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Linearmatrices inequalities (LMIs)method and the contractionmapping theoremwere employed to prove the existence of globally
exponentially stable trivial solution for impulsive Cohen-Grossberg neural networks (CGNNs). It is worth mentioning that it is the
first time to use the contraction mapping theorem to prove the stability for CGNNs while only the Leray-Schauder fixed point
theorem was applied in previous related literature. An example is given to illustrate the effectiveness of the proposed methods due
to the large allowable variation range of impulse.

1. Introduction and Preliminaries

Dynamics of Cohen-Grossberg neural networks (CGNNs)
has been extensively investigated due to its immense poten-
tials of application perspective in various areas such as
pattern recognition, parallel computing, associate memory,
combinational optimization, and signal and image process-
ing. However, these successful applications always depend
on the stability of the equilibrium solution for CGNNs. All
the time, the method of Lyapunov theory has usually been
employed to solve the stability problem of dynamical systems
[1–11]. In studying the stability of neural networks, Lyapunov-
Krasovskii functional method can always be combined with
other methods in a perfect way, such as the linear matrix
inequality (LMI) optimization approach, 𝑀-Matrix theory,
and nonsmooth analysis technique (see, e.g., [6–8]). Of
course, as one of stability analysis methods, the Lyapunov
method has its limitations. In fact, a stability criterion is
regarded as an effective and efficient method for impulsive
neural networks if a larger variation range of impulse is
allowable (see, e.g., [12, Remark 11]). Thereby, using the
methods different from Lyapunov direct method may obtain
a more efficient stability criterion for impulsive systems.
Indeed, fixed point theories have always been considered by

many authors. Burton [13, 14], Rao and Pu [15], Jung [16],
Luo [17], Zhang [18], and Wu et al. [19] studied the stability
by using the fixed point theory which solved the difficulties
encountered in the study of stability by means of Lyapunov’s
direct method. Contraction mapping theorem was the usual
method to study the stability of neural networks, except
CGNNs. Owing to some difficulties, only the Leray-Schauder
fixed point theorem was considered in investigating the
stability of CGNNs [20, 21]. In this paper, contraction map-
ping theorem is applied to the stability analysis for CGNNs.
We wish that our newly obtained stability criterion will
allow a larger variation range of impulses against a series of
previously related literatures.This is the main purpose of this
paper.

Consider the following CGNNs:

𝑑𝑥𝑗 (𝑡)

𝑑𝑡
= −𝑎𝑗 (𝑥𝑗 (𝑡)) {𝑏𝑗 (𝑥𝑗 (𝑡))

−

𝑛

∑

𝑘=1

[𝑐𝑗𝑘𝑓𝑘 (𝑥𝑘 (𝑡)) + 𝑑𝑗𝑘𝑔𝑘 (𝑥𝑘 (𝑡 − 𝜏𝑗 (𝑡)))]} ,

𝑡 ⩾ 0, 𝑡 ̸= 𝑡𝑖,
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Δ𝑥𝑗 (𝑡𝑖) = 𝑥𝑗 (𝑡
+
𝑖 ) − 𝑥𝑗 (𝑡𝑖) = 𝜌𝑗𝑖 (𝑥𝑗 (𝑡𝑖)) ,

𝑖 = 1, 2, . . . ,

𝑥𝑗 (𝜃) = 𝜙𝑗 (𝜃) , − 𝜏 ⩽ 𝜃 ⩽ 0,

(1)

where 𝑗 ∈ N ≜ {1, 2, . . . , 𝑛}. 𝑎𝑗(𝑥𝑗(𝑡)) and 𝑏𝑗(𝑥𝑗(𝑡)) represent
an amplification function at time 𝑡 and an appropriately
behaved function at time 𝑡. 𝑓𝑘(⋅) and 𝑔𝑘(⋅) are the activation
functions of the neurons, and 𝑐𝑗𝑘 and 𝑑𝑗𝑘 are connection
parameters. The time-varying delays 𝜏𝑗(𝑡) ∈ [0, 𝜏]. The
impulsive moments 𝑡𝑖 (𝑖 = 1, 2, . . .) satisfy 0 = 𝑡0 < 𝑡1 < 𝑡2 <

⋅ ⋅ ⋅ , and lim𝑖→+∞𝑡𝑖 = +∞. 𝑥𝑗(𝑡
+
𝑖 ) and 𝑥𝑗(𝑡

−
𝑖 ) stand for the

right-hand and left-hand limit of 𝑥𝑗(𝑡) at time 𝑡𝑖, respectively.
𝜌𝑗𝑖(𝑥𝑗(𝑡𝑖)) means the abrupt change of 𝑥𝑗(𝑡) at the impulsive
moment 𝑡𝑖 and 𝜌𝑗𝑖(⋅) ∈ 𝐶[𝑅, 𝑅].

Throughout this paper, we assume that 𝑏𝑗(0) = 𝑓𝑗(0) =

𝑔𝑗(0) = 𝜌𝑗𝑖(0) = 0 for 𝑗 ∈ N and 𝑖 = 1, 2, . . .. Denote by 𝑥(𝑡) ≜
𝑥(𝑡; 𝜃, 𝜙) = (𝑥1(𝑡; 𝜃, 𝜙1), . . . , 𝑥𝑛(𝑡; 𝜃, 𝜙𝑛))

𝑇
∈ 𝑅
𝑛 the solution

for system (1) with the initial condition 𝑥𝑗(𝜃) = 𝜙𝑗(𝜃), −𝜏 ⩽

𝜃 ⩽ 0, 𝑗 ∈ N, where 𝜙(𝜃) = (𝜙1(𝜃), . . . , 𝜙𝑛(𝜃))
𝑇
∈ 𝑅
𝑛 and

𝜙𝑗(𝜃) ∈ 𝐶[[−𝜏, 0], 𝑅]. The solution 𝑥(𝑡) ≜ 𝑥(𝑡; 𝜃, 𝜙) ∈ 𝑅
𝑛

of system (1) is, for the time variable 𝑡, a continuous vector-
valued function.

Throughout this paper, we assume the following.

(H1) For any 𝑗 ∈ N, there exist constants 𝐹𝑗 > 0, 𝐺𝑗 > 0,
𝐹𝑗 > 0, and 𝐺𝑗 > 0 such that

󵄨󵄨󵄨󵄨󵄨
𝑓𝑗 (𝑟)

󵄨󵄨󵄨󵄨󵄨
⩽ 𝐹𝑗,

󵄨󵄨󵄨󵄨󵄨
𝑔𝑗 (𝑟)

󵄨󵄨󵄨󵄨󵄨
⩽ 𝐺𝑗,

󵄨󵄨󵄨󵄨󵄨
𝑓𝑗 (𝑟) − 𝑓𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨
⩽ 𝐹𝑗 |𝑟 − 𝑠| ,

󵄨󵄨󵄨󵄨󵄨
𝑔𝑗 (𝑟) − 𝑔𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨
⩽ 𝐺𝑗 |𝑟 − 𝑠| ,

∀𝑟, 𝑠 ∈ 𝑅.

(2)

(H2) For any 𝑗 ∈ N, 𝑎𝑗(⋅) is differentiable, and there exists
a constant 𝑎𝑗 such that

0 < 𝑎𝑗 (𝑟) ⩽ 𝑎𝑗,

󵄨󵄨󵄨󵄨󵄨
𝑎
󸀠
𝑗 (𝑟)

󵄨󵄨󵄨󵄨󵄨
⩽ 𝑎𝑗,

𝑟 ∈ 𝑅.

(3)

(H3) There exist nonnegative constants ℎ𝑗𝑖 such that
󵄨󵄨󵄨󵄨󵄨
𝜌𝑗𝑖 (𝑟) − 𝜌𝑗𝑖 (𝑠)

󵄨󵄨󵄨󵄨󵄨
⩽ ℎ𝑗𝑖 |𝑟 − 𝑠| ,

∀𝑟, 𝑠 ∈ 𝑅, 𝑗 ∈ N, 𝑖 = 1, 2, . . .

(4)

(H4) For 𝑗 ∈ N, there existΥ𝑗(𝑡) and a constant 𝛾𝑗 > 0 such
that

Υ𝑗 (𝑡) ⩾ 𝛾𝑗, ∀𝑡 ⩾ 0,

𝑎𝑗 (𝑟) 𝑏𝑗 (𝑟) = Υ𝑗 (𝑡) 𝑟, 𝑟 ∈ 𝑅.

(5)

Remark 1. 𝑎𝑗(⋅) represents an amplification function; 𝑏𝑗(⋅)
is an appropriate behavior function. There exist a lot of
functions satisfying the above assumptions. For example, let
𝑗 ∈ N ≜ {1, 2}, 𝑏1(𝑥1(𝑡)) = 2𝑥1(𝑡), 𝑏2(𝑥2(𝑡)) = 2𝑥2(𝑡),
𝑎1(𝑥1(𝑡)) = 𝑎2(𝑥2(𝑡)) = 2 + cos 𝑡, and then 𝑎𝑗(𝑟)𝑏𝑗(𝑟) =

2(2 + cos 𝑡)𝑟 = Υ𝑗(𝑡)𝑟; hence Υ𝑗(𝑡) = 2(2 + cos 𝑡). Now we
let 𝛾𝑗 = 2, and obviously Υ𝑗(𝑡) ⩾ 𝛾𝑗.

From the above assumptions, it is obvious that the null
solution is a trivial solution for system (1).

Definition 2. System (1) is said to be globally exponentially
stable if for any initial condition 𝜙(𝜃) ∈ 𝐶[[−𝜏, 0], 𝑅

𝑛
] there

exist positive constants 𝜆 and 𝜇 such that

󵄩󵄩󵄩󵄩𝑥 (𝑡; 𝜃, 𝜙)
󵄩󵄩󵄩󵄩 ⩽ 𝜆𝑒

−𝜇𝑡
, ∀𝑡 ⩾ 0. (6)

Lemma 3 (see [22]). Let 𝜋 be a contraction operator on a
complete metric space𝑋; then there exists a unique point 𝜉 ∈ 𝑋

for which 𝜋(𝜉) = 𝜉.

2. Main Result

Before giving the main result, we may firstly definite some
matrices as follows:

𝐶 = (
󵄨󵄨󵄨󵄨󵄨
𝑐𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
)
𝑛×𝑛

,

𝐷 = (
󵄨󵄨󵄨󵄨󵄨
𝑑𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
)
𝑛×𝑛

,

𝐴 = diag (𝑎1, . . . , 𝑎𝑛) ,

𝐴 = diag (𝑎1, . . . , 𝑎𝑛) ,

𝐹 = diag (𝐹1, . . . , 𝐹𝑛) ,

𝐺 = diag (𝐺1, . . . , 𝐺𝑛) ,

𝐹 = diag (𝐹1, . . . , 𝐹𝑛) ,

𝐺 = diag (𝐺1, . . . , 𝐺𝑛) ,

Γ = diag (𝛾1, . . . , 𝛾𝑛) .

(7)

Assume, in addition, there exists the constant ℎ𝑗 with ℎ𝑗𝑖 ⩽

ℎ𝑗𝜇 for each 𝑗 ∈ N, and 𝜇 is a positive constant, satisfying
𝜇 ⩽ inf 𝑖=1,2,...{𝑡𝑖 − 𝑡𝑖−1}. Denote𝐻 = diag(ℎ1, . . . , ℎ𝑛).

Theorem 4. If there exists a positive constant 𝛼 < 1 such that
the following LMI condition holds:

𝐶𝐹𝐴 + 𝐷𝐺𝐴 + 𝐻 + 𝜇Γ + 𝐶𝐹𝐴 + 𝐷𝐺𝐴 ⩽ 𝛼Γ𝐴, (8)

then system (1) is globally exponentially stable.
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Proof. Our proof is based on the contraction mapping prin-
ciple (Lemma 3), which may be divided into four steps.

Step 1. We may set up a space frame.
Let Θ = Θ1 × Θ2 × ⋅ ⋅ ⋅ × Θ𝑛, and let Θ𝑗 (𝑗 ∈ N) be the

space consisting of functions 𝑞𝑗(𝑡) : [−𝜏,∞) → 𝑅 such that,
for any 𝑗 ∈ N,

(a) 𝑞𝑗(𝑡) is continuous on 𝑡 ∈ [0,∞) with 𝑡 ̸= 𝑡𝑖 (𝑖 =

1, 2, . . .);

(b) 𝑞𝑗(𝜃) = 𝜙𝑗(𝜃), −𝜏 ⩽ 𝜃 ⩽ 0;

(c) 𝑒𝛽𝑡𝑞𝑗(𝑡) → 0 as 𝑡 → +∞, where 𝛽 > 0 is the con-
stant with 𝛽 < min{lim inf 𝑡→+∞(∫

𝑡

0
Υ𝑗(𝑠)𝑑𝑠/𝑡), 𝛾𝑗};

(d) both lim𝑡→ 𝑡−
𝑖

𝑞𝑗(𝑡) and lim𝑡→ 𝑡+
𝑖

𝑞𝑗(𝑡) exist; besides,
lim𝑡→ 𝑡−

𝑖

𝑞𝑗(𝑡) = 𝑞𝑗(𝑡𝑖) for 𝑖 = 1, 2, . . ..

Moreover, Θ is a complete metric space if it is equipped
with a metric defined by

dist (𝑞, ̆𝑞) =

𝑛

∑

𝑗=1

(sup
𝑡⩾−𝜏

󵄨󵄨󵄨󵄨󵄨
𝑞𝑗 (𝑡) − ̆𝑞𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨
) , (9)

where 𝑞 = 𝑞(𝑡) = (𝑞1(𝑡), 𝑞2(𝑡), . . . , 𝑞𝑛(𝑡))
𝑇
∈ Θ and ̆𝑞 = ̆𝑞(𝑡) =

( ̆𝑞1(𝑡), ̆𝑞2(𝑡), . . . , ̆𝑞𝑛(𝑡))
𝑇
∈ Θ.

Remark 5. It is followed by 𝛽 < lim inf 𝑡→+∞(∫
𝑡

0
Υ𝑗(𝑠)𝑑𝑠/𝑡)

that

−∞ ⩽ lim inf
𝑡→+∞

(𝛽 −

∫
𝑡

0
Υ𝑗 (𝑠) 𝑑𝑠

𝑡
) 𝑡

⩽ lim sup
𝑡→+∞

(𝛽 −

∫
𝑡

0
Υ𝑗 (𝑠) 𝑑𝑠

𝑡
) 𝑡

⩽ (𝛽 − lim inf
𝑡→+∞

∫
𝑡

0
Υ𝑗 (𝑠) 𝑑𝑠

𝑡
) lim sup
𝑡→+∞

𝑡 ⩽ −∞,

(10)

and hence

lim
𝑡→+∞

𝑒
(𝛽𝑡−∫

𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠)
= 0. (11)

Step 2. Frame a mapping on the space Θ.

Multiplying both sides of system (1) with 𝑒
∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠 yields,
for 𝑡 > 0 and 𝑡 ̸= 𝑡𝑖 (𝑖 = 1, 2, . . .),

𝑑(𝑒
∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
𝑥𝑗 (𝑡))

𝑑𝑡
= Υ𝑗 (𝑡) 𝑒

∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
𝑥𝑗 (𝑡) + 𝑒

∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠

⋅

𝑑𝑥𝑗 (𝑡)

𝑑𝑡
= Υ𝑗 (𝑡) 𝑒

∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
𝑥𝑗 (𝑡)

+ 𝑒
∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
{−𝑎𝑗 (𝑥𝑗 (𝑡)) [𝑏𝑗 (𝑥𝑗 (𝑡))

−

𝑛

∑

𝑘=1

(𝑐𝑗𝑘𝑓𝑘 (𝑥𝑘 (𝑡)) + 𝑑𝑗𝑘𝑔𝑘 (𝑥𝑘 (𝑡 − 𝜏𝑗 (𝑡))))]}

= 𝑒
∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
𝑎𝑗 (𝑥𝑗 (𝑡))

𝑛

∑

𝑘=1

(𝑐𝑗𝑘𝑓𝑘 (𝑥𝑘 (𝑡))

+ 𝑑𝑗𝑘𝑔𝑘 (𝑥𝑘 (𝑡 − 𝜏𝑗 (𝑡)))) .

(12)

Let 𝜀 > 0 be small enough. After integrating from 𝑡𝑖−1 + 𝜀 to
𝑡 ∈ (𝑡𝑖−1, 𝑡𝑖) (𝑖 = 1, 2, . . .), we get

𝑒
∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
𝑥𝑗 (𝑡) − 𝑒

∫
𝑡

𝑖−1

+𝜀

0

Υ
𝑗

(𝑠)𝑑𝑠
𝑥𝑗 (𝑡𝑖−1 + 𝜀)

= ∫

𝑡

𝑡
𝑖−1

+𝜀

𝑒
∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙
𝑎𝑗 (𝑥𝑗 (𝑠))

⋅

𝑛

∑

𝑘=1

(𝑐𝑗𝑘𝑓𝑘 (𝑥𝑘 (𝑠)) + 𝑑𝑗𝑘𝑔𝑘 (𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠)))) 𝑑𝑠.

(13)

Letting 𝜀 → 0 in (13), we have

𝑒
∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
𝑥𝑗 (𝑡) − 𝑒

∫
𝑡

𝑖−1

0

Υ
𝑗

(𝑠)𝑑𝑠
𝑥𝑗 (𝑡
+
𝑖−1)

= ∫

𝑡

𝑡
𝑖−1

𝑒
∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙
𝑎𝑗 (𝑥𝑗 (𝑠))

⋅

𝑛

∑

𝑘=1

(𝑐𝑗𝑘𝑓𝑘 (𝑥𝑘 (𝑠)) + 𝑑𝑗𝑘𝑔𝑘 (𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠)))) 𝑑𝑠,

𝑡 ∈ (𝑡𝑖−1, 𝑡𝑖) (𝑖 = 1, 2, . . .) .

(14)

Setting 𝑡 = 𝑡𝑖 − 𝜀 (𝜀 > 0) in (14), we obtain

𝑒
∫
𝑡

𝑖

−𝜀

0

Υ
𝑗

(𝑠)𝑑𝑠
𝑥𝑗 (𝑡𝑖 − 𝜀) − 𝑒

∫
𝑡

𝑖−1

0

Υ
𝑗

(𝑠)𝑑𝑠
𝑥𝑗 (𝑡
+
𝑖−1)

= ∫

𝑡
𝑖

−𝜀

𝑡
𝑖−1

𝑒
∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙
𝑎𝑗 (𝑥𝑗 (𝑠))

⋅

𝑛

∑

𝑘=1

(𝑐𝑗𝑘𝑓𝑘 (𝑥𝑘 (𝑠)) + 𝑑𝑗𝑘𝑔𝑘 (𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠)))) 𝑑𝑠,

(15)
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which yields by letting 𝜀 → 0

𝑒
∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠
𝑥𝑗 (𝑡𝑖) − 𝑒

∫
𝑡

𝑖−1

0

Υ
𝑗

(𝑠)𝑑𝑠
𝑥𝑗 (𝑡
+
𝑖−1)

= 𝑒
∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠
𝑥𝑗 (𝑡
−
𝑖 ) − 𝑒

∫
𝑡

𝑖−1

0

Υ
𝑗

(𝑠)𝑑𝑠
𝑥𝑗 (𝑡
+
𝑖−1)

= ∫

𝑡
𝑖

𝑡
𝑖−1

𝑒
∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙
𝑎𝑗 (𝑥𝑗 (𝑠))

⋅

𝑛

∑

𝑘=1

(𝑐𝑗𝑘𝑓𝑘 (𝑥𝑘 (𝑠)) + 𝑑𝑗𝑘𝑔𝑘 (𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠)))) 𝑑𝑠.

(16)

Combining (14) and (16) results in

𝑒
∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
𝑥𝑗 (𝑡) − 𝑒

∫
𝑡

𝑖−1

0

Υ
𝑗

(𝑠)𝑑𝑠
(𝑥𝑗 (𝑡𝑖−1)

+ 𝜌𝑗(𝑖−1) (𝑥𝑗 (𝑡𝑖−1))) = 𝑒
∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
𝑥𝑗 (𝑡)

− 𝑒
∫
𝑡

𝑖−1

0

Υ
𝑗

(𝑠)𝑑𝑠
𝑥𝑗 (𝑡
+
𝑖−1) = ∫

𝑡

𝑡
𝑖−1

𝑒
∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙
𝑎𝑗 (𝑥𝑗 (𝑠))

⋅

𝑛

∑

𝑘=1

(𝑐𝑗𝑘𝑓𝑘 (𝑥𝑘 (𝑠)) + 𝑑𝑗𝑘𝑔𝑘 (𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠)))) 𝑑𝑠,

𝑡𝑖−1 < 𝑡 ⩽ 𝑡𝑖 (𝑖 = 1, 2, . . .) .

(17)

Hence,

𝑒
∫
𝑡

𝑖−1

0

Υ
𝑗

(𝑠)𝑑𝑠
𝑥𝑗 (𝑡𝑖−1) − 𝑒

∫
𝑡

𝑖−2

0

Υ
𝑗

(𝑠)𝑑𝑠
(𝑥𝑗 (𝑡𝑖−2)

+ 𝜌𝑗(𝑖−2) (𝑥𝑗 (𝑡𝑖−2))) = ∫

𝑡
𝑖−1

𝑡
𝑖−2

𝑒
∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙
𝑎𝑗 (𝑥𝑗 (𝑠))

⋅

𝑛

∑

𝑘=1

(𝑐𝑗𝑘𝑓𝑘 (𝑥𝑘 (𝑠)) + 𝑑𝑗𝑘𝑔𝑘 (𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠)))) 𝑑𝑠,

.

.

.

𝑒
∫
𝑡

2

0

Υ
𝑗

(𝑠)𝑑𝑠
𝑥𝑗 (𝑡2) − 𝑒

∫
𝑡

1

0

Υ
𝑗

(𝑠)𝑑𝑠
(𝑥𝑗 (𝑡1) + 𝜌𝑗1 (𝑥𝑗 (𝑡1)))

= ∫

𝑡
2

𝑡
1

𝑒
∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙
𝑎𝑗 (𝑥𝑗 (𝑠))

⋅

𝑛

∑

𝑘=1

(𝑐𝑗𝑘𝑓𝑘 (𝑥𝑘 (𝑠)) + 𝑑𝑗𝑘𝑔𝑘 (𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠)))) 𝑑𝑠,

𝑒
∫
𝑡

1

0

Υ
𝑗

(𝑠)𝑑𝑠
𝑥𝑗 (𝑡1) − 𝜙𝑗 (0) = ∫

𝑡
1

0

𝑒
∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙
𝑎𝑗 (𝑥𝑗 (𝑠))

⋅

𝑛

∑

𝑘=0

(𝑐𝑗𝑘𝑓𝑘 (𝑥𝑘 (𝑠)) + 𝑑𝑗𝑘𝑔𝑘 (𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠)))) 𝑑𝑠,

(18)

which produces

𝑥𝑗 (𝑡) = 𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
𝜙𝑗 (0)

+ 𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
∫

𝑡

0

𝑒
∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙
[𝑎𝑗 (𝑥𝑗 (𝑠))

⋅

𝑛

∑

𝑘=1

(𝑐𝑗𝑘𝑓𝑘 (𝑥𝑘 (𝑠)) + 𝑑𝑗𝑘𝑔𝑘 (𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠))))] 𝑑𝑠

+ 𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
∑

0<𝑡
𝑖

<𝑡

(𝜌𝑗𝑖 (𝑥𝑗 (𝑡𝑖))) 𝑒
∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠
, 𝑡 > 0.

(19)

Thereby, we may define the mapping Φ : 𝑥(𝑡) →

Φ(𝑥)(𝑡), where 𝑥(𝑡) = (𝑥1(𝑡), . . . , 𝑥𝑗(𝑡), . . . , 𝑥𝑛(𝑡))
𝑇

∈ Θ,
and Φ(𝑥)(𝑡) = (Φ(𝑥1)(𝑡), . . . , Φ(𝑥𝑗)(𝑡), . . . , Φ(𝑥𝑛)(𝑡))

𝑇. In
addition, for any 𝑗 ∈ N, the mapping Φ(𝑥𝑗)(𝑡) : [−𝜏,∞) →

𝑅 satisfies

Φ(𝑥𝑗) (𝑡) = 𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
𝜙𝑗 (0)

+ ∫

𝑡

0

𝑒
−∫
𝑡

𝑠

Υ
𝑗

(𝑙)𝑑𝑙
[𝑎𝑗 (𝑥𝑗 (𝑠))

⋅

𝑛

∑

𝑘=1

(𝑐𝑗𝑘𝑓𝑘 (𝑥𝑘 (𝑠)) + 𝑑𝑗𝑘𝑔𝑘 (𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠))))] 𝑑𝑠

+ 𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
∑

0<𝑡
𝑖

<𝑡

(𝜌𝑗𝑖 (𝑥𝑗 (𝑡𝑖)) 𝑒
∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠
) , 𝑡 ⩾ 0,

(20)

and Φ(𝑥𝑗)(𝜃) = 𝜙𝑗(𝜃) as −𝜏 ⩽ 𝜃 ⩽ 0.
Next, we will prove that Φ(Θ𝑗) ⊂ Θ𝑗, ∀𝑗 ∈ N.

It is obvious that conditions (a) and (b) hold inΦ(Θ𝑗). So
we only need to prove that, for any 𝑥𝑗(𝑡) ∈ Θ𝑗,

󵄨󵄨󵄨󵄨󵄨
𝑒
𝛽𝑡
Φ(𝑥𝑗)

󵄨󵄨󵄨󵄨󵄨
󳨀→ 0, 𝑡 󳨀→ +∞. (21)

Indeed, it is obvious that
󵄨󵄨󵄨󵄨󵄨
𝑒
𝛽𝑡
Φ(𝑥𝑗)

󵄨󵄨󵄨󵄨󵄨
⩽ 𝑄1 + 𝑄2 + 𝑄3 + 𝑄4, (22)

where

𝑄1 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
𝛽𝑡
𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
𝜙𝑗 (0)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

𝑄2 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒
𝛽𝑡
∫

𝑡

0

𝑒
−∫
𝑡

𝑠

Υ
𝑗

(𝑙)𝑑𝑙
𝑎𝑗 (𝑥𝑗 (𝑠))

𝑛

∑

𝑘=1

𝑐𝑗𝑘𝑓𝑘 (𝑥𝑘 (𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝑄3 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒
𝛽𝑡
∫

𝑡

0

𝑒
−∫
𝑡

𝑠

Υ
𝑗

(𝑙)𝑑𝑙
𝑎𝑗 (𝑥𝑗 (𝑠))

⋅

𝑛

∑

𝑘=1

𝑑𝑗𝑘𝑔𝑘 (𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠))) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝑄4 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒
𝛽𝑡
𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
∑

0<𝑡
𝑖

<𝑡

(𝜌𝑗𝑖 (𝑥𝑗 (𝑡𝑖))) 𝑒
∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(23)
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It follows by 𝛽 < lim inf 𝑡→+∞(∫
𝑡

0
Υ𝑗(𝑠)𝑑𝑠/𝑡) that

𝑒
𝛽𝑡
𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
= 𝑒
(𝛽−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠/𝑡)𝑡
→ 0 as 𝑡 → +∞. And hence

𝑄1 = |𝑒
𝛽𝑡
𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
𝜙𝑗(0)| → 0 as 𝑡 → ∞.

Note that 𝑒𝛽𝑡𝑥𝑗(𝑡) → 0 if 𝑥𝑗(𝑡) ∈ Θ𝑗, ∀𝑗 ∈ N. So, for
any 𝜀 > 0, there exists a positive constant𝑁 such that

󵄨󵄨󵄨󵄨󵄨
𝑒
𝛽𝑡
𝑥𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨
< 𝜀, ∀𝑡 ∈ [𝑁, +∞) . (24)

Thereby,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
𝑥𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 𝑒
(∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠−𝛽𝑡) 󵄨󵄨󵄨󵄨󵄨
𝑒
𝛽𝑡
𝑥𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨

⩽ 𝑒
(∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠−𝛽𝑡)
𝜀, ∀𝑡 ∈ [𝑁, +∞) .

(25)

The continuity of 𝑥𝑗(𝑡) derives that there exists a constant
𝑀 > 0 such that

󵄨󵄨󵄨󵄨󵄨
𝑒
𝛽𝑡
𝑥𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨
< 𝑀, ∀𝑡 ∈ [0,𝑁] , (26)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
𝑥𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 𝑒
(∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠−𝛽𝑡) 󵄨󵄨󵄨󵄨󵄨
𝑒
𝛽𝑡
𝑥𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨

⩽ 𝑀 max
𝑡∈[0,𝑁]

(𝑒
(∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠−𝛽𝑡)
) ,

∀𝑡 ∈ [0,𝑁] .

(27)

In addition, condition (H1) yields that |𝑓𝑘(𝑥𝑘(𝑠))| =

|𝑓𝑘(𝑥𝑘(𝑠)) − 𝑓𝑘(0)| ⩽ 𝐹𝑘|𝑥𝑘(𝑠) − 0|. Let 𝑡 > 𝑁, and we can
derive from (25), (27), and the change of variable formula for
integrals that

𝑄2 ⩽ 𝑒
−(∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠−𝛽𝑡)
[∫

𝑁

0

𝑎𝑗

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑐𝑗𝑘

󵄨󵄨󵄨󵄨󵄨

⋅ 𝐹𝑘

󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙
𝑥𝑘 (𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑠 + ∫

𝑡

𝑁

𝑎𝑗

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑐𝑗𝑘

󵄨󵄨󵄨󵄨󵄨

⋅ 𝐹𝑘

󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙
𝑥𝑘 (𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑠] ⩽ 𝑒

−(∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠−𝛽𝑡)
[𝑀

⋅ max
𝑡∈[0,𝑁]

(𝑒
(∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠−𝛽𝑡)
)∫

𝑁

0

𝑎𝑗

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑐𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐹𝑘𝑑𝑠

+ 𝑎𝑗

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑐𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐹𝑘𝜀 ∫

𝑡

𝑁

𝑒
(∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙−𝛽𝑠)
𝑑𝑠]

⩽ 𝑒
−(∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠−𝛽𝑡)
[𝑀 max
𝑡∈[0,𝑁]

(𝑒
(∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠−𝛽𝑡)
)

⋅ 𝑁𝑎𝑗

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑐𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐹𝑘] +

𝑎𝑗∑
𝑛
𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑐𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐹𝑘

𝛾𝑗 − 𝛽
𝜀.

(28)

Now we can conclude from the arbitrariness of 𝜀 that 𝑄2 →
0, 𝑡 → ∞.

Similarly, condition (H2) yields

𝑄3 ⩽ 𝑒
−(∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠−𝛽𝑡)
∫

𝑡

0

𝑒
∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙
𝑎𝑗

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑑𝑗𝑘

󵄨󵄨󵄨󵄨󵄨

⋅ 𝐺𝑘

󵄨󵄨󵄨󵄨󵄨
𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠))

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

⩽ 𝑒
𝛽𝜏
𝑒
−(∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠−𝛽𝑡)
𝑎𝑗

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑑𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐺𝑘

⋅ ∫

𝑡

0

𝑒
(∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙−𝛽𝑠) 󵄨󵄨󵄨󵄨󵄨
𝑒
𝛽(𝑠−𝜏

𝑗

(𝑠))
𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠))

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠.

(29)

Let 𝑡 > 𝑁 + 𝜏; we can get by (24)

∫

𝑡

0

𝑒
(∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙−𝛽𝑠) 󵄨󵄨󵄨󵄨󵄨
𝑒
𝛽(𝑠−𝜏

𝑗

(𝑠))
𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠))

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

= ∫

𝑁+𝜏

0

𝑒
(∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙−𝛽𝑠) 󵄨󵄨󵄨󵄨󵄨
𝑒
𝛽(𝑠−𝜏

𝑗

(𝑠))
𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠))

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

+ ∫

𝑡

𝑁+𝜏

𝑒
(∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙−𝛽𝑠) 󵄨󵄨󵄨󵄨󵄨
𝑒
𝛽(𝑠−𝜏

𝑗

(𝑠))
𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠))

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

⩽ sup
𝑠∈[0,𝑁+𝜏]

󵄨󵄨󵄨󵄨󵄨
𝑒
𝛽(𝑠−𝜏

𝑗

(𝑠))
𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠))

󵄨󵄨󵄨󵄨󵄨

⋅ ∫

𝑁+𝜏

0

𝑒
(∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙−𝛽𝑠)
𝑑𝑠 + ∫

𝑡

𝑁+𝜏

𝑒
(∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙−𝛽𝑠)
𝜀 𝑑𝑠

⩽ sup
𝑠∈[−𝜏,𝑁+𝜏]

󵄨󵄨󵄨󵄨󵄨
𝑒
𝛽𝑠
𝑥𝑘 (𝑠)

󵄨󵄨󵄨󵄨󵄨
(𝑁 + 𝜏)

⋅ max
𝑠∈[−𝜏,𝑁+𝜏]

𝑒
(∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙−𝛽𝑠)
+ 𝜀

𝑒
(∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠−𝛽𝑡)

𝛾𝑗 − 𝛽
.

(30)

Combining (29) and (30) results in

𝑄3 ⩽ 𝑒
𝛽𝜏
𝑒
−(∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠−𝛽𝑡)
𝑎𝑗

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑑𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐺𝑘

⋅ ∫

𝑡

0

𝑒
(∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙−𝛽𝑠) 󵄨󵄨󵄨󵄨󵄨
𝑒
𝛽(𝑠−𝜏

𝑗

(𝑠))
𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠))

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

⩽ (𝑒
𝛽𝜏
𝑎𝑗

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑑𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐺𝑘 sup
𝑠∈[−𝜏,𝑁+𝜏]

󵄨󵄨󵄨󵄨󵄨
𝑒
𝛽𝑠
𝑥𝑘 (𝑠)

󵄨󵄨󵄨󵄨󵄨
(𝑁 + 𝜏)

⋅ max
𝑠∈[−𝜏,𝑁+𝜏]

𝑒
(∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙−𝛽𝑠)
)𝑒
−(∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠−𝛽𝑡)

+

𝑒
𝛽𝜏
𝑎𝑗∑
𝑛
𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑑𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐺𝑘

𝛾𝑗 − 𝛽
𝜀.

(31)

Then the arbitrariness of 𝜀 yields that 𝑄3 → 0, 𝑡 → ∞.
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It follows by (H3) and (25) that

𝑄4 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒
𝛽𝑡
𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
∑

0<𝑡
𝑖

<𝑡

(𝜌𝑗𝑖 (𝑥𝑗 (𝑡𝑖))) 𝑒
∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝑒
𝛽𝑡
𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
∑

0<𝑡
𝑖

<𝑡

󵄨󵄨󵄨󵄨󵄨
𝜌𝑗𝑖 (𝑥𝑗 (𝑡𝑖))

󵄨󵄨󵄨󵄨󵄨
𝑒
∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠

⩽ 𝑒
𝛽𝑡
𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
∑

0<𝑡
𝑖

<𝑡

ℎ𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑡𝑖)

󵄨󵄨󵄨󵄨󵄨
𝑒
∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠

= 𝑒
−(∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠−𝛽𝑡)
∑

0<𝑡
𝑖

⩽𝑁

ℎ𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑡𝑖)

󵄨󵄨󵄨󵄨󵄨
𝑒
∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠

+ 𝑒
𝛽𝑡
𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
∑

𝑁<𝑡
𝑖

<𝑡

ℎ𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑡𝑖)

󵄨󵄨󵄨󵄨󵄨
𝑒
∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠

= 𝑒
−(∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠−𝛽𝑡)
∑

0<𝑡
𝑖

⩽𝑁

ℎ𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑡𝑖)

󵄨󵄨󵄨󵄨󵄨
𝑒
∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠

+ 𝑒
𝛽𝑡
𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
∑

𝑁<𝑡
𝑖

<𝑡

ℎ𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑡𝑖)

󵄨󵄨󵄨󵄨󵄨
𝑒
∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠
.

(32)

In addition,

𝑑

𝑑𝑡
(∫

𝑡

0

Υ𝑗 (𝑠) 𝑑𝑠 − 𝛽𝑡) = Υ𝑗 (𝑡) − 𝛽 ⩾ 𝛾 − 𝛽 > 0, (33)

which implies the function (∫
𝑡

0
Υ𝑗(𝑠)𝑑𝑠 − 𝛽𝑡) is an increasing

function on 𝑡 ⩾ 0. This yields

𝑒
𝛽𝑡
𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
∑

𝑁<𝑡
𝑖

<𝑡

ℎ𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑡𝑖)

󵄨󵄨󵄨󵄨󵄨
𝑒
∫
𝑡

𝑖

0

Υj(𝑠)𝑑𝑠

= 𝑒
𝛽𝑡
𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
∑

𝑁<𝑡
𝑖

⩽𝑡
𝑘

ℎ𝑗𝑖 (
󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑡𝑖)

󵄨󵄨󵄨󵄨󵄨
𝑒
𝛽𝑡
𝑖) 𝑒
(∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠−𝛽𝑡
𝑖

)

⩽ 𝑒
𝛽𝑡
𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
ℎ𝑗𝜀 ∑

𝑁<𝑡
𝑖

⩽𝑡
𝑘

𝜇𝑒
(∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠−𝛽𝑡
𝑖

)

⩽ 𝑒
𝛽𝑡
𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
ℎ𝑗𝜀 [ ∑

𝑁<𝑡
𝑖

<𝑡
𝑘

(𝑒
(∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠−𝛽𝑡
𝑖

)
(𝑡𝑖+1 − 𝑡𝑖))

+ 𝜇𝑒
(∫
𝑡

𝑘

0

Υ
𝑗

(𝑠)𝑑𝑠−𝛽𝑡
𝑘

)
]

⩽ 𝑒
𝛽𝑡
𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
ℎ𝑗𝜀 [∫

𝑡

𝑁

𝑒
(∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙−𝛽𝑠)
𝑑𝑠

+ 𝜇𝑒
(∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠−𝛽𝑡)
] ⩽ 𝑒
𝛽𝑡
𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
ℎ𝑗

𝜀

𝛾 − 𝛽

⋅ ∫

𝑡

𝑁

𝑒
(∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙−𝛽𝑠)
𝑑(∫

𝑠

0

Υ𝑗 (𝑙) 𝑑𝑙 − 𝛽𝑠) + 𝜇ℎ𝑗𝜀

⩽ ℎ𝑗

𝜀

𝛾 − 𝛽
+ 𝜇ℎ𝑗𝜀.

(34)

From (32) and (34), the arbitrariness of 𝜀 yields that𝑄4 →
0, 𝑡 → ∞.

So we can deduce from the above analysis that
|𝑒
𝛽𝑡
Φ(𝑥𝑗)| → 0, 𝑡 → +∞, and hence the condition

(c) is satisfied.
Next we are to prove that condition (d) holds inΦ(Θ𝑗).
Indeed, for a given 𝑡𝑖, it follows from (20) that

Φ (𝑥) (𝑡𝑖 + 𝑟) − Φ (𝑥) (𝑡𝑖) = 𝑃1 + 𝑃2, (35)

where

𝑃1 = {𝑒
−∫
𝑡

𝑖

+𝑟

0

Υ
𝑗

(𝑠)𝑑𝑠
𝜙𝑗 (0)

+ ∫

𝑡
𝑖

+𝑟

0

𝑒
−∫
𝑡

𝑖

+𝑟

𝑠

Υ
𝑗

(𝑙)𝑑𝑙
[𝑎𝑗 (𝑥𝑗 (𝑠))

⋅

𝑛

∑

𝑘=1

(𝑐𝑗𝑘𝑓𝑘 (𝑥𝑘 (𝑠)) + 𝑑𝑗𝑘𝑔𝑘 (𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠))))] 𝑑𝑠}

− {𝑒
−∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠
𝜙𝑗 (0) + ∫

𝑡
𝑖

0

𝑒
−∫
𝑡

𝑖

𝑠

Υ
𝑗

(𝑙)𝑑𝑙
[𝑎𝑗 (𝑥𝑗 (𝑠))

⋅

𝑛

∑

𝑘=1

(𝑐𝑗𝑘𝑓𝑘 (𝑥𝑘 (𝑠)) + 𝑑𝑗𝑘𝑔𝑘 (𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠))))] 𝑑𝑠} ,

𝑃2 = 𝑒
−∫
𝑡

𝑖

+𝑟

0

Υ
𝑗

(𝑠)𝑑𝑠
∑

0<𝑡
𝑘

<𝑡
𝑖

+𝑟

(𝜌𝑗𝑘 (𝑥𝑗 (𝑡𝑘))) 𝑒
∫
𝑡

𝑘

0

Υ
𝑗

(𝑠)𝑑𝑠

− 𝑒
−∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠
∑

0<𝑡
𝑘

<𝑡
𝑖

(𝜌𝑗𝑘 (𝑥𝑗 (𝑡𝑘))) 𝑒
∫
𝑡

𝑘

0

Υ
𝑗

(𝑠)𝑑𝑠
.

(36)

It is obvious that 𝑃1 → 0 as 𝑟 → 0. From (36), we can
get by letting 𝑟 < 0 be small enough

𝑃2 = (𝑒
−∫
𝑡

𝑖

+𝑟

0

Υ
𝑗

(𝑠)𝑑𝑠
− 𝑒
−∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠
)

⋅ ∑

0<𝑡
𝑘

<𝑡
𝑖

(𝜌𝑗𝑘 (𝑥𝑗 (𝑡𝑘))) 𝑒
∫
𝑡

𝑘

0

Υ
𝑗

(𝑠)𝑑𝑠
,

(37)

which implies that lim𝑟→0−𝑃2 = 0.On the other hand, letting
𝑟 > 0 be small enough, we have

𝑃2 = 𝑒
−∫
𝑡

𝑖

+𝑟

0

Υ
𝑗

(𝑠)𝑑𝑠
[ ∑

0<𝑡
𝑘

<𝑡
𝑖

(𝜌𝑗𝑘 (𝑥𝑗 (𝑡𝑘)) 𝑒
∫
𝑡

𝑘

0

Υ
𝑗

(𝑠)𝑑𝑠
)

+ 𝜌𝑗𝑖 (𝑥𝑗 (𝑡𝑖)) 𝑒
∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠
]

− 𝑒
−∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠
∑

0<𝑡
𝑘

<𝑡
𝑖

(𝜌𝑗𝑘 (𝑥𝑗 (𝑡𝑘))) 𝑒
∫
𝑡

𝑘

0

Υ
𝑗

(𝑠)𝑑𝑠

= (𝑒
−∫
𝑡

𝑖

+𝑟

0

Υ
𝑗

(𝑠)𝑑𝑠
− 𝑒
−∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠
)

⋅ ∑

0<𝑡
𝑘

<𝑡
𝑖

(𝜌𝑗𝑘 (𝑥𝑗 (𝑡𝑘)) 𝑒
∫
𝑡

𝑘

0

Υ
𝑗

(𝑠)𝑑𝑠
)

+ 𝑒
−∫
𝑡

𝑖

+𝑟

0

Υ
𝑗

(𝑠)𝑑𝑠
𝜌𝑗𝑖 (𝑥𝑗 (𝑡𝑖)) 𝑒

∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠
,

(38)
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which leads to lim𝑟→0+𝑃2 = 𝜌𝑗𝑖(𝑥𝑗(𝑡𝑖)). Hence, condition (d)
holds in Φ(Θ𝑗).

It is derived by the above analysis that Φ(Θ𝑗) ⊂ Θ𝑗 for
all 𝑗.

Step 3. We claim thatΦ is a contraction mapping on Θ.
Indeed, for 𝑥(𝑡) = (𝑥1(𝑡), . . . , 𝑥𝑗(𝑡), . . . , 𝑥𝑛(𝑡))

𝑇
∈ Θ and

𝑦(𝑡) = (𝑦1(𝑡), . . . , 𝑦𝑗(𝑡), . . . , 𝑦𝑛(𝑡))
𝑇
∈ Θ, we have

󵄨󵄨󵄨󵄨󵄨
Φ (𝑥𝑗) (𝑡) − Φ (𝑦𝑗) (𝑡)

󵄨󵄨󵄨󵄨󵄨
⩽ 𝐽𝑗1 + 𝐽𝑗2 + 𝐽𝑗3, (39)

where

𝐽𝑗1 = ∫

𝑡

0

𝑒
−∫
𝑡

𝑠

Υ
𝑗

(𝑙)𝑑𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎𝑗 (𝑥𝑗 (𝑠))

𝑛

∑

𝑘=1

𝑐𝑗𝑘𝑓𝑘 (𝑥𝑘 (𝑠))

− 𝑎𝑗 (𝑦𝑗 (𝑠))

𝑛

∑

𝑘=1

𝑐𝑗𝑘𝑓𝑘 (𝑦𝑘 (𝑠))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑠,

𝐽𝑗2 = ∫

𝑡

0

𝑒
−∫
𝑡

𝑠

Υ
𝑗

(𝑙)𝑑𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎𝑗 (𝑥𝑗 (𝑠))

⋅

𝑛

∑

𝑘=1

𝑑𝑗𝑘𝑔𝑘 (𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠))) − 𝑎𝑗 (𝑦𝑗 (𝑠))

⋅

𝑛

∑

𝑘=1

𝑑𝑗𝑘𝑔𝑘 (𝑦𝑘 (𝑠 − 𝜏𝑗 (𝑠)))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑠,

𝐽𝑗3 = 𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
∑

0<𝑡
𝑖

<𝑡

(
󵄨󵄨󵄨󵄨󵄨
𝜌𝑗𝑖 (𝑥𝑗 (𝑡𝑖)) − 𝜌𝑗𝑖 (𝑦𝑗 (𝑡𝑖))

󵄨󵄨󵄨󵄨󵄨

⋅ 𝑒
∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠
) .

(40)

It follows by the triangle inequality, (H1), (H2), and the
differential mean value theorem that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎𝑗 (𝑥𝑗 (𝑠))

𝑛

∑

𝑘=1

𝑐𝑗𝑘𝑓𝑘 (𝑥𝑘 (𝑠)) − 𝑎𝑗 (𝑦𝑗 (𝑠))

𝑛

∑

𝑘=1

𝑐𝑗𝑘𝑓𝑘 (𝑦𝑘 (𝑠))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽

𝑛

∑

𝑘=1

[
󵄨󵄨󵄨󵄨󵄨
𝑐𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
(
󵄨󵄨󵄨󵄨󵄨
𝑎𝑗 (𝑥𝑗 (𝑠)) 𝑓𝑘 (𝑥𝑘 (𝑠)) − 𝑎𝑗 (𝑥𝑗 (𝑠)) 𝑓𝑘 (𝑦𝑘 (𝑠))

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝑎𝑗 (𝑥𝑗 (𝑠)) 𝑓𝑘 (𝑦𝑘 (𝑠)) − 𝑎𝑗 (𝑦𝑗 (𝑠)) 𝑓𝑘 (𝑦𝑘 (𝑠))

󵄨󵄨󵄨󵄨󵄨
)] ⩽

𝑛

∑

𝑘=1

(
󵄨󵄨󵄨󵄨󵄨
𝑐j𝑘
󵄨󵄨󵄨󵄨󵄨
𝑎𝑗𝐹𝑘

󵄨󵄨󵄨󵄨𝑥𝑘 (𝑠) − 𝑦𝑘 (𝑠)
󵄨󵄨󵄨󵄨) + (

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑐𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐹𝑘)𝑎𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑠)

− 𝑦𝑗 (𝑠)
󵄨󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎𝑗 (𝑥𝑗 (𝑠))

𝑛

∑

𝑘=1

𝑑𝑗𝑘𝑔𝑘 (𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠))) − 𝑎𝑗 (𝑦𝑗 (𝑠))

𝑛

∑

𝑘=1

𝑑𝑗𝑘𝑔𝑘 (𝑦𝑘 (𝑠 − 𝜏𝑗 (𝑠)))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽

𝑛

∑

𝑘=1

[
󵄨󵄨󵄨󵄨󵄨
𝑑𝑗𝑘

󵄨󵄨󵄨󵄨󵄨

⋅ (
󵄨󵄨󵄨󵄨󵄨
𝑎𝑗 (𝑥𝑗 (𝑠)) 𝑔𝑘 (𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠))) − 𝑎𝑗 (𝑥𝑗 (𝑠)) 𝑔𝑘 (𝑦𝑘 (𝑠 − 𝜏𝑗 (𝑠)))

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝑎𝑗 (𝑥𝑗 (𝑠)) 𝑔𝑘 (𝑦𝑘 (𝑠 − 𝜏𝑗 (𝑠))) − 𝑎𝑗 (𝑦𝑗 (𝑠)) 𝑔𝑘 (𝑦𝑘 (𝑠 − 𝜏𝑗 (𝑠)))

󵄨󵄨󵄨󵄨󵄨
)] ⩽

𝑛

∑

𝑘=1

(
󵄨󵄨󵄨󵄨󵄨
𝑑𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗𝐺𝑘

󵄨󵄨󵄨󵄨󵄨
𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠))

− 𝑦𝑘 (𝑠 − 𝜏𝑗 (𝑠))
󵄨󵄨󵄨󵄨󵄨
) + (

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑑𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐺𝑘)𝑎𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑠) − 𝑦𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨
.

(41)

On the other hand,

∫

𝑡

0

𝑒
∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙
𝑑𝑠 = ∫

𝑡

0

𝑒
∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙

Υ𝑗 (𝑠)
𝑑 (∫

𝑠

0

Υ𝑗 (𝑙) 𝑑𝑙)

⩽ ∫

𝑡

0

𝑒
∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙

𝛾𝑗

𝑑(∫

𝑠

0

Υ𝑗 (𝑙) 𝑑𝑙)

⩽
𝑒
∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠

𝛾𝑗

.

(42)

So we can get by the above analysis

𝐽𝑗1 ⩽ ∫

𝑡

0

𝑒
−∫
𝑡

𝑠

Υ
𝑗

(𝑙)𝑑𝑙
[

𝑛

∑

𝑘=1

(
󵄨󵄨󵄨󵄨󵄨
𝑐𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗𝐹𝑘

󵄨󵄨󵄨󵄨𝑥𝑘 (𝑠) − 𝑦𝑘 (𝑠)
󵄨󵄨󵄨󵄨) + (

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑐𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐹𝑘)𝑎𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑠) − 𝑦𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨
] 𝑑𝑠

⩽ 𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
[

𝑛

∑

𝑘=1

(
󵄨󵄨󵄨󵄨󵄨
𝑐𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗𝐹𝑘sup
𝑠⩾−𝜏

󵄨󵄨󵄨󵄨𝑥𝑘 (𝑠) − 𝑦𝑘 (𝑠)
󵄨󵄨󵄨󵄨) + (

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑐𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐹𝑘)𝑎𝑗sup

𝑠⩾−𝜏

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑠) − 𝑦𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨
] ∫

𝑡

0

𝑒
∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙
𝑑𝑠
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⩽

(max𝑘∈N
󵄨󵄨󵄨󵄨󵄨
𝑐𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐹𝑘) 𝑎𝑗

𝛾𝑗

dist (𝑥, 𝑦) +
(∑
𝑛
𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑐𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐹𝑘) 𝑎𝑗

𝛾𝑗

sup
𝑡⩾−𝜏

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑡) − 𝑦𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨
,

𝐽𝑗2 ⩽ ∫

𝑡

0

𝑒
−∫
𝑡

𝑠

Υ
𝑗

(𝑙)𝑑𝑙
[

𝑛

∑

𝑘=1

(
󵄨󵄨󵄨󵄨󵄨
𝑑𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗𝐺𝑘

󵄨󵄨󵄨󵄨󵄨
𝑥𝑘 (𝑠 − 𝜏𝑗 (𝑠)) − 𝑦𝑘 (𝑠 − 𝜏𝑗 (𝑠))

󵄨󵄨󵄨󵄨󵄨
) + (

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑑𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐺𝑘)𝑎𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑠) − 𝑦𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨
] 𝑑𝑠

⩽ 𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
[

𝑛

∑

𝑘=1

(
󵄨󵄨󵄨󵄨󵄨
𝑑𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗𝐺𝑘sup
𝑠⩾−𝜏

󵄨󵄨󵄨󵄨𝑥𝑘 (𝑠) − 𝑦𝑘 (𝑠)
󵄨󵄨󵄨󵄨) + (

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑑𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐺𝑘)𝑎𝑗sup

𝑠⩾−𝜏

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑠) − 𝑦𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨
] ∫

𝑡

0

𝑒
∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙
𝑑𝑠

⩽

max𝑘∈N (
󵄨󵄨󵄨󵄨󵄨
𝑑𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐺𝑘) 𝑎𝑗

𝛾𝑗

dist (𝑥, 𝑦) +
(∑
𝑛
𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑑𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐺𝑘) 𝑎𝑗

𝛾𝑗

sup
𝑡⩾−𝜏

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑡) − 𝑦𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨
,

𝐽𝑗3 ⩽ 𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
∑

0<𝑡
𝑖

<𝑡

(ℎ𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑡𝑖) − 𝑦𝑗 (𝑡𝑖)

󵄨󵄨󵄨󵄨󵄨
𝑒
∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠
) ⩽ ℎ𝑗𝑒

−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠sup
𝑡⩾−𝜏

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑡𝑖) − 𝑦𝑗 (𝑡𝑖)

󵄨󵄨󵄨󵄨󵄨
∑

0<𝑡
𝑖

<𝑡

(𝜇𝑒
∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠
)

⩽ ℎ𝑗𝑒
−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠sup
𝑡⩾−𝜏

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑡𝑖) − 𝑦𝑗 (𝑡𝑖)

󵄨󵄨󵄨󵄨󵄨
( ∑

0<𝑡
𝑖

<𝑡
𝑘

𝑒
∫
𝑡

𝑖

0

Υ
𝑗

(𝑠)𝑑𝑠
(𝑡𝑟+1 − 𝑡𝑟) + 𝜇𝑒

∫
𝑡

𝑘

0

Υ
𝑗

(𝑠)𝑑𝑠
) ⩽ ℎ𝑗𝑒

−∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠sup
𝑡⩾−𝜏

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑡𝑖) − 𝑦𝑗 (𝑡𝑖)

󵄨󵄨󵄨󵄨󵄨

⋅ (∫

𝑡

0

𝑒
∫
𝑠

0

Υ
𝑗

(𝑙)𝑑𝑙
𝑑𝑠 + 𝜇𝑒

∫
𝑡

0

Υ
𝑗

(𝑠)𝑑𝑠
) ⩽ ℎ𝑗 (

1

𝛾𝑗

+ 𝜇) sup
𝑡⩾−𝜏

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑡𝑖) − 𝑦𝑗 (𝑡𝑖)

󵄨󵄨󵄨󵄨󵄨
.

(43)

So we have

sup
𝑡⩾−𝜏

󵄨󵄨󵄨󵄨󵄨
Φ (𝑥𝑗) (𝑡) − Φ (𝑦𝑗) (𝑡)

󵄨󵄨󵄨󵄨󵄨
⩽ sup
𝑡⩾−𝜏

(𝐽𝑗1 + 𝐽𝑗2 + 𝐽𝑗3)

⩽

(max𝑘∈N
󵄨󵄨󵄨󵄨󵄨
𝑐𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐹𝑘) 𝑎𝑗

𝛾𝑗

dist (𝑥, 𝑦)

+

(∑
𝑛
𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑐𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐹𝑘) 𝑎𝑗

𝛾𝑗

sup
𝑡⩾−𝜏

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑡) − 𝑦𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨

+

max𝑘∈N (
󵄨󵄨󵄨󵄨󵄨
𝑑𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐺𝑘) 𝑎𝑗

𝛾𝑗

dist (𝑥, 𝑦)

+

(∑
𝑛
𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑑𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐺𝑘) 𝑎𝑗

𝛾𝑗

sup
𝑡⩾−𝜏

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑡) − 𝑦𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨

+ ℎ𝑗 (
1

𝛾𝑗

+ 𝜇) sup
𝑡⩾−𝜏

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑡𝑖) − 𝑦𝑗 (𝑡𝑖)

󵄨󵄨󵄨󵄨󵄨

⩽

(max𝑘∈N
󵄨󵄨󵄨󵄨󵄨
𝑐𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐹𝑘) 𝑎𝑗 +max𝑘∈N (

󵄨󵄨󵄨󵄨󵄨
𝑑𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐺𝑘) 𝑎𝑗

𝛾𝑗

⋅ dist (𝑥, 𝑦)

+

(∑
𝑛
𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑐𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐹𝑘) 𝑎𝑗 + (∑

𝑛
𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑑𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐺𝑘) 𝑎𝑗 + ℎ𝑗 + 𝜇𝛾𝑗

𝛾𝑗

⋅ sup
𝑡⩾−𝜏

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑡) − 𝑦𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨
.

(44)

Therefore, we can derive by the above analysis and the LMI
condition

dist (Φ (𝑥) , Φ (𝑦)) =

𝑛

∑

𝑗=1

sup
𝑡⩾−𝜏

󵄨󵄨󵄨󵄨󵄨
Φ (𝑥𝑗) (𝑡) − Φ (𝑦𝑗) (𝑡)

󵄨󵄨󵄨󵄨󵄨

⩽

𝑛

∑

𝑗=1

{

(max𝑘∈N
󵄨󵄨󵄨󵄨󵄨
𝑐𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐹𝑘) 𝑎𝑗 +max𝑘∈N (

󵄨󵄨󵄨󵄨󵄨
𝑑𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐺𝑘) 𝑎𝑗

𝛾𝑗

⋅ dist (𝑥, 𝑦)

+

(∑
𝑛
𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑐𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐹𝑘) 𝑎𝑗 + (∑

𝑛
𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑑𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
𝐺𝑘) 𝑎𝑗 + ℎ𝑗 + 𝜇𝛾𝑗

𝛾𝑗

⋅ sup
𝑡⩾−𝜏

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 (𝑡) − 𝑦𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨
} ⩽ 𝛼 dist (𝑥, 𝑦) ,

(45)

which implies that Φ is a contraction mapping on Θ. And
then the contraction mapping theorem yields the idea that
Φ has the fixed point 𝑥(𝑡) onΘ, which implies that 𝑥(𝑡) is the
solution for system (1), satisfying 𝑒𝛽𝑡‖𝑥(𝑡)‖ → 0 as 𝑡 → ∞.
And then the proof is completed.

Remark 6. As far as we can know, there is not any previous
literature related to the fixed point theory where LMI-based
stability criteria were presented, except for [15]. In this paper,
the LMI-based stability criterion is the first time to be
proposed for impulsive CGNNs via fixed point theorems.
This is another main contribution of this paper.
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3. Numerical Example

Example 1. Consider

𝑑𝑥1 (𝑡)

𝑑𝑡
= −𝑎1 (𝑥1 (𝑡)) {𝑏1 (𝑥1 (𝑡))

−

2

∑

𝑘=1

[𝑐1𝑘𝑓𝑘 (𝑥𝑘 (𝑡)) + 𝑑1𝑘𝑔𝑘 (𝑥𝑘 (𝑡 − 𝜏1 (𝑡)))]} ,

𝑡 ⩾ 0, 𝑡 ̸= 𝑡𝑖,

𝑑𝑥2 (𝑡)

𝑑𝑡
= −𝑎2 (𝑥2 (𝑡)) {𝑏2 (𝑥2 (𝑡))

−

2

∑

𝑘=1

[𝑐2𝑘𝑓𝑘 (𝑥𝑘 (𝑡)) + 𝑑2𝑘𝑔𝑘 (𝑥𝑘 (𝑡 − 𝜏2 (𝑡)))]} ,

𝑡 ⩾ 0, 𝑡 ̸= 𝑡𝑖,

Δ𝑥𝑗 (𝑡𝑖) = 𝑥𝑗 (𝑡
+
𝑖 ) − 𝑥𝑗 (𝑡𝑖) = 𝜌𝑗𝑖 (𝑥𝑗 (𝑡𝑖)) ,

𝑖 = 1, 2, . . . ,

𝑥𝑗 (𝜃) = 𝜙𝑗 (𝜃) , − 𝜏 ⩽ 𝜃 ⩽ 0, 𝑗 ∈ N,

(46)

where 𝑗 ∈ N ≜ {1, 2}, 𝑏1(𝑥1(𝑡)) = 2𝑥1(𝑡), 𝑏2(𝑥2(𝑡)) = 2𝑥2(𝑡),
𝑎1(𝑥1(𝑡)) = 𝑎2(𝑥2(𝑡)) = 2 + cos 𝑡, and then 𝑎𝑗(𝑟)𝑏𝑗(𝑟) = 2(2 +

cos 𝑡)𝑟 = Υ𝑗(𝑡)𝑟; hence Υ𝑗(𝑡) = 2(2 + cos 𝑡). Let 𝛾𝑗 = 2, and
then Υ𝑗(𝑡) = 2(2 + cos 𝑡) ⩾ 𝛾𝑗 > 0, let 𝑎𝑗 = 3; then 0 <

𝑎𝑗(𝑟) = (2 + cos 𝑡) ⋅ 𝑟0 ⩽ 𝑎𝑗, and 𝑎
󸀠
𝑗(𝑟) = 0. So we let 𝑎𝑗 = 0,

and |𝑎
󸀠
𝑗(𝑟)| ⩽ 𝑎𝑗. Let ∫

𝑡

0
Υ𝑗(𝑠)𝑑𝑠 = 4𝑡 + 2 sin 𝑡. Let 𝛽 = 1 > 0,

and then lim inf 𝑡→+∞(∫
𝑡

0
Υ𝑗(𝑠)𝑑𝑠/𝑡) = 4 > 𝛽 and 𝛾𝑗 > 𝛽.

Let 𝑓𝑖(𝑟) = sin2(𝑟/10) = 𝑔𝑖(𝑟), 𝑖 = 1, 2; then 𝐹𝑖 = 𝐺𝑖 = 1,
𝑏𝑖(0) = 𝑓𝑖(0) = 𝑔𝑖(0) = 0, and 𝐹𝑖 = 𝐺𝑖 = 0.2, 𝑖 = 1, 2.

Define 𝜌𝑗𝑖 = arctan(1.7𝑥𝑗(𝑡𝑖)) and 𝑡𝑖 − 𝑡𝑖−1 = 0.5𝑖 for 𝑗 =

1, 2, 𝑖 = 1, 2, . . .. Let ℎ𝑗𝑖 = 1.7, ℎ𝑗 = 3.4, and 𝜇 = 0.5, and then
ℎ𝑗𝑖 ⩽ ℎ𝑗𝜇 holds.

In addition, let 𝑐𝑗𝑘 = 𝑑𝑗𝑘 = 0.05 for 𝑗, 𝑘 ∈ N; then we
can use Matlab LMI toolbox to solve the LMI condition in
Theorem 4 and obtain

𝛼 = 0.8351 < 1. (47)

According to Theorem 4, system (46) is globally exponen-
tially stable.

Remark 7. To compare the upper bounds of time delay and
impulse in various related literature, we need to compute
and compare the ratios between the maximum of allowable
impulse and maximum of parameters in various related
literature, because the maximum of allowable impulse may
rise as parameters of numerical examples become bigger.
From Table 1, the ratios of Example 1 (ours) are bigger than
those of [1, 4, 10, 11] to some extent. In addition, impulse
value of [9, Example 4.1] is less than 1 while ours of Example 1
is 1.7 > 1. It is well known that bigger impulse gives

Table 1: Ratios between allowable upper bounds of impulse C and
maximum of parametersP.

C P C/P

Example 1 (ours) 1.7 2 0.850
[1, Example 1] 1 3 0.333
[4, Example 1] 0.8 3.5 0.2286
[9, Example 4.1] 0.55 0.2 2.75
[10, Example Case 1] 0.81 4.8 0.1688
[11, Example] 0.7 6 0.1167

bigger influence on the stability. Thereby, the large allowable
variation range of impulse illustrates the effectiveness of our
new stability criterion.

Remark 8. The super limit 𝜏 of time delays is actually infinite.

Remark 9. As far as we know, it is the first time to use
the contraction mapping theorem to prove the stability for
CGNNs.Themethod employed in this paper is different from
those of related literature [20, 21].

Remark 10. Of course, [1, 4, 9–11] involved more complicated
systems than ours, such as reaction-diffusion phenomena,
stochastic Markovian jumping, and parameters uncertainty.
Moreover, fixed point theories may not be employed to such
complicated systems. Thereby, we can not claim that the new
stability criterion is better than the criteria of [1, 4, 9–11] in all
aspects, for those results obtained in [1, 4, 9–11] solved what
Theorem 4 (ours) cannot involve.However, a further research
on applications of fixed point theories may have the widest
appeal of all. This is another purpose of writing this paper.
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