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Micromilling is a contact basedmaterial removal process in which a rotating tool with nose radius inmicrons is fed over a stationary
workpiece. In the process small amount of material gets chipped off from the workpiece. Due to continuous contact between
tool and workpiece significant damage occurs to the cutting tools. Mitigating tool damage to make micromilling systems more
reliable for batch production is the current research trend. In macroscale or conventional milling process a number of methods
have been proposed for tool condition monitoring. Few of them have been applied for micromilling. This paper reviews different
methods proposed and used in last two decades for monitoring the condition of micromilling tools. Applicability of tool condition
monitoring methods used in conventional milling has been compared with the similar ones proposed for micromilling. Further,
the challenges and opportunities on the applicability issues have been discussed.

1. Introduction

Micromilling process has achieved significant popularity in
production industries due to its exceptional capability to
generate precise holes to complex 3D features. Micromilling
process involves removal of material from a workpiece by
a rotating tool with nose radius in microns. The material
removal process results in a host of effects such as tool
wear, generation of contact machining forces leading to tool
deformation, chatter and vibration, and tool stress causing
tool breakage [1]. These stated effects heavily depend on
type of milling operation (vertical, horizontal, ball end, and
face) [2], operating conditions [3] (temperature [4] and tool-
workpiece alignment), parameter selection (feed, rpm, and
depth of cut) [5], tool (PCD, CVD, PCBN, and metallic) [6],
and workpiece materials (metals, polymers, semicrystalline,
and amorphous) [7]. Due to influence of tool condition on
myriad parameters, monitoring the same seems to be a real
timemultivariate problem. It is a well-known fact that almost
all CNC milling machine manufacturers state the optimum
machining conditions in their industrial datasheets. Even on
maintaining these conditions strictly, tool damage is preva-
lent in micromilling process as no datasheet can provide all
combination of optimummachining parameters. In addition,

micromilling process in total requires a number of critical
steps. Tool positioning at beginning of the process demands
dexterity of the machine operator as a slight error may lead
to tool failure before any machining has taken place [8]. Due
to miniature footprint of the tool, often a tool with broken
tip remains unnoticed while the micromilling operation
takes place. Thus it can be understood that monitoring the
condition of the tool in micromilling is important as it
enhances the fidelity of the process by cutting off unnecessary
shutdowns at batch production units leading to enhancement
in productivity.

On the other hand conventional milling process does not
suffer from all of these critical limitations. This is due to
the fact that the cutting dynamics of macro- and microscale
milling processes is entirely different [9]. Whereas the
macroscalematerial removal is believed to be frictional shear-
ing and deformation at the tool tip, in microscale upsetting
and consequent material dislodgement are associated [10].
The size effect as explained in the next paragraph changes the
entire cutting dynamics. Further the miniature nose radius
is prone to frequent wear which leads to higher forces on
the cutting edge of the tool leading to extensive stress related
breakage in micromilling.
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Figure 1: Primary causes and effects of machining forces.

In previous two decades issues related to tool condition
monitoring of micromilling process has been extensively
dealt in literature. Primarily, the phenomenon of tool break-
age in micromilling is justified by the following inferences.

(a) The size effect: when the material is removed by
micromilling tool, the specific energy required for
material removal decreases gradually, as the chip
thickness decreases [11]. This can also be stated oth-
erwise as the tool has to sustain a greater magnitude
of cutting force as machining progresses as if the tool
has to cut harder material gradually [12].

(b) Chip clogging: the clogged chip at the tool work
interface results in sharp increase in the machining
force leading to tool breakage [13].

(c) Tool tip deflection: the tool gradually loses its cutting
edge due to tool wear. The work material imposes
more force on the tool for machining and hence
increases the tool stress leading to tool breakage [14].

From the above discussions it can be understood that the
machining force is the primary measurable quantity leading
to tool wear and breakage. As machining force is related to
a number of parameters like stress [15], temperature [16],
vibration [17], actuator energy (motor currents) [18], acoustic
emission [19], tool tip bending [20], and tool chatter [21]
and it is difficult to measure forces at all points on the
cutting tool during machining operations, different methods
are used tomonitor the tool condition. Figure 1 shows a cause
effect relation of tool breakage and tool wear in micromilling
operations.

As discussed in earlier paragraphs, the cutting mechanics
of macro- and micro-scale varies greatly. In spite of this,
almost all the tool condition monitoring methods proposed
for micromilling trace their roots from conventional milling
ones. In this paper we present an extensive review of various
methods and state of the art for tool condition monitoring
in micromilling process and state a comparison with the
ones used in conventional milling process. Such review has
basically two advantages. Firstly, it renders the readers a vivid
idea of various approaches, their advantages, and limitations
for tool condition monitoring at macro- and microscales. In
addition such study opens up new vistas for other researchers
to invoke their thought process for utilizing conventional tool

condition monitoring approaches at microscale thus leading
to evolution of similar methods at microscale.

2. Review of Proposed Methods

The proposed methods for tool condition monitoring in
micromilling include use of acoustic emission sensors
and related signal processing approaches, measurement of
dynamic cutting force and its classification, use of vibration
sensors, use of motor current signature, machine vision,
combination of the preceding approaches, and sensor fusion.
Before we proceed further, an account of all well-known
processes for tool condition monitoring at micro- and
macroscales for milling operation is summarized and is
presented in Table 1.

The proposed methods in literature for tool condition
monitoring are explained in following paragraphs in detail.

2.1. Use of Acoustic Emission Sensors. Use of acoustic emis-
sion (AE) sensor is one of the oldest techniques applied
for condition monitoring of machine tools at macro- and
microscale. The use of AE sensors for tool condition mon-
itoring in micromilling traces its citation back in 1998 [22]
in which a general overview of its use with relevance to
machining perspective was presented.

An AE sensor converts the mechanical energy carried by
an elastic wave into electrical parameter [23]. Such sensors
are particularly applicable in systems where the residual
high frequency noise during machining operation is lower
as compared to the acoustic signal [24]. An AE sensor like
all others faces the challenge of appropriate mounting on
the milling machine for accurate parameter measurement.
Industrial milling machines mostly use the AE sensors
mounted on the tool surface [25–27], though the position and
alignment may vary. Standard AE sensors tailored for tool
conditionmonitoring applications are available from vendors
like Artis, Brankamp, Kistler, Montronix, and so forth. Few
machines use communication modules with AE sensors so
that they can be placed on high speed rotating tool [28, 29].
Yet few others use other materials like fluid or coolant as
a path for acoustic signal transmission [30]. These stated
methods are well established ones in industries at macroscale
milling process. However, the current research trend of use of
AE sensors relies on integration of the sensor with intelligent
algorithmic methods. The simplest algorithmic method uses
the root mean square value (RMS) of the captured data
usingAE sensors [31]. Advanced ones include artificial neural
networks [32], use of statistical classifiers (SVM and ARD)
[33], and signal processing approaches like time domain
analysis [34].

At microscale, utility of AE sensors is at a research stage
and its applicability is justified by even more complex algo-
rithm to process the sensor data. For instance, very recently
Yen et al. [35] has proposed self-organizing feature map
(SOM) algorithm to monitor tool wear based on AE sensors.
The methodology uses collection of sensor data followed by
its Fourier domain analysis. Next feature extraction from the
frequency domain data uses SOM based genetic algorithm.
Theperformance verification of this approach adapts learning
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Table 1: Summary of methods used for tool condition monitoring of milling process at micro- and macroscale.

S. number Methods for tool condition monitoring Citations for macroscale Citations for microscale
1 Acoustic emission sensors [22–34] [35, 36]
2 Cutting force measurement sensors [37–39] [40–42]
3 Machine vision sensors [43–48] Not available
4 Acceleration and vibration measurement [49–53] [54]
5 Actuator current measurement [55–58] [59]
6 Stress/strain measurement [60–62] Not available for milling
7 Machine learning and prediction estimation based approaches [66–77] [78]
8 Sensor fusion [79–83] [84]

vector quantification (LVQ). Thus a number of algorithms
had to be integrated for tool health monitoring at microscale.
This evokes the primary question of whether such complex
algorithms can be used in real time micromilling operations.

An approach using wavelet analysis of AE sensor signal
was proposed for tool breakage monitoring in micromilling
[36]. They have stated that the frequency of acoustic signal
obtained is given by equation

𝑓 = 𝑍
𝑛
×
𝑛

60
, (1)

where 𝑓 is the AE sensor signal frequency, 𝑍
𝑛
is number of

cutting edges in the tool, and 𝑛 is the rpm.
In one of the experiments they stated that the cutting

frequency obtained was about 3 KHz and it matches with
normal hearing spectrum (20Hz to 20KHz).Thus we cannot
guarantee that noise figure has not crept into the system.
Further the experiments were conducted at high spindle
speeds (>20000 rpm) and hence fidelity of the same at lower
spindle speeds cannot be assured.

It can thus be inferred that the use of acoustic emission
sensor at microscale has following limitations.

(a) Complex algorithms and feasibility issues in real time.
(b) Signal filtering from noise and signal detection at low

spindle rpm.
(c) Accurate placement and alignment of acoustic sensor

due to limited footprint of tool.

2.2. Use of Cutting Force Measurement. Cutting force mea-
surements in milling process primarily rely on the use of
piezoelectric dynamometer as the sensor followed by various
intelligent algorithms [37]. For instance Promotech’s PRO-
MOS system measures the cutting force during machining
and incorporates dynamic limits to detect tool breakage.
Unlike previous section (use of AE sensors) where the
applicability of the same was a challenge at microscale
in comparison to macroscale, cutting force measurement
methods are versatile and their use is well established at both
scales.

Cuš and Župerl [38] has proposed a real time cutting
tool monitoring process and flank wear estimation in milling
process using a dynamometer followed by processing with
an ANFIS algorithm and has claimed that the method is
real time one and can be used at low cost as compared to

multisensory systems. Saglam and Unuvar [39] have used
ANN for tool condition monitoring and have stated the
relationship of various machine parameters on cutting force
during milling.

Approaches similar to these stated ones were used for
tool health monitoring for micromilling process, however
with slight modifications. This is due to the fact that the
magnitude of cutting forces is lesser at microscale as com-
pared to macroscale which makes the signal immune to
noise [40]. In [40] authors have used a hidden Markov
model (HMM) for noise robust tool condition monitoring in
micromilling. A similar method based on HMM was used
in [41] for tool wear monitoring in micromilling. A fuzzy
logic based approach was used by authors in [42] where
they mapped the force patterns using pattern recognition to
computemachine parameters dynamically thus aiding in tool
condition monitoring.

Following can be summarized regarding advances in tool
condition monitoring in milling process using cutting force
data.

(a) The methods and algorithms at microscale are at
par with ones used at macroscale in present state of
research.

(b) The trivial challenge faced by this method is reduc-
tion of noise from cutting force data specifically at
microscale.

(c) Force based tool condition monitoring strategy has
got significance due to the fact that the cost is lesser
as compared to other sensors. Further the methods of
alignment of sensor are simple and robust.

2.3. Use of Machine Vision Sensors. Machine vision sensors
are perhaps the most reliable way for tool condition mon-
itoring [43]. In citations use of machine vision sensors is
used to monitor the tool wear rather than tool breakage.
Different techniques had been used for the same. Few use
a high resolution, high zoom based camera and few others
use binocular microscope which captures the image of the
tool tip and performs further algorithmic processing [44].
Algorithms to process the tool image cover a wide domain
ranging from simple texture recognition [45] to complex
statistical filtering [46]. To the best of author’s knowledge,
use of machine vision sensors for tool condition monitoring
directly has not yet been explored for micromilling; however
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methods exist for other operations like microturning [47].
This is due to the fact that background lighting during
image capturing is the trivial requirement for machine vision
systems. For micromilling where the tool rotates at a very
high speed, capturing the tool image needs a high speed
frame grabber camera. Such cameras usually work at low
illumination as high light intensity can damage the CMOS
sensor in the camera [48].

Following are the challenges and limitations of use of
machine vision sensors for milling.

(a) Use of machine vision sensors for tool condition
monitoring is a naive field both at micro- and
macroscale.

(b) The technology faces serious challenges in terms of
acquisition of image data. Further proper calibration
of measuring instrument and alignment of optical
parts are mandatory for accurate results.

(c) Direct use of machine vision sensors for tool health
monitoring is still a nonreal time approach. This is
due to the fact that the process consists of a number of
critical steps, namely, image capturing, preprocessing,
and postprocessing which consumes time in any
image processing hardware.

(d) The cost of machine vision sensors used for image
capturing is very high. For example, a high speed
camera coupled with a binocular microscope may
cost more than 50K USD.

2.4. Acceleration and Vibration Measurement. Acceleration
and vibration of a milling machine are the signature of the
machine and tool condition during its dynamic operation
as they are directly related to the cutting force. Advanced
accelerometer and vibration sensors integrated with the tool
or shank is available and efficient algorithms exist for real
time tool breakage detection [49]. Suprock et al. [50] has
proposed an effectivemethod to capture the vibrations during
milling process using electret dynamometer. They claimed
that they could capture vibration signals, aiding in tool
breakage prevention due to chattering. It has been further
claimed in [51] that scalogram which represents power
spectral density of a signal can be used on vibration signals
to arrive at the state of the tool in milling. In [52], Zhang
and Chen have proposed tool monitoring approach using
vibration signals and pattern recognition approach with the
algorithm hosted on a microcontroller. This achievement led
to the establishment of the fact that use of accelerometer and
vibration sensors for tool condition monitoring is apt to be
applied for real time CNC applications. A list of conventional
methods on use of accelerometer and vibration sensors used
for tool condition monitoring in milling is listed in [53].

Whereas frequent citations could be found on embed-
ding an accelerometer sensor on the tool at macroscale
milling process, microscale accelerometers and vibration
sensors are usually mounted on the machine or spindle
due to limited footprint [54]. With advances in MEMS
(microelectromechanical systems) based fabrication technol-
ogy accelerometers within limited footprint and consuming

a few nanoamperes current are available. One of them is
ADXL345 manufactured by analog devices. In [54] authors
have proposed a tool positioning strategy for micromilling
using an accelerometer sensor. Tool positioning is the most
crucial issue for condition monitoring in micromilling as
stated in Section 1. In the same article submicron level
accuracy in tool-workpiece contact was detected based on
power spectral characteristics of vibration signal.

Following can be inferred on present state of the art on
use of acceleration and vibration sensors for tool condition
monitoring in milling.

(a) With advances in MEMS technology accelerometer
and vibration sensors have got profuse advancements
which have led to small footprint. Hence they are
suitable for tool condition monitoring at microscale.

(b) The algorithms for data interpretation from sensor
signals are simple both at micro- and macroscales
because of the fact that these parameters are directly
related to machining forces and hence complex con-
version look up tables or interpretation techniques are
not required.

(c) The process is simple and can be achieved in real time
for condition monitoring.

2.5. Actuator Current Measurement. Actuator current mea-
surement technique for condition monitoring of milling
tool is an indirect way to assess the health of the tool. In
this process no external sensors are usually required. The
spectrum of the current signal assessed by themotor driver is
itself used for conditionmonitoring.The basic principle relies
on the fact that the load current signature of themotor driving
the spindle or the feed stage varies as per torque requirement,
speed, and cutting forces [55].

Li [56] has proposed a method of tool health monitoring
in end milling using feed motor current signatures. In this
paper the author has claimed that the method has potential
to be applied online. Hall effect sensors were used to measure
the motor currents in real time. Subsequently, time domain
averaging (TDA) of the procured signalwas carried outwhich
detects the periodicity of the signal in a given interval of
time. In cases of tool damage the periodicity changes and
hence detection of the same is possible. A similar approach
was adapted for face milling operations in [57], where the
authors suggested the use of tool fracture index (TFI) based
on periodic variations in load. In [58], a new strategy of signal
processing, namely, discrete wavelet transform (DWT) was
used to decompose the motor current signals into hierar-
chical levels. Such multilevel signal decomposition system is
advantageous as it combines both time domain and frequency
domain signal analysis, thus enhancing the process fidelity.

At microscale Ogedengbe et al. [59] has tested for the fea-
sibility of the approach for micromilling operations recently.
They claimed that despite of the advantage of low cost and
simplicity of this method, it has not been applied in research
or in industry. They also stated that the spindle and feed
motor current signatures changes remarkably over time as the
tool wear progresses.
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From the preceding discussion following can be con-
cluded.

(a) Use of current signature for tool condition monitor-
ing at microscale still demands research. As similar
successful approaches have been dealt extensively at
macroscale, so there is a lucrative scope in this area.

(b) The method is least expensive and is simple as no
sensors need to be mounted on the machine or
machine tools.

(c) Analysis algorithms are simple and can be applied in
real time.

(d) The signal procured is not affected by mechanical
noise unlike other methods where noise filtering in
the captured signal is a crucial issue.

2.6. Stress/Strain Measurement. Stress/strain measurement
methods for tool condition monitoring are established in
literature using a variety of techniques. They include use
of thin film sensors [60], photoelastic method [61], use
of strain gauge [62], and use of optical fibre sensors [63].
In [60] authors have demonstrated a technique to capture
the strain on milling tool using thin film polyvinylidene
fluoride (PVDF) sensor and has proved its accuracy using
back calculation of induced forces and matching them with
the obtained ones using dynamometer. A strain gauge based
milling dynamometer was proposed in [62], wherein strain
gauges bonded on octagon rings were used to finally procure
the cutting force. Photoelastic methods are used for tool
health monitoring by residual cyclic stress measurement for
turning operation [61]; however it is not applied for milling
operations. Similarly fiber Bragg grating sensor has been used
to detect tool stress for turning operation both at macro-
[63] and microscale [64] but is not applied for milling. At
microscale, due to challenges in placing the sensor near to
the tool, stress or strain assessment methods have not gained
popularity.

Following points are to be noted regarding advancement
in stress/strain measurement for micromilling systems.

(a) As it is preferred to measure the stress/strain on the
tool surface and the footprint limitations combined
with high spindle speed renders difficulty in sensor
mounting, using this technology is a daunting task.

(b) Use of photoelastic technology can be an alternative
solution in near future. However present technology
does not allow the use of this method for tool stress
determination in micromilling due to issues like
requirement of high speed frame grabber with high
intensity sustaining capacity of CMOS sensor along
with high magnification power.

(c) Use of fibre Bragg grating sensor can be a promising
solution for strain measurement and subsequent tool
condition monitoring at microscale due to its small
footprint. Further availability of high speed fibre optic
rotary joints [65] makes its suitable for micromilling
applications.

2.7. Machine Learning and Prediction Estimation Based
Approaches. This technique of tool condition monitoring
uses prior feature based knowledge or some empirical rela-
tion of tool condition and tool health to estimate the same
in real time [66]. More specifically, a set of recorded data is
used to predict the state of condition in real time [67]. In few
cases a mathematical model is first established and based on
that, prediction of tool wear and breakage is carried out. In
[68], authors have used cutting power model to determine a
cutting threshold, which is used to monitor tool wear during
milling operations. In [69], regression and ANNmodels were
used to predict the toolwear and predict tool life. In this paper
authors initially used design of experiments (DOE) for five
level three factors full factorial technique and subsequently a
final regression model was constructed to estimate the tool
wear. Similar approach was followed in [70] using physically
segmented hiddenMarkov models to estimate tool condition
during milling. Prediction of tool wear merely by using the
machining parameterswas conducted in [71]. In this response
surface methodology (RSM) was utilized to predict the effect
of machining parameters on tool wear.

Statistical approaches to monitor tool breakage in milling
have also evolved. In [72], authors have proposed a statistical
approach to detect tool breakage in end milling operation.
They claimed the fact that merely classifying a tool as good
or broken one cannot solve the problem of tool breakage. In
order to address the same and to make the process more ver-
satile towards various tool work-material combinations they
usedmultiple regressionmodel. In 2008 [73], a method using
state vector machine (SVM) was proposed to predict tool
breakage in face milling. Use of SVM over other approaches
like fuzzy, ANN, and so forth has the advantage that the
final results depend on very few parameters which lie on
the classifier boundary. Thus computational load is reduced
greatly which increases its prediction efficiency in real time.

Approaches to predict tool chatter also find citations in
the literature. In [74], single frequency solution approach was
used to predict tool chatter using a continuous beam model
for tool-spindle combination. In [75], authors used a set of
differential equations to predict tool chatter.Themodel relies
on damping factor of the system. In [76], authors proposed
a technique to predict multiple dominant chatter frequencies
unlike in others where a single frequency was predicted.This
method is beneficial from the viewpoint that chatter in a
machine is regenerative and nature. Regenerative chatter also
has deteriorating impact on tool life [77].

At microscale the use of prediction estimation meth-
ods have evolved very recently. In late 2012, Hung and
Lu [78] have proposed a model to estimate the tool wear in
micromilling based on the acoustic signals.

Following can be inferred from the above discussions.

(a) Use of prediction estimation based algorithms for
tool condition monitoring is an emerging area at
microscale.

(b) At macroscale numerous methods can be found
in the literature. Applicability of these methods at
microscale has not yet been significant in research.
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(c) Prediction estimation based algorithms are beneficial
from the viewpoint that they do not employ complex
and costly sensors but rather focus on computation
based on some known facts. Further due to speed
improvement in computer hardware over years these
methods are suitable for real time applications. There
is no delay in signal output neither does it need any
signal processing.

(d) These algorithms suffer from a limitation that over
prolonged periods of time the known relationships
may change. This can lead to erroneous results. Thus
time to time calibration and algorithmic debugging
are essential.

2.8. Sensor Fusion. Today’s research trend for tool condi-
tion monitoring in milling process emphasizes multisensor
approach or sensor fusion based approach [79]. Under this
a number of sensors mounted at various places of tool and
tool holder are used to procure multiple parameters in a
synchronous way and is processed using algorithms [80].The
resultant signal is used for condition monitoring of the tool.

Cho et al. [81] has claimed that force, vibration, and AE
sensor combination together with correlation based feature
selection of the captured data yield the best accuracy in
tool condition monitoring. The method of sensor fusion in
the stated paper deals with using sensors directly for the
purpose. In [82], a solution to reduce flankwear and breakage
in milling tool using a combination of machine vision and
an indirect relation with cutting force was proposed. Self-
organizing feature map was trained in batch mode using
the captured data from the sensors. Authors claimed that
they could achieve real time monitoring of tool condition
using this process. Dutta et al. [83] used force and vibration
sensors and processed the signals using fuzzy controlled
back propagation neural network and also claimed that their
proposed method could be used online.

Similar techniques were used for micromilling in [84]. In
this research the authors used a combination of accelerome-
ter, force, andAE sensors and fused the captured signals using
neuro-fuzzy method. Further the tool wear was evaluated
online using an optical microscope.

From the above discussions following points can be
concluded.

(a) Multisensor approach is very reliable method of tool
conditionmonitoring at bothmicro- andmacroscales
as a number of parameters could be monitored
simultaneously.

(b) Atmicroscale cost and alignment issue for the sensors
are still a challenge.

(c) The algorithms used for multiple sensor based meth-
ods are complex due to demand of proper data fusion
and accurate feature extraction.
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