrices inequalities (LMIs) method and the contraction mapping theorem were employed to prove the existence of globally
exponentially stable trivial solution for impulsive Cohen-Grossberg neural networks (CGNNs). It is worth mentioning that it is the
first time to use the contraction mapping theorem to prove the stability for CGNNs while only the Leray-Schauder fixed point
theorem was applied in previous related literature. An example is given to illustrate the effectiveness of the proposed methods due

to the large allowable variation range of impulse.

1. Introduction and Preliminaries

Dynamics of Cohen-Grossberg neural networks (CGNNs)
has been extensively investigated due to its immense poten-
tials of application perspective in various areas such as
pattern recognition, parallel computing, associate memory;,
combinational optimization, and signal and image process-
ing. However, these successful applications always depend
on the stability of the equilibrium solution for CGNNs. All
the time, the method of Lyapunov theory has usually been
employed to solve the stability problem of dynamical systems
[1-11]. In studying the stability of neural networks, Lyapunov-
Krasovskii functional method can always be combined with
other methods in a perfect way, such as the linear matrix
inequality (LMI) optimization approach, M-Matrix theory,
and nonsmooth analysis technique (see, e.g., [6-8]). Of
course, as one of stability analysis methods, the Lyapunov
method has its limitations. In fact, a stability criterion is
regarded as an effective and efficient method for impulsive
neural networks if a larger variation range of impulse is
allowable (see, e.g., [12, Remark 11]). Thereby, using the
methods different from Lyapunov direct method may obtain
a more efficient stability criterion for impulsive systems.
Indeed, fixed point theories have always been considered by

many authors. Burton [13, 14], Rao and Pu [15], Jung [16],
Luo [17], Zhang [18], and Wu et al. [19] studied the stability
by using the fixed point theory which solved the difficulties
encountered in the study of stability by means of Lyapunov’s
direct method. Contraction mapping theorem was the usual
method to study the stability of neural networks, except
CGNNs. Owing to some difficulties, only the Leray-Schauder
fixed point theorem was considered in investigating the
stability of CGNNs [20, 21]. In this paper, contraction map-
ping theorem is applied to the stability analysis for CGNNs.
We wish that our newly obtained stability criterion will
allow a larger variation range of impulses against a series of
previously related literatures. This is the main purpose of this
paper.
Consider the following CGNNs:

dx. (1)
= (s 0) (5, 0)

- i [Cjkfk (% () + d e gi (xk (t -1 (t)))]]’ ,

t20, t 1,


https://core.ac.uk/display/194613702?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ax; () = x; () = x; (t;) = pji (xj (ti))’
i=1,2,...,

x;(6) = ¢;6),

-7<60<0,
(1

where j € /£ {1,2,...,n}. aj(xj(t)) and bj(xj(t)) represent
an amplification function at time ¢ and an appropriately
behaved function at time ¢. f;(-) and g, (-) are the activation
functions of the neurons, and cj and dj are connection
parameters. The time-varying delays 7,(f) € [0, 7]. The
impulsive moments ¢; (i = 1,2,...) satisty 0 = £, < t; <t, <
-+, and lim; _, ,t; = +0o0. xj(ti*) and x(t;) stand for the
right-hand and left-hand limit of x ;(t) at time ¢;, respectively.
pji(x;(t;)) means the abrupt change of x;(t) at the impulsive
moment ¢; and pji(-) € C[R,R].

Throughout this paper, we assume that bj(O) = fj(O)
gj(O) = p]-,-(O) =0forj € #andi=1,2,....Denote by x(t)
x(t:0,¢9) = (x,(t:0,¢,),...,x,(0, ¢n))T € R” the solution
for system (1) with the initial condition xj(B) = (/>j(0), -7 <
6 <0, je N, where $(8) = (¢,(0),...,¢,0))" € R" and
qu(O) € C[[-7,0],R]. The solution x(¢) 2 x(t;0,¢) € R"
of system (1) is, for the time variable t, a continuous vector-
valued function.

Throughout this paper, we assume the following.

> 1l

(HI) For any j € /¥, there exist constants 1_31- >0, @j >0,
F;>0,and G; > 0 such that

|f; (0] < F,
lg; (| <G,
|f; () = £, )| < Fjlr = s, )
|9,(1) = g; 9| <G Ir =l
Vr,s € R.

(H2) Forany j € J/, aj(-) is differentiable, and there exists
a constant a; such that

0<a;(r)<a
|a} (| < @, (3)
r € R.

(H3) There exist nonnegative constants h i such that

lpji () = pyi ()] < el =
(4)
Vr,s€R, jeN,i=12,...

(H4) For j € /, there exist Yj(t) and a constant y; >0 such
that

Y;(t) >y, V20,

(5)
a; (r) bj (r) = Y; (t)r, reR.
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Remark 1. aj(-) represents an amplification function; bj(~)
is an appropriate behavior function. There exist a lot of
functions satisfying the above assumptions. For example, let
joe N 2 AL2} bi(x,(1) = 2x,.(t), b(x, (1) = 2x,(¢),
a;(x;(t)) = a,(x,(t)) = 2 + cost, and then aj(r)bj(r) =
2(2 + cost)r = Yj(t)r; hence Yj(t) = 2(2 + cost). Now we
let y; = 2, and obviously Y(t) > y;.

From the above assumptions, it is obvious that the null
solution is a trivial solution for system (1).

Definition 2. System (1) is said to be globally exponentially
stable if for any initial condition ¢(0) € C[[-7,0], R"] there
exist positive constants A and y such that

| (£:6,9)] < Ae™, Vt>o0. (6)

Lemma 3 (see [22]). Let 7 be a contraction operator on a
complete metric space X; then there exists a unique point& € X
for which n(§) = &.

2. Main Result

Before giving the main result, we may firstly definite some
matrices as follows:

C = ([e]),r-
D= (ldfk )nxn ?
A = diag(a,...,a,),

F,), ™)
G= diag(él,...
F = diag (F,,...,E,),
G = diag (G,, ...

I =diag(y,-.-7,)-

Assume, in addition, there exists the constant h; with h; <
hju for each j € //, and y is a positive constant, satisfying
p <infi_, {t; —t; 1}. Denote H = diag(hy,...,h,).
Theorem 4. If there exists a positive constant « < 1 such that
the following LMI condition holds:

CFA + DGA + H + ul' + CFA + DGA < aTA,  (8)

then system (1) is globally exponentially stable.
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Proof. Our proof is based on the contraction mapping prin-
ciple (Lemma 3), which may be divided into four steps.
Step 1. We may set up a space frame.
Let ® = ©; x ©, x ®,, and let ©; (j € /) be the

space consisting of functions qj(t) : [-7,00) — R such that,
forany j € ./,

(a) qj(t) is continuous on ¢t € [0,00) with t # ¢; (i =
1,2,...);

(b) q;(6) = ¢,(0), —T <0 <0;

(o) eﬁtqj(t) — 0O0ast — +o00, where 3 > 0 is the con-
stant with < min{liminf, _, ([ Y,(s)ds/t), y;};

(d) both limtﬂti-qj(t) and limtﬁt;qj(t) exist; besides,
lim,_,-q;(t) = q;(t;) fori =1,2,....

Moreover, ® is a complete metric space if it is equipped
with a metric defined by

n

dist (¢, ) Z( pla; - q,(t)l> (9)

j=1

where q = q(t) = (q,(t), q,(t), . .. ,qn(t))T €®and g =4(t) =

(G,(8), 3, (8),...,3,E)" € 0.

Remark 5. 1t is followed by f < liminf, | +00(J; Y;(s)ds/t)
that

d
—00 < lim inf< JO (S) S)

t— +00

d
< lim sup < IO (S) ’ ) t (10)

t — +00

foy;@ds\
< ﬁ—hmlnff limsup t < —o0,

f—+o0 t—+00

and hence

t
lim e#~hY©4 _ g, (1)

t— +00

Step 2. Frame a mapping on the space ©.

3
Multiplying both sides of system (1) with el Yi9ds yields,
fort >0andt #t; (i=1,2,...),
d (eff; Yf(s)dsxj (t)> . \
= _ Y] (t) eIO Yj(s)dsxj (t) + efo Yj(s)ds
dx. (t) Y (8)ds
A 10 eh V0% (1)

+ el Yi(o)ds { HENG) [ (x;0)

(12)

i(;kfk (i (1)) + g (i (1 ‘Tj(f))))”

—eh 9% (x50)) Y (cefi (ki ®)

-10)))-

Let ¢ > 0 be small enough. After integrating from ¢;_; + € to
te(t_,t;) (i=1,2,...), weget

=
—

+d i gk (xk (t

ti_1+e

eho Yj(s)dsxj (t) — el Y04

_ J~t ok VO, (x,(5)) )

Z(]kfk(xk(s) +d]kgk(xk( Tj(S))))dS

k=1

Letting e — 0in (13), we have

i
.[o 1Yj(s)dsxj (t+ )

i—-1

t
ek Yf(s)dsxj t)—e

to

_ {, Y0l

—L eh 0%, (x; )
1

i

(14)
. Z (cjkfk (xk () + d jrgi (xk (s -T; (s)))) ds,
k=1
te(tipnt) (=12,...).
Setting t = t; — & (¢ > 0) in (14), we obtain
eh” YJ(S)dSXj (ti—¢)- eh Y x; (t2,)
NIy
- L, e 10%a; (x; (5) (15)

Z(]kfk (xk (5)) + d jicg (xk( T (5))))d5’

k=1



which yields by letting e — 0

t
eh Yf(s)dsxj (t;) - el

)dsxj (titl)
ti,
x (1) = el YO (g )

- [} e )

i-1

—e [i;(9)ds

(16)

i ( Cir fie (%1 (9)) + d g (xk (5— (5))))015

k=1

Combining (14) and (16) results in

'Y (s)d 1y (5)d
eh it Sx; (t) - el Yj(ds (xj (tiy)

by (3 (62))) = eF 5% €

t; ¢ s
Ly (s)d + _ Y. (h)dl
— e.‘ro i\ S_x]. (ti—l) = J; 6'[0 J aj (X] (5)) (17)
1

i ( ]kfk Xk (s))+d1kgk (xk (s—‘r (s))))ds,

k=1

ti*l <t S tl (i = 1,2,...).
Hence,

elo Y59 el s

( (12)
k0 (x; 5)

x;(tig) =
* Pj(i-2) (xj (ti—z))) = JtH

tip

i(]kfk (1 (9)) + djege (i (s = 7;(5)) ) ) ds,

k=1

eIOtz YJ(S)dej (t,) - eIO i(s)ds ( X; () + Pj1 (Xj (tl))) (18)

t2 s

_ [y,

—L el 0%, (x;(9))
1

i(]kfk (%k (S))"'d]kgk (xk (S—T (S))))

el X6

(1) ¢;(0) = J I"Y(l)dlaj (xj(s))

Z ( Cirfr (2 (9)) + d g (xk( T (5))))ds’

k=0
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which produces

x;(1) = b 19, 0)

el (g [ ) (x,(9)

n (19)
Z (ciefi (i (9)) + djegi (e (s — 7 (5))))] ds
Fe B TOE S (5 (1)) b V9%, 150,
0<t;<t
Thereby, we may define the mapping ® x(t) —
O(x)(t), where x(t) = (xl(t),...,xj(t),...,xn(t))T
and O(x)(t) = (fl)(xl)(t),...,(D(xj)(t),...,GD(xn)(t))T. In
addition, for any j € ///, the mapping ®(x;)(t) : [-7,00) —
R satisfies
 (x;) (6) = e B 9% (0)
+ Lt e [0 [aj (x]» (s))
(20)

i ( Cirfie (1 (5)) + d e g (xk ( -1 (s))))] ds

+ e J.OY(SdS Z <p (

0o<t;<t

) Y (s)ds) t>0,

and CD(xj)(H) = ¢j(0) as—7<0<0.

Next, we will prove that <D(®j) cO; Vjed.

It is obvious that conditions (a) and (b) hold in ®(® j). So
we only need to prove that, for any x;(t) € ©;,

@ (x;)| — 0, t — +oo. (1)
Indeed, it is obvious that
e @ (x;)] < Q +Q +Q; + Qy (22)
where

Q, = Plo Y(s)ds¢ (0)|

(x (s)) Z Cafre (x1 (8)) ds

>

t t
sz eﬁtJ- 7.[5 }
0

t t
Q, = | L o Y,.(z)dzaj (xj (s)) (23)

—Tj (s)))ds

Y dugi (% (s

k=1

>

Bt o Iy Yy()ds z (Pji (xj (tl-)))e ) Yj(ods|

0<t;<t

Q= e
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It follows by B < liminf, (], Y;(s)ds/t) that

ePle” I;Yf(s)dstz Bl YIOE 0 a5t — 400, And hence
Q, = |eﬁte‘onJ(s)d5¢j(0)| — 0ast — oo.
Note that e’ x;(t) — 0if x(t) € ©,, Vj € . So, for

any € > 0, there exists a positive constant N such that

|e'x; (1) <&Vt € [N,+00). (24)

Thereby,

jo j(5)ds (t)l — oy Yi(o)ds—pr ' thj (t)|
(25)
< el Vi vy ¢ [N, +00).

The continuity of xj(t) derives that there exists a constant
M > 0 such that

|e'x; (1) < M, vt e[0,N], (26)

t t
el Y,-(s)dsxj (t)’ = oo is)ds—pr) |eﬁtxj (t)'

< M max <e(I°Y(s s ﬁt)) 27)
te[0,N]
vt € [0,N].
In addition, condition (HI) yields that |f,(x.(s))| =
| fe(x(8)) — fr(0)] < Filxi(s) — 0. Let t > N, and we can

derive from (25), (27), and the change of variable formula for
integrals that

N n
—([2;()ds-pt) —
ectmen| a3
=1

s t n
Y ()dl —
el ¥i® xk(s)'ds+JNajZ.cjk|
k=1

N t
ejo Yj(l)dlxk (s)l ds] < e—(jo Y, (s)ds—pt) [ M
(y,odspn [N = <
. max [ e i\ >J a. c.| F.ds
te[o,N]< 0 Jk;| Jk' k (28)

n t s
- (3 Wdi-Bs)
+ajkz |cjk|Fk£ JNeJU s(Ddl=fs d5:|
-1

< e U s | pp o <e(j(§ Yj(s)dsfﬁt)>
te[0,N]

— n

a; Yot | B

n
Na; ) Jeu| Fe | + -
k=1 Yi—B

Now we can conclude from the arbitrariness of € that Q, —
0,t — oo.

Similarly, condition (H2) yields

Qs < e’(ﬁf Y;($)ds=pt) J )Yl Z | d, |
-Gy 'xk (S - T; (s))' ds

n
Br_~(J, Y,(s)ds—pD)=
<ete o ajkz 'djk|Gk
=1

t s
) J oUo Yj(Ddi=Bs) PO (s - (s))| ds.
0

Lett > N + 7; we can get by (24)

t s
J, e S (5 7y 9 s
0

Ny 0
:J e OA | BT (57, ()| ds
0

. J L0 | e
N+t

X (s -1 (s))| ds

< sup [Py, (s -1 (s))|

s€[0,N+71] (30)

N+t s t
. J s 0d1-p3) 4o +J
0

N+t

et GiOdI=Bs) o g
< sup |eﬁ3xk (s)' (N +1)

s€[-1,N+71]

¢ jo‘ Y;(s)ds—pt)

yj_/j

max el YOI |

s€[-1,N+71]

Combining (29) and (30) results in

n
—([3 Y;(s)ds-Bt)=
Q3 Seﬁ‘[e '[0 s F ajz |d]k'Gk
k=1

PECIO)

. Jt e(fg Y;(Ddl-ps) X (s -1 (s))| ds
0

. <eﬁfaj 3 ld, |
k=1

sup 'eﬁsxk (s)| (N +1) (1)
s€[-1,N+71]

max e(Ig Y;(Ddl-ps) ) e‘(f; Y;(s)ds—pt)
s€[-1,N+71]
eﬁTaJ» ZZ=1 'd]k| Gk .

Yi— B

Then the arbitrariness of ¢ yields that Q; — 0,t — oo.



It follows by (H3) and (25) that

R ) E

0<t;<t

Y(s)ds Z |P

0<t;<t

t
<eﬁ

(e K 0

Y(s)ds Z h,, 'x (t)| jo

0<t;<t

t 4
= o~ Yy(9)ds—p0) Z h, ' x; (t,.)|efo Y;(s)ds (32)

0<t;<N

JaX;(9)ds Z h, |x (t: )' [i;()ds

N<t;<t

e—(jo’yj(s)ds—ﬁt) Z h, 'xj (ti)|eI;iY](s)ds

0<t;<N

JaX;(9)ds Z h; |x (t, )' X Yj(s)ds.

N<t;<t

t
<eﬁ

In addition,

d

T B >0, (33)

<J Y (s)ds - ﬁt>=Yj(t)—ﬁ>Y—

which implies the function ( _[Ot Yj(s)ds — pt) is an increasing
function on ¢ > 0. This yields

eﬁt Y(s)ds Z h 'X

N<t;<t

) 0%

Y(s)ds Z h Ix ' OY'(S)dS_ﬁti)

N<t; <ty

t [l 5)d (Jo ¥ )ds—pty)
<ePle e *hje z ‘uefﬂ (s)ds=P

N<t; <ty

t
<efle s Yf(s)dshje [ Z

N<t;<ty

t
e(j‘) Y5(ds=pt) (tin — ti))

N yeI Y;(s)ds— ﬂtk):| (34)

t t s
< et Oy [ J o Y 0d1-ps) 4
N

N Yj(s)ds—ﬁt)] < Fom sy

‘y-B
t s s

. j o 0di=p9) 4 (J Y; (1)dl - ﬁs) + phe
N 0

+ ue

Shj—— +phje.
Ty - ﬂ

From (32) and (34), the arbitrariness of e yields that Q, —
0,t — oo.
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So we can deduce from the above analysis that
Ieﬁtd)(xj)l — 0,t — 400, and hence the condition
(c) is satisfied.

Next we are to prove that condition (d) holds in ®(® i)

Indeed, for a given t;, it follows from (20) that

O(x)(t;+r)-0(x)(t;) =P, +P,, (35)

where

P1 = {e .l.ol Yj(s)ds(/)j (0)

0

+J~ti+r _J-twy(l)d [ (x] (S))

M=

(Cjkfk (xk (5)) + d e g (xk (5 —Tj (5))))] ds}

=~
Il

1

B {e"f;i Yj(s)ds¢ (0)+J K Y(l)dl|: (xj (S)) (36)

i (i fic (e (9) + d g (xic (s = 7 (s))))] ds} ,

k=1
PZ e J’O‘iw Y, (s)ds Z (ij (xj (tk))) eJ'v‘k Y;(s)ds
0<ty<t;j+r
ST S (o 00)
0<t<t;

It is obvious that P, — 0 asr — 0. From (36), we can
get by letting v < 0 be small enough

P2 _ (e— Igiﬂ Yj(s)ds e _[(:i Yj(s)ds>

Y (i (x;(6)) e

0<ty<t;

(37)
Y (s)ds

which implies that lim, _, - P, = 0. On the other hand, letting
r > 0 be small enough, we have

P=e b |: Z (ij( j(tk))ejﬂtk Yf(s)ds)

0<t<t;

vy (3, () & >]

e Jotl Yj(s)ds Z (ij ( (tk))) Y (s)ds

0<te<t; (38)
_ (e— [ Yi@ds _ - fy Yj(s)ds)

Z (Pf" (xJ (tk)) eff;k Yj(s)ds>

0<ti<t;
Y (s)ds

v Jofw Yj(S)dSle ( (t ))



Mathematical Problems in Engineering

which leads to lim, _, o+ P, = pj,»(xj(ti)). Hence, condition (d)
holds in (D(®j).

It is derived by the above analysis that ®(®;) ¢ ©; for
all j.

Step 3. We claim that @ is a contraction mapping on ©.
Indeed, for x(t) = (x,(t),..., xi(6)s .. xn(t))T € ® and

y(£) = (3 ()., y;(B), ..., y,(1)" € ©, we have
@ (x)) O -0 (y;) O <Tp+Tp+ T (39

where
'y oa
]ﬂ:I Rl
0

()’] (5))2 acfi (i (5))

n

a; (xj (S)) Z Citfre (%1 (5))

a; (x;(s)) ,;Cj"fk (% () —a; (3 (9)) kzlcjkfk (5 (9))

s Z (| (Ja; (x; 9) fic (i () -

7
Ji = J e Lo a; (%)
0
Y digi (x5 (s 79)) -9, (7))
k=1
Y digi (i (s 75 (9)))| ds
k=1
Jjz = e [y Y;(o)ds Z <|Pﬁ (xJ (ti)) = Pji (yj (t,))l
0<t;<t
. ej.oti Yj(s)ds> )
(40)

It follows by the triangle inequality, (H1), (H2), and the
differential mean value theorem that

a; (Xj (5)) fre (k (5))|

+|a; (%)) fie 0 () = a; (7, 9) fie 5 9))])] Z (o] @;Fx | () = 3 (9)]) + < Ilek>aj|xj(s>

—Jj (5)| >

a; (x;(5)) kzld wdk (ki (s—7;(9)) -

n

k=1

(laj (x;9)) ge (xic (s = 7 9)) = 3 (%, 9)) g (e (s = 7.(9)))]|

a;(y;9) Yduge e (s —7,9)))| <

<3 [la] (ay
k=1

+a; (%) g O (s = 759)) = a; (7, ) g e (s =7 )] < X (|dje| @,Gi [xic (s = 7))
k=1

~ i (s=7,9)|) + (Z |djk'6k> alx; () - y; 9]
k=1

On the other hand,

t t ] Y;(dl s
L od g =J e d(J Y, dl)
.[0 ¢ R0 o’ ®

J

t ol L0dl s
<| d(J Y, (l)dl>
0 Yi 0

o Yy

Yj

N

(42)

So we can get by the above analysis

T < j ”“”[Z leie|@F % (5) = yic (9)]) + < Ilek>aj|xj(s)—yj(s>|]ds

k=1

<e [y X;(9)ds [

k=1

Z <|Cjk'ﬁijsSl1_I:|xz< (8) = (s)|> <Z |ch| Fk> a; sup |x (s) - y; (s)'] J RACETEN
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. (maxke/,/| k|Fk a; dist (x, y) + ZZ:I ' k'Fk
Vi Yj

e —fmdz[z |djk|ajck|xk(s_fj<s>)_yk(s_fj<s>)|)+(kz_l|djk|ak)aj|xj(s>_yj<s>|]ds

sup |x; (1) = y; ()]

<e [y Yj(s)ds [Z <|djk|ﬁijsup |k () = i (s)|> + <Z |d]k.Gk> a, sup |x OES? (s)'] J o Yihdl g
k=1 $2-T

d; a; d
< Der (| Jk' Gk) % dist (%, y)+ Msup 'x t) - y; (t)|
j Vi
]]3 <e fo (s)ds Z <hji |xj (t,‘) -y, (ti)l eJO‘i Yj(s)ds> < hje— jor Yj(s)dssup .xj (ti) —y, (t,’). Z ([lej‘;i Yj(s)ds>
0<t;<t - 0<t;<t

shje-lﬂf“’dssup|x,~<r,~>—y,~(t,~>|( Y O () 4 ek Y<S>d$><he bYOsup [, 1) - (1)
t2—1

0<t; <ty

tos ¢
: (J eh 105 + el Yf(”‘“) <hj (l + M) sup |x; (1;) — ; (1,)].
0 Yi -1

(43)
So we have Therefore, we can derive by the above analysis and the LMI
condition
su (D t CD B < su ] +Jn+]
tﬁ' 1) 0= (y;) 1) < P Utz ) dist (® (x), D ()) = Zsup|<D( ) © -0 (y;) )
j=1t=
(maxie.r |ex| Fi) a; _ _
< Y dist (x, y) B i {(maxkeﬂ 'c]-k|Fk)aj+maxkE/,/ ('djk|Gk)a]
n j=1 Yj
(Tt ' k' Fy)a .
+ —SUP 'x t) -y (t)' - dist (x, y) (45)
Vi
maxe (|4,] G, . (X [eie| F) @ + (T || Gi) @ + y +
+ dist (x, y) Y
Vi
D=1 || Gi ssup |x; (t) — y; ()| p < adist(x, y),
%sup |x *) - y; (t)| t23| i =yl )l (. 7)
V) (44)
+h; (- + [4> sup | x; (t;) - ¥ (t; )| which implies that @ is a contraction mapping on ®. And
Y =t then the contraction mapping theorem yields the idea that
)z 416z ® has the fixed point x(¢) on ®, which implies that x(¢) is the
< (maxke/y 'Cjk' k) a; + MaAXpe yr (' J'k' k) 4 solution for system (1), satisfying P x| — 0ast — oo.
Y And then the proof is completed. O
- dist (x, )
Remark 6. As far as we can know, there is not any previous
Zk 1 ' k' F k)@t Zk 1 |d jk' Gk aj+h;+py; literature related to the fixed point theory where LMI-based
y; stability criteria were presented, except for [15]. In this paper,
! the LMI-based stability criterion is the first time to be
- sup ' X () -y (t)'. proposed for impulsive CGNNs via fixed point theorems.
t2-7

This is another main contribution of this paper.
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3. Numerical Example

Example 1. Consider
d
xdl—t(t) =—a, (x, (1)) {bl (x, (1))

- 3 oo )+ (-5, ).

t=0, t#t,

d
Ef)=—%c@a»{@(na»

(46)
2

Z [ea fie (i (8)) + g (i (= 7 (t)))]}

k=1

£>0, t£t,
Ax; (t;) = x; (t]) = x; (t;) = pj; (xj (ti))’
i=1,2,...,

x;(0) = ¢, (0),
where j € A/ 2 {1,2}, bi(x,(t)) = 2x,(t), b,(x,(t)) = 2x,(¢),
a, (x,(t)) = a,(x,(t)) = 2 + cost, and then aj(r)bj(r) =212+
cost)r = Yj(t)r; hence Yj(t) = 2(2 + cost). Let Vi =2 and
thenY(t) =212+ cost) 2y >0, let a; = 3 then 0 <
a(r)—(2+c0st) 0 <aj anda()—O Soweletﬁ:O
and Ia )] < a;. LetJ' Y(s)ds =4t +2sint. Let f =1 >0,

and then lim 1nftH+OO(J Y; (s)ds/t) = 4 > B and Vi > /3
Let f;(r) = sin 2(r/10) = g,(r), i=1,2;then F, = G

b(0) = f,(0) = g,(0) = OandF—G—021—12
Define p;; = arctan(1.7x;(t;)) and t; — £;,_; = 0.5i for j =
1,2, i=1,2,....Leth;; = 1.7,h; = 3.4,and y = 0.5, and then
hj; < hju holds.

-7<0<0, jeJ,

In addition, let ¢;, = dj = 0.05 for j,k € /5 then we
can use Matlab LMI toolbox to solve the LMI condition in
Theorem 4 and obtain

o« =0.8351 < 1. (47)

According to Theorem 4, system (46) is globally exponen-
tially stable.

Remark 7. To compare the upper bounds of time delay and
impulse in various related literature, we need to compute
and compare the ratios between the maximum of allowable
impulse and maximum of parameters in various related
literature, because the maximum of allowable impulse may
rise as parameters of numerical examples become bigger.
From Table 1, the ratios of Example 1 (ours) are bigger than
those of [1, 4, 10, 11] to some extent. In addition, impulse
value of [9, Example 4.1] is less than 1 while ours of Example 1
is 1.7 > 1. It is well known that bigger impulse gives

TABLE 1: Ratios between allowable upper bounds of impulse € and
maximum of parameters %.

P C|P
Example 1 (ours) 1.7 2 0.850
[1, Example 1] 1 3 0.333
[4, Example 1] 0.8 35 0.2286
[9, Example 4.1] 0.55 0.2 2.75
[10, Example Case 1] 0.81 4.8 0.1688
[11, Example] 0.7 6 0.1167

bigger influence on the stability. Thereby, the large allowable
variation range of impulse illustrates the effectiveness of our
new stability criterion.

Remark 8. The super limit 7 of time delays is actually infinite.

Remark 9. As far as we know, it is the first time to use
the contraction mapping theorem to prove the stability for
CGNNs. The method employed in this paper is different from
those of related literature [20, 21].

Remark 10. Of course, [1, 4, 9-11] involved more complicated
systems than ours, such as reaction-diffusion phenomena,
stochastic Markovian jumping, and parameters uncertainty.
Moreover, fixed point theories may not be employed to such
complicated systems. Thereby, we can not claim that the new
stability criterion is better than the criteria of [1, 4, 9-11] in all
aspects, for those results obtained in [1, 4, 9-11] solved what
Theorem 4 (ours) cannot involve. However, a further research
on applications of fixed point theories may have the widest
appeal of all. This is another purpose of writing this paper.
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