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It is difficult for passive portfolio strategy to manage the long-term exposure of a well-diversified portfolio because stock index
futures contracts have a finite life limited by their maturity. In this paper, we investigate the problem of the rollover hedge strategy
for the long-term exposure of a well-diversified portfolio. First, we consider the rollover hedge strategy for the well-diversified
portfolio when the portfolio is not adjusted during the period. In order to obtain the optimal solution of the proposed model, the
auxiliary models are constructed using the equivalent transformation technique. Moreover, dynamic programming is employed to
derive the optimal positions of stock index futures contracts for the long-term exposure of thewell-diversified portfolio. In addition,
we extend the result to the case of the rollover hedge strategy with transaction costs and derive the optimal number of stock index
futures contracts.

1. Introduction

Stock index futures contracts are often used for the risk
management because they have low transaction costs and
counterparty risk is small. A key question for stock index
futures hedging is how to determine the optimal hedge ratio
or the optimal number of stock index futures contracts.
The vast majority of the hedging literature has focused on
the key question. One of the most widely used methods
for calculating the optimal hedge ratio is based on the
minimization of the variance of the hedged portfolio. One
of the first studies was by Figlewski [1]. He calculated the
minimum variance hedge ratio (MVHR) by the ordinary
least squares (OLS) method on historical spot and futures
returns. On this basis, some studies (e.g., the literature [2–
4]) examined the effectiveness of hedges with duration effect
and expiration effects. Lee and Chien [5] investigated the
impact of stock market liquidity on the hedging performance
of stock index futures by the conditional OLS model with
stock market liquidity. Ghosh [6] applied an error correction

model (ECM) to capture the lead and lag relationships
between stock index and stock index futures and estimated
the optimal hedge ratio. He found that ECM incorporated
the long-run equilibrium relationship as well as the short-
run dynamics and had significant improvement in estimat-
ing the optimal hedge ratio and reducing the risk of risk
minimizing portfolio. Eftekhari [7] and Lien and Tse [8]
minimized downside risk of the hedged portfolio to obtain
the optimal hedge ratio. Chen et al. [9] adopted the mean-
generalized semivariance approach to determine the hedge
ratio. These studies estimated the optimal hedge ratio under
the assumption that the hedge ratio was fixed at the optimum
level and was not revised during the hedging period.

The fixed hedge ratio might be inappropriate because
the variance and covariance matrix of the spot and futures
returns are time-varying over time. Under such circum-
stances, many dynamicmodels were proposed to estimate the
time-varying hedge ratio. Specifically, the GARCH models
are widely used for index futures hedging. The bivariate
GARCHmodels are employed to design the dynamic hedging
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strategy (e.g., the literature [10–17]). The results showed
that the hedging strategy based on the bivariate GARCH
estimation had better hedging performance than the constant
hedging strategy. Sim and Zurbruegg [18] andWang and Hsu
[19] developed error-correctedGARCHmodels to investigate
the dynamic hedging effectiveness in index futures hedging.
Yang and Allen [20] and Floros and Vougas [21] examined
the hedging effectiveness of multivariate GARCH hedge
ratios in Australian and Greek stock index futures market,
respectively. Pok et al. [22] and Aragó and Salvador [23] used
asymmetric GARCH models to investigate the performance
of dynamic hedging strategy.

In addition to the GARCH hedging model, there are
several studies using other methods to generate the optimal
hedge ratio, such as Markov regime switching approach [24],
the exponential weighted moving average (EMWA) method
[25], the dynamic hedging algorithm based on a Reverse
Order CUSUM-squared testing procedure [26], time-varying
copulasmethodology [27, 28], and autoregressive conditional
density (ARCD) models [29].

Although the derivation methods for the time-varying
hedge ratio capture the time-varying second moments of
financial time series [17], they mainly focused on hedging
with one index futures contract. As we know, stock index
futures contracts have a finite life span and the most liquid
contracts tend to be of short maturity. It is difficult for
investors to hedge a long-term exposure with one futures
contract. In order to solve the problem, a portfolio of nearby
futures contracts, each with different maturities, is used to
hedge the long-term exposure. This is the so-called “rollover
hedge” strategy.

The “rollover hedge” strategy ismainly applied in hedging
the risk of commodities (e.g., the literature [30–34]). But
it is strange that the “rollover hedge” strategy is seldom
used for stock index futures hedging. The only research of
which we are aware that considered the rollover hedge with
index futures contracts is by Carchano and Pardo [35]. They
devised a rollover hedge strategy with five criteria to manage
the long-term exposure of single stock index. However, the
issue of hedging the long-term exposure of a well-diversified
portfolio was not considered in their studies.

This paper is also closely related to the passive portfolio
management. Passive portfolio management is an important
strategy in financial investments. The idea of the strategy
is to make a well-diversified portfolio with low turnover.
Nevertheless, the well-diversified portfolio can do nothing
for the systematic risk of the portfolio while it diversifies
the unsystematic risk of each security out of the portfolio.
In addition, passive portfolio management usually holds
the well-diversified portfolio for a long time to reduce
the transaction costs. Therefore, it is necessary to discuss
the problem of hedging the long-term exposure of a well-
diversified portfolio.

The main purpose of this paper is to investigate the
rollover hedge for the long-term exposure of the well-
diversified portfolio. A new theoretical model is proposed
to design the rollover hedge strategy. The rest of the paper
is organized as follows. Section 2 presents how to construct
the rollover hedging model for the well-diversified portfolio.

Section 3 describes how to solve the proposed model by the
equivalent transformation technique and dynamic program-
ming. Section 4 discusses the rollover hedging problem with
transaction costs. Finally, we draw a conclusion in Section 5.

2. The Rollover Hedging Model for the Well-
Diversified Portfolio

In general, passive management funds, such as Barclays
Global Investors and State Street Corp., primarily hold a well-
diversified portfolio for a long time. To hedge against the
risk exposure of the portfolio, they can roll over short-term
contracts in stock index futures market. This section lays
out the hedge problem of the passive management fund and
constructs a new model for hedging the long-term exposure
of the well-diversified portfolio without adjustment.

First, we will introduce the rollover hedge strategy with
stock index futures. It follows the step below to manage the
long-term risk of the portfolio. At the beginning of each
period, the passivemanagement fund takes a position in stock
index futures contract nearest to expiration. At the end of
each period, the former nearby contract is closed out and
the subsequent nearby contract is opened. This process is
continued over the life of the well-diversified portfolio.

Next, we start to build the new model. The available
capital is divided into three separate parts. The first part is
invested in the well-diversified portfolio that is not adjusted
during the whole investment period. The second part is used
for stock index futures contracts. The third part is deposited
in the saving account of the bank to deal with the possible
liquidity risk.

For the sake of clarity, we use the following notations:

𝑉
0
: the available investment capital for a passive

management fund,
𝑄
𝑗
: the number of stock 𝑗 during the investment

period,
𝑆
𝑗,𝑡
: the price of stock 𝑗 at time 𝑡,

𝐹
𝑡
: the price of stock index futures contract at time 𝑡,

𝑍: the unit of stock index futures contract,
𝐻
𝑖−1

: the number of stock index futures contracts for
hedging the long-term exposure,
𝛼: the ratio of the maintenance margin,
𝑊
𝑆,𝑡
: the capital invested in the well-diversified port-

folio at time 𝑡,
𝑊
𝐹,𝑡
: the capital invested in stock index futures con-

tracts at time 𝑡,
𝑊
𝐶,𝑡
: the saving in the bank at time 𝑡,

𝑀
𝑡
: the total amount of𝑊

𝐹,𝑡
and𝑊

𝐶,𝑡
.

At time 𝑡 = 𝑡
0
, the amount of thewell-diversified portfolio

is

𝑊
𝑆,𝑡0
=

𝑛

∑

𝑗=1

𝑄
𝑗
𝑆
𝑗,𝑡0
. (1)
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After the well-diversified portfolio is constructed, the
total amount of𝑊

𝐹,𝑡0
and𝑊

𝐶,𝑡0
is

𝑀
0
= 𝑉
0
−𝑊
𝑆,𝑡0
= 𝑊
𝐹,𝑡0
+𝑊
𝐶,𝑡0
= 𝐻
0
𝑍𝐹
𝑡0
𝛼 +𝑊

𝐶,𝑡0
, (2)

where𝑊
𝐹,𝑡0

and𝑊
𝐶,𝑡0

are the amount of stock index futures
contracts and the saving in the bank, respectively.

At time 𝑡 = 𝑡
𝑖−1

, that is, the beginning of the period i, the
amounts of stock index futures contracts and the saving in the
bank are𝑊

𝐹,𝑡𝑖−1
= 𝐻
𝑖−1
𝑍𝐹
𝑡𝑖−1
𝛼 and𝑊

𝐶,𝑡𝑖−1
, respectively. Then

the total amount of𝑊
𝐹,𝑡𝑖−1

and𝑊
𝐶,𝑡𝑖−1

is

𝑀
𝑖−1
= 𝑊
𝐹,𝑡𝑖−1

+𝑊
𝐶,𝑡𝑖−1

= 𝐻
𝑖−1
𝑍𝐹
𝑡𝑖−1
𝛼 +𝑊

𝐶,𝑡𝑖−1
. (3)

At time 𝑡 = 𝑡
𝑖
, the amounts of stock index futures

contracts are expressed by

𝑊
𝐹,𝑡𝑖
= 𝐻
𝑖−1
𝑍𝐹
𝑡𝑖−1
𝛼 + 𝐻

𝑖−1
𝑍𝐹
𝑡𝑖−1
− 𝐻
𝑖−1
𝑍𝐹
𝑡𝑖

= 𝐻
𝑖−1
𝑍 [𝐹
𝑡𝑖−1
(1 + 𝛼) − 𝐹

𝑡𝑖
] .

(4)

At time 𝑡 = 𝑡
𝑖
, that is, the end of the period 𝑖, the total

amount of𝑊
𝐹,𝑡𝑖

and𝑊
𝐶,𝑡𝑖

needs to be discussed in two cases
because liquidity riskmight happen; that is, the balance of the
futures account falls below the maintenance margin and the
added margin is needed.

If the firm does not face liquidity risk, the saving at time
𝑡 = 𝑡
𝑖
is

𝑊
𝐶,𝑡𝑖
= 𝑊
𝐶,𝑡𝑖−1

(1 + 𝑟
𝐶,𝑖
) , (5)

where 𝑟
𝐶,𝑖

is the interest rate of current deposits from 𝑡 = 𝑡
𝑖−1

to 𝑡 = 𝑡
𝑖
.

In the case without liquidity risk, the total amount of𝑊
𝐹,𝑡𝑖

and𝑊
𝐶,𝑡𝑖

is

𝑀
𝑖
= 𝑊
𝐹,𝑡𝑖
+𝑊
𝐶,𝑡𝑖

= 𝐻
𝑖−1
𝑍 [𝐹
𝑡𝑖−1
(1 + 𝛼) − 𝐹

𝑡𝑖
] + 𝑊

𝐶,𝑡𝑖−1
(1 + 𝑟

𝐶,𝑖
) .

(6)

If the firm receives a margin call and is expected to pay
additional margin into the futures account to maintain its
position, the amount of the rest capital at time 𝑡 = 𝑡

𝑖
is

different from the case without liquidity risk. The proposed
method by Fu et al. [36] is used to calculate the additional
margin.

From 𝑡 = 𝑡
𝑖−1

to 𝑡 = 𝑡
𝑖
, we assume that there are𝑁

𝑖
trading

days that the balance of the account falls below the deposit
required to maintain the position 𝐻

𝑖−1
. Let 𝐹

𝑡𝑖−1+𝑔𝑖(𝑘)
be the

settlement price of stock index futures contracts on the 𝑘th
trading day (𝑘 = 1, 2, . . . , 𝑁

𝑖
, 𝑁
𝑖
≧ 1) that the manufacturer

receives a margin call, and 𝑔
𝑖
(𝑘) is the number of the trading

days between the 𝑘th trading day with a margin call and the
formerwith amargin call. In addition,𝐹

𝑡𝑖−1+𝑔𝑖(𝑘)
should satisfy

𝐹
𝑡𝑖−1
< 𝐹
𝑡𝑖−1+𝑔𝑖(1)

< 𝐹
𝑡𝑖−1+𝑔𝑖(2)

< ⋅ ⋅ ⋅

< 𝐹
𝑡𝑖−1+𝑔𝑖(𝑁𝑖)

, 𝑡
𝑖−1
+ 𝑔
𝑖
(𝑁
𝑖
) < 𝑡
𝑖
.

(7)

Let 𝑔
𝑖
(0) = 0; the inequality becomes
𝐹
𝑡𝑖−1
= 𝐹
𝑡𝑖−1+𝑔𝑖(0)

< 𝐹
𝑡𝑖−1+𝑔𝑖(1)

< 𝐹
𝑡𝑖−1+𝑔𝑖(2)

< ⋅ ⋅ ⋅ < 𝐹
𝑡𝑖−1+𝑔𝑖(𝑁𝑖)

.

(8)

At time 𝑡 = 𝑡
𝑖−1
+ 𝑔
𝑖
(1), the balance of the stock index

futures account is
𝐻
𝑖−1
𝐹
𝑡𝑖−1+𝑔𝑖(0)

𝛼 + 𝐻
𝑖−1
𝐹
𝑡𝑖−1+𝑔𝑖(0)

− 𝐻
𝑖−1
𝐹
𝑡𝑖−1+𝑔𝑖(1)

. (9)
Then the maintenance margin of stock index futures

contracts is 𝐻
𝑖−1
𝐹
𝑡𝑖−1+𝑔𝑖(1)

𝛼. Obviously, the balance of the
account is less than the maintenance margin of the position
𝐻
𝑖−1

. In order to maintain the position 𝐻
𝑖−1

, the amount of
the additional margin at time 𝑡

𝑖−1
+ 𝑔
𝑖
(1) is

AM
𝑡𝑖−1+𝑔𝑖(1)

= 𝐻
𝑖−1
𝐹
𝑡𝑖−1+𝑔𝑖(1)

𝛼

− 𝐻
𝑖−1
[𝐹
𝑡𝑖−1+𝑔𝑖(0)

𝛼 + 𝐹
𝑡𝑖−1+𝑔𝑖(0)

− 𝐹
𝑡𝑖−1+𝑔𝑖(1)

]

= 𝐻
𝑖−1
[𝐹
𝑡𝑖−1+𝑔𝑖(1)

− 𝐹
𝑡𝑖−1+𝑔𝑖(0)

] (1 + 𝛼) .

(10)
After depositing the additional margin AM

𝑡𝑖−1+𝑔𝑖(1)
, the

saving in the bank is
𝑊
𝐶,𝑡𝑖−1+𝑔𝑖(1)

= 𝑊
𝐶,𝑡𝑖−1

[1 + 𝑟
𝑖 (1)]

− 𝐻
𝑖−1
[𝐹
𝑡𝑖−1+𝑔𝑖(1)

− 𝐹
𝑡𝑖−1+𝑔𝑖(0)

] (1 + 𝛼) ,

(11)

where 𝑟
𝑖
(1) = 𝑟 ⋅ 𝑔

𝑖
(1)/360.

At time 𝑡 = 𝑡
𝑖−1
+ 𝑔
𝑖
(2), the balance of the account

𝐻
𝑖−1
[𝐹
𝑡𝑖−1+𝑔𝑖(1)

𝛼 + 𝐹
𝑡𝑖−1+𝑔𝑖(1)

− 𝐹
𝑡𝑖−1+𝑔𝑖(2)

] is also less than
the maintenance margin 𝐻

𝑖−1
𝐹
𝑡𝑖−1+𝑔𝑖(2)

𝛼. The amount of the
additional margin should be
AM
𝑡𝑖−1+𝑔𝑖(2)

= 𝐻
𝑖−1
𝐹
𝑡𝑖−1+𝑔𝑖(2)

𝛼

− 𝐻
𝑖−1
[𝐹
𝑡𝑖−1+𝑔𝑖(1)

𝛼 + 𝐹
𝑡𝑖−1+𝑔𝑖(1)

− 𝐹
𝑡𝑖−1+𝑔𝑖(2)

]

= 𝐻
𝑖−1
[𝐹
𝑡𝑖−1+𝑔𝑖(2)

− 𝐹
𝑡𝑖−1+𝑔𝑖(1)

] (1 + 𝛼) .

(12)
Then the saving in the bank is

𝑊
𝐶,𝑡𝑖−1+𝑔𝑖(2)

= 𝑊
𝐶,𝑡𝑖−1+𝑔𝑖(1)

[1 + 𝑟
𝑖
(2)]

− 𝐻
𝑖−1
[𝐹
𝑡𝑖−1+𝑔𝑖(2)

− 𝐹
𝑡𝑖−1+𝑔𝑖(1)

] (1 + 𝛼)

={𝑊
𝐶,𝑡𝑖−1
[1 + 𝑟

𝑖 (1)] − 𝐻𝑖−1(𝐹𝑡𝑖−1+𝑔𝑖(1)
− 𝐹
𝑡𝑖−1+𝑔𝑖(0)

) (1 + 𝛼)}

× [1 + 𝑟
𝑖
(2)] − 𝐻

𝑖−1
[𝐹
𝑡𝑖−1+𝑔𝑖(2)

− 𝐹
𝑡𝑖−1+𝑔𝑖(1)

] (1 + 𝛼)

= 𝑊
𝐶,𝑡𝑖−1

2

∏

𝑚=1

[1 + 𝑟
𝑖
(𝑚)] − 𝐻

𝑖−1
(𝐹
𝑡𝑖−1+𝑔𝑖(1)

− 𝐹
𝑡𝑖−1+𝑔𝑖(0)

)

× (1 + 𝛼) [1 + 𝑟
𝑖
(2)]

− 𝐻
𝑖−1
[𝐹
𝑡𝑖−1+𝑔𝑖(2)

− 𝐹
𝑡𝑖−1+𝑔𝑖(1)

] (1 + 𝛼) ,

(13)
where 𝑟

𝑖
(2) = 𝑟 ⋅ 𝑔

𝑖
(2)/360.
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By analogy, the amounts of the additional margin and the
saving at time 𝑡

𝑖−1
+ 𝑔
𝑖
(𝑁
𝑖
) should be

AM
𝑡𝑖−1+𝑔𝑖(𝑁𝑖)

= 𝐻
𝑖−1
[𝐹
𝑡𝑖−1+𝑔𝑖(𝑁𝑖)

− 𝐹
𝑡𝑖−1+𝑔𝑖(𝑁𝑖−1)

] (1 + 𝛼) ,

𝑊
𝐶,𝑡𝑖−1+𝑔𝑖(𝑁𝑖)

= 𝑊
𝐶,𝑡𝑖−1+𝑔𝑖(𝑁𝑖−1)

[1 + 𝑟
𝑖
(𝑁
𝑖
)]

− 𝐻
𝑖−1
[𝐹
𝑡𝑖−1+𝑔𝑖(𝑁𝑖)

− 𝐹
𝑡𝑖−1+𝑔𝑖(𝑁𝑖−1)

] (1 + 𝛼)

= {𝑊
𝐶,𝑡𝑖−1+𝑔𝑖(𝑁𝑖−2)

[1 + 𝑟
𝑖
(𝑁
𝑖
− 1)]

−𝐻
𝑖−1
[𝐹
𝑡𝑖−1+𝑔𝑖(𝑁𝑖−1)

− 𝐹
𝑡𝑖−1+𝑔𝑖(𝑁𝑖−2)

] (1 + 𝛼)}

× [1 + 𝑟
𝑖
(𝑁
𝑖
)]

− 𝐻
𝑖−1
[𝐹
𝑡𝑖−1+𝑔𝑖(𝑁𝑖)

− 𝐹
𝑡𝑖−1+𝑔𝑖(𝑁𝑖−1)

] (1 + 𝛼)

= 𝑊
𝐶,𝑡𝑖−1+𝑔𝑖(𝑁𝑖−2)

𝑁𝑖

∏

𝑚=𝑁𝑖−1

[1 + 𝑟
𝑖
(𝑗)]

− 𝐻
𝑖−1
[𝐹
𝑡𝑖−1+𝑔𝑖(𝑁𝑖−1)

− 𝐹
𝑡𝑖−1+𝑔𝑖(𝑁𝑖−2)

]

× (1 + 𝛼) [1 + 𝑟𝑖 (𝑁𝑖)]

− 𝐻
𝑖−1
[𝐹
𝑡𝑖−1+𝑔𝑖(𝑁𝑖)

− 𝐹
𝑡𝑖−1+𝑔𝑖(𝑁𝑖−1)

] (1 + 𝛼)

...

= 𝑊
𝐶,𝑡𝑖−1

𝑁𝑖

∏

𝑚=1

[1 + 𝑟
𝑖
(𝑗)] − 𝐻

𝑖−1
𝐴
𝑖−1
,

(14)

where

𝐴
𝑖−1
=

𝑁𝑖

∑

𝑘=1

{[𝐹
𝑡𝑖−1+𝑔𝑖(𝑘)

− 𝐹
𝑡𝑖−1+𝑔𝑖(𝑘−1)

] (1 + 𝛼)

𝑁𝑖

∏

𝑚=𝑘+1

[1 + 𝑟
𝑖
(𝑚)]}

+ [𝐹
𝑡𝑖−1+𝑔𝑖(𝑁𝑖)

− 𝐹
𝑡𝑖−1+𝑔𝑖(𝑁𝑖−1)

] (1 + 𝛼) .

(15)

At time 𝑡 = 𝑡
𝑖
, the saving in the bank is given by

𝑊
𝐶,𝑡𝑖
= 𝑊
𝐶,𝑡𝑖−1+𝑔𝑖(𝑁𝑖)

[1 + 𝑟
𝑖
(𝑁
𝑖
+ 𝑘
𝑖
)]

= {𝑊
𝐶,𝑡𝑖−1

𝑁𝑖

∏

𝑚=1

[1 + 𝑟
𝑖
(𝑗)] − 𝐻

𝑖−1
𝐴
𝑖−1
}

× [1 + 𝑟
𝑖
(𝑁
𝑖
+ 𝑘
𝑖
)] ,

(16)

where 𝑟
𝑖
(𝑁
𝑖
+ 𝑘
𝑖
) = 𝑟 ⋅ 𝑔

𝑖
(𝑁
𝑖
+ 𝑘
𝑖
)/360 and 𝑔

𝑖
(𝑁
𝑖
+ 𝑘
𝑖
) is the

number of the trading days from time 𝑡
𝑖−1
+ 𝑔
𝑖
(𝑁
𝑖
) to time 𝑡

𝑖
.

At the end of period i, the total amount of𝑊
𝐹,𝑡𝑖

and𝑊
𝐶,𝑡𝑖

with liquidity risk is

𝑀
𝑖
= 𝑊
𝐹,𝑡𝑖
+𝑊
𝐶,𝑡𝑖

= 𝐻
𝑖−1
𝑍 [𝐹
𝑡𝑖−1
(1 + 𝛼) − 𝐹𝑡𝑖

]

+ [𝑊
𝐶,𝑡𝑖−1

𝑁𝑖

∏

𝑚=1

[1 + 𝑟
𝑖
(𝑗)] − 𝐻

𝑖−1
𝐴
𝑖−1
]

× [1 + 𝑟
𝑖
(𝑁
𝑖
+ 𝑘
𝑖
)]

= 𝐻
𝑖−1
𝑍 [𝐹
𝑡𝑖−1
(1 + 𝛼) − 𝐹

𝑡𝑖
]

+ 𝑊
𝐶,𝑡𝑖−1

[1 + 𝑟
𝑖
(𝑁
𝑖
+ 𝑘
𝑖
)]

𝑁𝑖

∏

𝑚=1

[1 + 𝑟
𝑖
(𝑗)]

− 𝐻
𝑖−1
𝐴
𝑖−1
[1 + 𝑟

𝑖
(𝑁
𝑖
+ 𝑘
𝑖
)]

= 𝐻
𝑖−1
{𝑍 [𝐹
𝑡𝑖−1
(1 + 𝛼) − 𝐹𝑡𝑖

] − 𝐴
𝑖−1
[1 + 𝑟

𝑖
(𝑁
𝑖
+ 𝑘
𝑖
)]}

+ 𝑊
𝐶,𝑡𝑖−1

[1 + 𝑟
𝑖
(𝑁
𝑖
+ 𝑘
𝑖
)]

𝑁𝑖

∏

𝑚=1

[1 + 𝑟
𝑖
(𝑗)] .

(17)

Let

𝑒
𝐹,𝑖−1

=

{{

{{

{

𝑍[𝐹
𝑡𝑖−1
(1 + 𝛼) − 𝐹𝑡𝑖

] , without liquidity risk,

𝑍 [𝐹
𝑡𝑖−1
(1 + 𝛼) − 𝐹

𝑡𝑖
] − 𝐴
𝑖−1
[1 + 𝑟

𝑖
(𝑁
𝑖
+ 𝑘
𝑖
)] , with liquidity risk,

𝑒
𝐶,𝑖−1

=

{{

{{

{

1 + 𝑟
𝐶,𝑖
, without liquidity risk,

[1 + 𝑟
𝑖
(𝑁
𝑖
+ 𝑘
𝑖
)]

𝑁𝑖

∏

𝑚=1

[1 + 𝑟
𝑖
(𝑗)] , with liquidity risk.

(18)

According to (6) and (17), the total amount of𝑊
𝐹,𝑡𝑖

and𝑊
𝐶,𝑡𝑖

at the end of the period 𝑖 can be given by

𝑀
𝑖
= 𝐻
𝑖−1
𝑒
𝐹,𝑖−1

+𝑊
𝐶,𝑡𝑖−1

𝑒
𝐶,𝑖−1

. (19)

Substituting (3) into (19), the total amount of 𝑊
𝐹,𝑡𝑖

and
𝑊
𝐶,𝑡𝑖

is expressed by

𝑀
𝑖
= 𝐻
𝑖−1
𝑒
𝐹,𝑖−1

+𝑊
𝐶,𝑡𝑖−1

𝑒
𝐶,𝑖−1

= 𝐻
𝑖−1
𝑒
𝐹,𝑖−1

+ (𝑀
𝑖−1
− 𝐻
𝑖−1
𝑍𝐹
𝑡𝑖−1
𝛼) 𝑒
𝐶,𝑖−1

= 𝑀
𝑖−1
𝑒
𝐶,𝑖−1

+ 𝐻
𝑖−1
(𝑒
𝐹,𝑖−1

− 𝑍𝐹
𝑡𝑖−1
𝛼𝑒
𝐶,𝑖−1

) .

(20)
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Let 𝑃
𝑖−1
= 𝑒
𝐹,𝑖
− 𝑍𝐹
𝑡𝑖−1
𝛼𝑒
𝐶,𝑖−1

. Then (20) can be simplified
as

𝑀
𝑖
= 𝑀
𝑖−1
𝑒
𝐶,𝑖−1

+ 𝐻
𝑖−1
𝑃
𝑖−1
. (21)

During the whole period, the terminal profit of the
investment is

Δ𝑅 = (𝑀
𝑇
+𝑊
𝑆,𝑡𝑇
) − (𝑀

0
+𝑊
𝑆,𝑡0
) , (22)

where𝑊
𝑆,𝑡𝑇
= ∑
𝑛

𝑗=1
𝑄
𝑗
𝑆
𝑗,𝑡𝑇

.
The variance of terminal profit of the investment is

Var (Δ𝑅) = Var (𝑀
𝑇
+𝑊
𝑆,𝑡𝑇
)

= Var (𝑀
𝑇
) + 2Cov (𝑀

𝑇
,𝑊
𝑆,𝑡𝑇
) + Var (𝑊

𝑆,𝑡𝑇
)

= 𝐸 (𝑀
2

𝑇
) − 𝐸
2
(𝑀
𝑇
) + 2𝐸 (𝑀

𝑇
𝑊
𝑆,𝑡𝑇
)

− 2𝐸 (𝑊
𝑆,𝑡𝑇
) 𝐸 (𝑀

𝑇
) + Var (𝑊

𝑆,𝑡𝑇
) .

(23)

The firm chooses the number of index futures contracts
by minimizing the variance of terminal profit of the invest-
ment:

min Var (Δ𝑅) = Var (𝑀
𝑇
+𝑊
𝑆,𝑡𝑇
) . (24)

Combining (24) with (21), we obtain the following model
for hedging the long-term exposure of the well-diversified
portfolio:

min Var (𝑀
𝑇
+𝑊
𝑆,𝑡𝑇
)

s.t. 𝑀
𝑖
= 𝑀
𝑖−1
𝑒
𝐶,𝑖−1

+ 𝐻
𝑖−1
𝑃
𝑖−1
.

(25)

3. The Analytical Solution for
the Proposed Model

This section derives the minimum-risk hedge positions for
the rollover hedge strategies. The method by Li and Ng
[37] is employed. Model (25) is nonseparable in the sense
of dynamic programming. It is necessary for the optimal
solutions of the proposedmodel to transformmodel (25) into
a separable model.

By equivalent transformation of the objective function,
model (25) is rewritten as

max −Var (𝑀
𝑇
+𝑊
𝑆,𝑡𝑇
)

s.t. 𝑀
𝑖
= 𝑀
𝑖−1
𝑒
𝐶,𝑖−1

+ 𝐻
𝑖−1
𝑃
𝑖−1
.

(26)

Let

𝑈{𝐸 (𝑀
2

𝑇
) , 𝐸 (𝑀

𝑇
) , 𝐸 (𝑀

𝑇
𝑊
𝑆,𝑡𝑇
)}

= −Var (𝑀
𝑇
+𝑊
𝑆,𝑡𝑇
)

= −𝐸 (𝑀
2

𝑇
) + 𝐸
2
(𝑀
𝑇
) − 2𝐸 (𝑀

𝑇
𝑊
𝑆,𝑡𝑇
)

+ 2𝐸 (𝑊
𝑆,𝑡𝑇
) 𝐸 (𝑀

𝑇
) − Var (𝑊

𝑆,𝑡𝑇
) .

(27)

Then model (26) is expressed by

max 𝑈{𝐸 (𝑀
2

𝑇
) , 𝐸 (𝑀

𝑇
) , 𝐸 (𝑀

𝑇
𝑊
𝑆,𝑡𝑇
)}

s.t. 𝑀
𝑖
= 𝑀
𝑖−1
𝑒
𝐶,𝑖−1

+ 𝐻
𝑖−1
𝑃
𝑖−1
.

(28)

In order to obtain the analytical solution for model (28),
we can construct the following auxiliary model:

(AU) max 𝐸 {−𝑀
2

𝑇
+ 𝜆𝑀

𝑇
− 2𝑀
𝑇
𝑊
𝑆,𝑡𝑇
}

s.t. 𝑀
𝑖
= 𝑀
𝑖−1
𝑒
𝐶,𝑖−1

+ 𝐻
𝑖−1
𝑃
𝑖−1
.

(29)

Under certain conditions, the auxiliary model (29) is
equivalent to model (28). In other words, the set of the
optimal solutions of the auxiliary model (29) is also the one
of model (28). In the following, we will give the condition for
equivalent transformation of the two models. Define𝑍

𝑀
and

𝑍
𝐴
to be the set of models (28) and (29), respectively.

Theorem 1. For any 𝜋∗ ∈ 𝑍
𝑀
, 𝜋∗ ∈ 𝑍

𝐴
.

Proof. By contradiction, assume that 𝜋∗ ∉ 𝑍
𝐴
. Then, there

exists a 𝜋 such that

(−1, 2𝐸 (𝑀
𝑇
) + 2𝐸 (𝑊

𝑆,𝑡𝑇
) , −2)

[
[
[
[
[

[

𝐸 (𝑀
2

𝑇
)

𝐸 (𝑀
𝑇
)

𝐸 (𝑀
𝑇
𝑊
𝑆,𝑡𝑇
)

]
]
]
]
]

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜋

> (−1, 2𝐸 (𝑀
𝑇
) + 2𝐸 (𝑊

𝑆,𝑡𝑇
) , −2)

[
[
[
[
[

[

𝐸 (𝑀
2

𝑇
)

𝐸 (𝑀
𝑇
)

𝐸 (𝑀
𝑇
𝑊
𝑆,𝑡𝑇
)

]
]
]
]
]

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜋∗

.

(30)

It is obvious that 𝑈{𝐸(𝑀2
𝑇
), 𝐸(𝑀

𝑇
), 𝐸(𝑀

𝑇
𝑊
𝑆,𝑡𝑇
)} is a

convex function of 𝐸(𝑀2
𝑇
), 𝐸(𝑀

𝑇
), and 𝐸(𝑀

𝑇
𝑊
𝑆,𝑡𝑇
). So the

following property is satisfied:

𝑈{𝐸 (𝑀
2

𝑇
) , 𝐸 (𝑀

𝑇
) , 𝐸 (𝑀

𝑇
𝑊
𝑆,𝑡𝑇
)}
󵄨󵄨󵄨󵄨󵄨𝜋

≥ 𝑈 {𝐸 (𝑀
2

𝑇
) , 𝐸 (𝑀

𝑇
) , 𝐸 (𝑀

𝑇
𝑊
𝑆,𝑡𝑇
)}
󵄨󵄨󵄨󵄨󵄨𝜋∗

+ (−1, 2𝐸 (𝑀
𝑇
) + 2𝐸 (𝑊

𝑆,𝑡𝑇
) , −2)

×

{{{{{{{{{

{{{{{{{{{

{

[
[
[
[
[
[
[
[

[

𝐸 (𝑀
2

𝑇
)

𝐸 (𝑀
𝑇
)

𝑛

∑

𝑗=1

𝑄
𝑗
𝑆
𝑗,𝑡𝑇

]
]
]
]
]
]
]
]

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜋

−

[
[
[
[
[
[
[
[

[

𝐸 (𝑀
2

𝑇
)

𝐸 (𝑀
𝑇
)

𝑛

∑

𝑗=1

𝑄
𝑗
𝑆
𝑗,𝑡𝑇

]
]
]
]
]
]
]
]

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜋
∗

}}}}}}}}}

}}}}}}}}}

}

.

(31)

According to the analysis above, we have

𝑈{𝐸 (𝑀
2

𝑇
) , 𝐸 (𝑀

𝑇
) , 𝐸 (𝑀

𝑇
𝑊
𝑆,𝑡𝑇
)}
󵄨󵄨󵄨󵄨󵄨𝜋

≥ 𝑈 {𝐸 (𝑀
2

𝑇
) , 𝐸 (𝑀

𝑇
) , 𝐸 (𝑀

𝑇
𝑊
𝑆,𝑡𝑇
)}
󵄨󵄨󵄨󵄨󵄨𝜋∗
.

(32)
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It shows that the above inequation contradicts the
assumption of 𝜋∗ ∉ 𝑍

𝐴
. Thus, the proof of Theorem 1 is

ended.

Theorem 2. Assume 𝜋∗ ∈ 𝑍
𝐴
. A necessary condition for 𝜋∗ ∈

𝑍
𝑀
is

𝜆 = 2𝐸 (𝑀
𝑇
) + 2𝐸 (𝑊

𝑆,𝑡𝑇
) . (33)

Proof. Obviously, the solution set of the auxiliary model (29)
can be parameterized by 𝜆. In other words, 𝐸(𝑀2

𝑇
), 𝐸(𝑀

𝑇
),

and 𝐸(𝑀
𝑇
𝑊
𝑆,𝑡𝑇
) can be expressed in terms of 𝐸(𝑀2

𝑇
(𝜆)),

𝐸(𝑀
𝑇
(𝜆)), and 𝐸(𝑊

𝑆,𝑡𝑇
𝑀
𝑇
(𝜆)). Then we can obtain

max
𝜆

𝑈{𝐸 (𝑀
2

𝑇
(𝜆)) , 𝐸 (𝑀

𝑇
(𝜆)) , 𝐸 (𝑊

𝑆,𝑡𝑇
𝑀
𝑇
(𝜆))}

= max
𝜆

− 𝐸 (𝑀
2

𝑇
(𝜆)) + 𝐸

2
(𝑀
𝑇
(𝜆)) − 2𝐸 (𝑊

𝑆,𝑡𝑇
𝑀
𝑇
(𝜆))

+ 2𝐸 (𝑊
𝑆,𝑡𝑇
) 𝐸 (𝑀

𝑇
(𝜆)) − Var (𝑊

𝑆,𝑡𝑇
) .

(34)

A first-order necessary condition for optimal 𝜆∗ is

−

𝜕𝐸 (𝑀
2

𝑇
(𝜆
∗
))

𝜕𝜆
+ 2 [𝐸 (𝑀

𝑇
) + 𝐸 (𝑊

𝑆,𝑡𝑇
)]
𝜕𝐸 (𝑀

𝑇
(𝜆
∗
))

𝜕𝜆

− 2

𝜕𝐸 (𝑊
𝑆,𝑡𝑇
𝑀
𝑇
(𝜆
∗
))

𝜕𝜆
= 0.

(35)

According to Reid and Citron [38], when 𝜋∗ ∈ 𝑍
𝐴
, we get

the following property:

−

𝜕𝐸 (𝑀
2

𝑇
(𝜆
∗
))

𝜕𝜆
+ 𝜆
𝜕𝐸 (𝑀

𝑇
(𝜆
∗
))

𝜕𝜆

− 2

𝜕𝐸 (𝑊
𝑆,𝑡𝑇
𝑀
𝑇
(𝜆
∗
))

𝜕𝜆
= 0.

(36)

Since the vector [−1, 2𝐸(𝑀
𝑇
) + 2𝐸(𝑊

𝑆,𝑡𝑇
), −2] is propor-

tional to [−1, 𝜆, −2], the condition necessary for 𝜋∗ ∈ 𝑍
𝑀

is 𝜆 = 2𝐸(𝑀
𝑇
) + 2𝐸(𝑊

𝑆,𝑡𝑇
) under the assumption of 𝜋∗ ∈

𝑍
𝐴
.

It should become clear that the optimal solution of model
(28) is generated by solving the auxiliary model (29). The
optimal solution of the auxiliary model (29) can be derived
analytically using dynamic programming.

At first, we consider the case of period 𝑇 − 1.
Substituting (21) into 𝐸{−𝑀2

𝑇
+ 𝜆𝑀

𝑇
− 2𝑀

𝑇
𝑊
𝑆,𝑡𝑇
}, the

optimization problem is given as follows:

max 𝐽
𝑇−1
(𝐻
𝑇−1
| 𝑀
𝑇−1
)

= max𝐸 {−𝑀2
𝑇
+ 𝜆𝑀

𝑇
− 2𝑀
𝑇
𝑊
𝑆,𝑡𝑇
}

= max𝐸 {−(𝑀
𝑇−1
𝑒
𝐶,𝑇−1

+ 𝑃
𝑇−1
𝐻
𝑇−1
)
2

+ (𝜆 − 2𝑊
𝑆,𝑡𝑇
) (𝑀
𝑇−1
𝑒
𝐶,𝑇−1

+ 𝑃
𝑇−1
𝐻
𝑇−1
) }

= max {−𝐻2
𝑇−1
𝐸 (𝑃
2

𝑇−1
)

+ [ − 2𝑀
𝑇−1
𝐸 (𝑒
𝐶,𝑇−1

𝑃
𝑇−1
) + 𝜆𝐸 (𝑃

𝑇−1
)

−2𝐸 (𝑊
𝑆,𝑡𝑇
𝑃
𝑇−1
)]𝐻
𝑇−1

−𝑀
2

𝑇−1
𝐸 (𝑒
2

𝐶,𝑇−1
) + 𝜆𝑀

𝑇−1
𝐸 (𝑒
𝐶,𝑇−1

)

−2𝑀
𝑇−1
𝐸 (𝑊
𝑆,𝑡𝑇
𝑒
𝐶,𝑇−1

)} .

(37)

Solving the first-order necessary optimality condition of
(37), we get

𝐻
∗

𝑇−1
=

(𝜆/2) 𝐸 (𝑃
𝑇−1
)−𝑀
𝑇−1
𝐸 (𝑒
𝐶,𝑇−1

𝑃
𝑇−1
)−𝐸 (𝑊

𝑆,𝑡𝑇
𝑃
𝑇−1
)

𝐸 (𝑃
2

𝑇−1
)

.

(38)

Substituting (38) into (37), the optimal 𝐽
𝑇−1
(𝐻
𝑇−1
| 𝑀
𝑇−1
)

is
𝐽
∗

𝑇−1
(𝑀
𝑇−1
)

= −𝜔
𝑇−1
𝑀
2

𝑇−1
+ (𝜆𝛿
𝑇−1
+ 𝐾)𝑀

𝑇−1
+
𝜆
2

4
𝛽
𝑇−1
+ 𝛾,

(39)

where

𝜔
𝑇−1
= 𝐸 (𝑒

2

𝐶,𝑇−1
) −

𝐸
2
(𝑒
𝐶,𝑇−1

𝑃
𝑇−1
)

𝐸 (𝑃
2

𝑇−1
)

,

𝛿
𝑇−1
= 𝐸 (𝑒

𝐶,𝑇−1
) −
𝐸 (𝑃
𝑇−1
) 𝐸 (𝑒
𝐶,𝑇−1

𝑃
𝑇−1
)

𝐸 (𝑃
2

𝑇−1
)

,

𝛽
𝑇−1
=
𝐸
2
(𝑃
𝑇−1
)

𝐸 (𝑃
2

𝑇−1
)
,

𝐾 = 2[

𝐸 (𝑊
𝑆,𝑡𝑇
𝑃
𝑇−1
) 𝐸 (𝑒
𝐶,𝑇−1

𝑃
𝑇−1
)

𝐸2 (𝑃
2

𝑇−1
)

− 𝐸 (𝑊
𝑆,𝑡𝑇
𝑒
𝐶,𝑇−1

)] ,

𝛾 =

[𝐸 (𝑊
𝑆,𝑡𝑇
𝑃
𝑇−1
) − 𝜆𝐸 (𝑃

𝑇−1
)] 𝐸 (𝑊

𝑆,𝑡𝑇
𝑃
𝑇−1
)

𝐸 (𝑃
2

𝑇−1
)

.

(40)

Next, we discuss the case of period 𝑇 − 1. Substituting
(21) into (39), (39) can be rewritten as

𝐽
∗

𝑇−1
(𝑀
𝑇−1
)

= max 𝐽
𝑇−2
(𝐻
𝑇−2
| 𝑀
𝑇−2
)

= max𝐸{−𝜔
𝑇−1
𝑀
2

𝑇−1
+(𝜆𝛿
𝑇−1
+ 𝐾)𝑀

𝑇−1
+
𝜆
2

4
𝛽
𝑇−1
+ 𝛾}

= max𝐸{ − 𝜔
𝑇−1
(𝑀
𝑇−2
𝑒
𝐶,𝑇−2

+ 𝑃
𝑇−2
𝐻
𝑇−2
)
2

+ (𝜆𝛿
𝑇−1
+ 𝐾) (𝑀

𝑇−2
𝑒
𝐶,𝑇−2

+𝑃
𝑇−2
𝐻
𝑇−2
)

+
𝜆
2

4
𝛽
𝑇−1
+ 𝛾}
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= max{ − 𝜔
𝑇−1
𝐻
2

𝑇−2
𝐸 (𝑃
2

𝑇−2
)

+ [(𝜆𝛿
𝑇−1
+ 𝐾)𝐸 (𝑃

𝑇−2
)

−2𝜔
𝑇−1
𝑀
𝑇−2
𝐸 (𝑒
𝐶,𝑇−2

𝑃
𝑇−2
)]𝐻
𝑇−2

− 𝜔
𝑇−1
𝑀
2

𝑇−2
𝐸 (𝑒
2

𝐶,𝑇−2
)

+ (𝜆𝛿
𝑇−1
+ 𝐾)𝑀

𝑇−2
𝐸 (𝑒
𝐶,𝑇−2

)

+
𝜆
2

4
𝛽
𝑇−1
+ 𝛾} .

(41)

The optimal solution of (41) is given by

𝐻
∗

𝑇−2
=
((𝜆𝛿
𝑇−1
+ 𝐾) /2𝜔

𝑇−1
) 𝐸 (𝑃
𝑇−2
)−𝑀
𝑇−2
𝐸 (𝑒
𝐶,𝑇−2

𝑃
𝑇−2
)

𝐸 (𝑃
2

𝑇−2
)

.

(42)

Then (41) can be rewritten as

𝐽
∗

𝑇−2
(𝑀
𝑇−2
) = − 𝜔

𝑇−1
𝜔
𝑇−2
𝑀
2

𝑇−2
+ (𝜆𝛿
𝑇−1
+ 𝐾) 𝛿

𝑇−2
𝑀
𝑇−2

+
(𝜆𝛿
𝑇−1
+ 𝐾)
2

4𝜔
𝑇−1

𝛽
𝑇−2
+
𝜆
2

4
𝛽
𝑇−1
+ 𝛾,

(43)

where

𝜔
𝑇−2
= 𝐸 (𝑒

2

𝐶,𝑇−2
) −

𝐸
2
(𝑒
𝐶,𝑇−2

𝑃
𝑇−2
)

𝐸 (𝑃
2

𝑇−2
)

,

𝛿
𝑇−2
= 𝐸 (𝑒

𝐶,𝑇−2
) −
𝐸 (𝑃
𝑇−2
) 𝐸 (𝑒
𝐶,𝑇−2

𝑃
𝑇−2
)

𝐸 (𝑃
2

𝑇−2
)

,

𝛽
𝑇−2
=
𝐸
2
(𝑃
𝑇−2
)

𝐸 (𝑃
2

𝑇−2
)
.

(44)

Similarly, we can derive the optimal 𝐻
𝑖
and 𝐽
𝑖
(𝑀
𝑖
) (0 ≤

𝑖 ≤ 𝑇 − 3)

𝐻
∗

𝑖
= (

(𝜆𝛿
𝑇−1
+ 𝐾)

2𝜔
𝑇−1

𝑇−2

∏

𝑘=𝑖+1

𝛿
𝑘

𝜔
𝑘

𝐸 (𝑃
𝑖
)

−𝑀
𝑖
𝐸 (𝑒
𝐶,𝑖
𝑃
𝑖
))

× (𝐸 (𝑃
2

𝑖
))
−1

,

(45)

𝐽
∗

𝑖
(𝑀
𝑖
) = −𝑀

2

𝑖

𝑇−1

∏

𝑘=𝑖

𝜔
𝑘
+ (𝜆𝛿
𝑇−1
+ 𝐾)𝑀

𝑖

𝑇−2

∏

𝑘=𝑖

𝛿
𝑘

+
(𝜆𝛿
𝑇−1
+ 𝐾)
2

4𝜔
𝑇−1

[

𝑇−3

∑

𝑘=𝑖

(𝛽
𝑘

𝑇−2

∏

𝑠=𝑘+1

𝛿
2

𝑠

𝜔
𝑠

)]

+
(𝜆𝛿
𝑇−1
+ 𝐾)
2

4𝜔
𝑇−1

𝛽
𝑇−2
+
𝜆
2

4
𝛽
𝑇−1
+ 𝛾,

(46)

where

𝜔
𝑘
= 𝐸 (𝑒

2

𝐶,𝑘
) −

𝐸
2
(𝑒
𝐶,𝑘
𝑃
𝑘
)

𝐸 (𝑃
2

𝑘
)
,

𝛿
𝑘
= 𝐸 (𝑒

𝐶,𝑘
) −
𝐸 (𝑃
𝑘
) 𝐸 (𝑒
𝐶,𝑘
𝑃
𝑘
)

𝐸 (𝑃
2

𝑘
)

,

𝛽
𝑘
=
𝐸
2
(𝑃
𝑘
)

𝐸 (𝑃
2

𝑘
)
.

(47)

With the optimal solution of the auxiliary model (29), we
can solve model (28).

Substituting (38) and (45) into (21), the total amount of
𝑊
𝐹,𝑇

and 𝑊
𝐶,𝑇

can be expressed by the following analytical
form:

𝑀
𝑖
=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑀
0
[𝑒
𝐶,0
−
𝑃
0
𝐸 (𝑒
𝐶,0
𝑃
0
)

𝐸 (𝑃
2

0
)

] +
((𝜆𝛿
𝑇−1
+ 𝐾) /2𝜔

𝑇−1
)∏
𝑇−1

𝑘=1
(𝛿
𝑘
/2𝜔
𝑘
) 𝐸 (𝑃
0
)

𝐸 (𝑃
2

0
)

, 𝑖 = 1;

𝑀
0

𝑖−1

∏

𝑘=0

[𝑒
𝐶,𝑘
−
𝑃
𝑘
𝐸 (𝑒
𝐶,𝑘
𝑃
𝑘
)

𝐸 (𝑃
2

𝑘
)

] +
(𝜆𝛿
𝑇−1
+ 𝐾)

2𝜔
𝑇−1

×

𝑖−2

∑

𝑔=0

{

{

{

𝑃
𝑔
𝐸 (𝑃
𝑔
)

𝐸 (𝑃2
𝑔
)

𝑇−2

∏

𝑘=𝑔+1

𝛿
𝑘

𝜔
𝑘

𝑖−1

∏

𝑘=𝑔+1

[𝑒
𝐶,𝑘
−
𝑃
𝑘
𝐸 (𝑒
𝐶,𝑘
𝑃
𝑘
)

𝐸 (𝑃
2

𝑘
)

]
}

}

}

+
(𝜆𝛿
𝑇−1
+ 𝐾)

2𝜔
𝑇−1

𝑇−2

∏

𝑘=𝑖

𝛿
𝑘

𝜔
𝑘

𝑃
𝑖−1
𝐸 (𝑃
𝑖−1
)

𝐸 (𝑃
2

𝑖−1
)
, 2 ≤ 𝑖 ≤ 𝑇 − 2;

𝑀
𝑇−2
[𝑒
𝐶,𝑇−2

−
𝑃
𝑇−2
𝐸 (𝑒
𝐶,𝑇−2

𝑃
𝑇−2
)

𝐸 (𝑃
2

𝑇−2
)

] +
𝜆𝛿
𝑇−1
+ 𝐾

2𝜔
𝑇−1

𝑃
𝑇−2
𝐸 (𝑃
𝑇−2
)

𝐸 (𝑃
2

𝑇−2
)
, 𝑖 = 𝑇 − 1;

𝑀
𝑇−1
[𝑒
𝐶,𝑇−1

−
𝑃
𝑇−1
𝐸 (𝑒
𝐶,𝑇−1

𝑃
𝑇−1
)

𝐸 (𝑃
2

𝑇−1
)

] +

(𝜆/2) 𝑃
𝑇−1
𝐸 (𝑃
𝑇−1
) − 𝑃
𝑇−1
𝐸 (𝑊
𝑆,𝑡𝑇
𝑃
𝑇−1
)

𝐸 (𝑃
2

𝑇−1
)

𝑖 = 𝑇.

(48)
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Combining (48) with the necessary condition 𝜆 = 2𝐸(𝑀
𝑇
) +

2𝐸(𝑊
𝑆,𝑡𝑇
), we have

𝜆 = 2𝐸 (𝑀
𝑇
) + 2𝐸 (𝑊

𝑆,𝑡𝑇
)

= 2𝑀
0

𝑇−1

∏

𝑘=0

𝛿
𝑘
+
(𝜆𝛿
𝑇−1
+ 𝐾)

𝜔
𝑇−1

𝑇−4

∑

𝑔=0

{

{

{

𝛽
𝑔

𝑇−2

∏

𝑘=𝑔+1

𝛿
𝑘

𝜔
𝑘

𝑇−1

∏

𝑘=𝑔+1

𝜔
𝑘

}

}

}

+
(𝜆𝛿
𝑇−1
+ 𝐾)

𝜔
𝑇−1

𝛿
𝑇−2

𝜔
𝑇−2

𝛽
𝑇−3

𝑇−1

∏

𝑘=𝑇−2

𝛿
𝑘

+
𝜆𝛿
𝑇−1
+ 𝐾

𝜔
𝑇−1

𝛽
𝑇−2
𝛿
𝑇−1
+ 𝜆𝛽
𝑇−1

−

2𝐸 (𝑃
𝑇−1
) 𝐸 (𝑊

𝑆,𝑡𝑇
𝑃
𝑇−1
)

𝐸 (𝑃
2

𝑇−1
)

+ 2𝐸 (𝑊
𝑆,𝑡𝑇
) .

(49)

By solving the above equation, we can obtain

𝜆 =

2𝜔
𝑇−1
[𝑀
0
∏
𝑇−1

𝑘=0
𝛿
𝑘
+ 𝐸 (𝑊

𝑆,𝑡𝑇
)] + 𝐾𝜂

𝜔
𝑇−1
(1 − 𝛽

𝑇−1
) − 𝛿
𝑇−1
𝜂

, (50)

where

𝜂 =

𝑇−4

∑

𝑔=0

{

{

{

𝛽
𝑔

𝑇−2

∏

𝑘=𝑔+1

𝛿
𝑘

𝜔
𝑘

𝑇−1

∏

𝑘=𝑔+1

𝜔
𝑘

}

}

}

+
𝛿
𝑇−2
𝛽
𝑇−3

𝜔
𝑇−2

𝑇−1

∏

𝑘=𝑇−2

𝛿
𝑘
+ 𝛽
𝑇−2
𝛿
𝑇−1
.

(51)

Then the optimal solution of the proposed model is

𝐻
∗

𝑖
=

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

((𝜆𝛿
𝑇−1
+ 𝐾) /2𝜔

𝑇−1
)∏
𝑇−2

𝑘=𝑖+1
(𝛿
𝑘
/𝜔
𝑘
) 𝐸 (𝑃
𝑖
) − 𝑀

𝑖
𝐸 (𝑒
𝐶,𝑖
𝑃
𝑖
)

𝐸 (𝑃
2

𝑖
)

, 0 ≤ 𝑖 ≤ 𝑇 − 3,

((𝜆𝛿
𝑇−1
+ 𝐾) /2𝜔

𝑇−1
) 𝐸 (𝑃
𝑇−2
) − 𝑀

𝑇−2
𝐸 (𝑒
𝐶,𝑇−2

𝑃
𝑇−2
)

𝐸 (𝑃
2

𝑇−2
)

, 𝑖 = 𝑇 − 2,

(𝜆/2) 𝐸 (𝑃
𝑇−1
) − 𝑀

𝑇−1
𝐸 (𝑒
𝐶,𝑇−1

𝑃
𝑇−1
) − 𝐸 (𝑊

𝑆,𝑡𝑇
𝑃
𝑇−1
)

𝐸 (𝑃
2

𝑇−1
)

, 𝑖 = 𝑇 − 1,

(52)

where𝑀
𝑖
and 𝜆 satisfy (48) and (50), respectively.

4. The Rollover Hedging Model with
Transaction Costs

The change of stock index futures contracts is essential in the
rollover hedge strategy and causes lots of transaction costs,
which has a great impact on the hedging performance. In
this section, we will focus on the rollover hedgingmodel with
transaction costs. Suppose that 𝜃 is the transaction cost rate
of stock index futures contracts.

At time 𝑡 = 𝑡
0
, the capital invested in stock index futures

contracts is the sum of the maintenance margin and the
transaction cost of stock index futures contracts, that is,

𝑊
𝐹,𝑡0
= 𝐻
0
𝑍𝐹
𝑡0
𝛼 + 𝐻

0
𝑍𝐹
𝑡0
𝜃 = 𝐻

0
𝑍𝐹
𝑡0
(𝛼 + 𝜃) . (53)

So the total amount of𝑊
𝐹,𝑡0

and𝑊
𝐶,𝑡0

is

𝑌
0
= 𝑉
0
−𝑊
𝑆,𝑡0
= 𝑊
𝐹,𝑡0
+𝑊
𝐶,𝑡0
= 𝐻
0
𝑍𝐹
𝑡0
(𝛼 + 𝜃) + 𝑊

𝐶,𝑡0
.

(54)

At time 𝑡 = 𝑡
𝑖−1

, the capital invested in stock index futures
contracts is

𝑊
𝐹,𝑡𝑖−1

= 𝐻
𝑖−1
𝑍𝐹
𝑡𝑖−1
𝛼 + 𝐻

𝑖−1
𝑍𝐹
𝑡𝑖−1
𝜃 = 𝐻

𝑖−1
𝑍𝐹
𝑡𝑖−1
(𝛼 + 𝜃) .

(55)

Then the total amount of𝑊
𝐹,𝑡𝑖−1

and𝑊
𝐶,𝑡𝑖−1

is

𝑌
𝑖−1
= 𝑊
𝐹,𝑡𝑖−1

+𝑊
𝐶,𝑡𝑖−1

= 𝐻
𝑖−1
𝑍𝐹
𝑡𝑖−1
(𝛼 + 𝜃) + 𝑊

𝐶,𝑡𝑖−1
. (56)

Similarly, the total amount of𝑊
𝐹,𝑡𝑖

and𝑊
𝐶,𝑡𝑖

also needs to
be discussed in two cases.

If the firm does not face liquidity risk, the amounts of
stock index futures contracts and the saving at time 𝑡 = 𝑡

𝑖

are

𝑊
𝐹,𝑡𝑖
= 𝐻
𝑖−1
𝑍𝐹
𝑡𝑖−1
𝛼 + 𝐻

𝑖−1
𝑍𝐹
𝑡𝑖−1
− 𝐻
𝑖−1
𝑍𝐹
𝑡𝑖
− 𝐻
𝑖−1
𝑍𝐹
𝑡𝑖
𝜃

= 𝐻
𝑖−1
𝑍 [𝐹
𝑡𝑖−1
(1 + 𝛼) − 𝐹

𝑡𝑖
(1 + 𝜃)] ,

𝑊
𝐶,𝑡𝑖
= 𝑊
𝐶,𝑡𝑖−1

(1 + 𝑟
𝐶,𝑖
) .

(57)
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Then the total amount of𝑊
𝐹,𝑡𝑖

and𝑊
𝐶,𝑡𝑖

is

𝑌
𝑖
= 𝑊
𝐹,𝑡𝑖
+𝑊
𝐶,𝑡𝑖

= 𝐻
𝑖−1
𝑍 [𝐹
𝑡𝑖−1
(1 + 𝛼) − 𝐹

𝑡𝑖
(1 + 𝜃)]

+ 𝑊
𝐶,𝑡𝑖−1

(1 + 𝑟
𝐶,𝑖
) .

(58)

If there is liquidity risk during period i, the saving at time
𝑡 = 𝑡
𝑖
is given by

𝑊
𝐶,𝑡𝑖
= 𝑊
𝐶,𝑡𝑖−1+𝑔𝑖(𝑁𝑖)

[1 + 𝑟
𝑖
(𝑁
𝑖
+ 𝑘
𝑖
)]

= {𝑊
𝐶,𝑡𝑖−1

𝑁𝑖

∏

𝑚=1

[1 + 𝑟
𝑖
(𝑗)] − 𝐻

𝑖−1
𝐴
𝑖−1
}

× [1 + 𝑟
𝑖
(𝑁
𝑖
+ 𝑘
𝑖
)]

(59)

and the total amount of𝑊
𝐹,𝑡𝑖

and𝑊
𝐶,𝑡𝑖

is

𝑌
𝑖
= 𝑊
𝐶,𝑡𝑖
+𝑊
𝐹,𝑡𝑖

= {𝑊
𝐶,𝑡𝑖−1

𝑁𝑖

∏

𝑚=1

[1 + 𝑟
𝑖
(𝑗)] − 𝐻

𝑖−1
𝐴
𝑖−1
}

× [1 + 𝑟
𝑖
(𝑁
𝑖
+ 𝑘
𝑖
)]

+ 𝐻
𝑖−1
𝑍 [𝐹
𝑡𝑖−1
(1 + 𝛼) − 𝐹𝑡𝑖

(1 + 𝜃)]

= 𝐻
𝑖−1
{𝑍 [𝐹
𝑡𝑖−1
(1 + 𝛼) − 𝐹

𝑡𝑖
(1 + 𝜃)]

−𝐴
𝑖−1
[1 + 𝑟

𝑖
(𝑁
𝑖
+ 𝑘
𝑖
)] }

+ 𝑊
𝐶,𝑡𝑖−1

[1 + 𝑟
𝑖
(𝑁
𝑖
+ 𝑘
𝑖
)]

𝑁𝑖

∏

𝑚=1

[1 + 𝑟
𝑖
(𝑗)] .

(60)

Let

𝑒
𝐾,𝑖−1

=
{

{

{

𝑍[𝐹
𝑡𝑖−1
(1 + 𝛼) − 𝐹

𝑡𝑖
(1 + 𝜃)] , without liquidity risk,

𝑍 [𝐹
𝑡𝑖−1
(1 + 𝛼) − 𝐹

𝑡𝑖
(1 + 𝜃)] − 𝐴

𝑖−1
[1 + 𝑟

𝑖
(𝑁
𝑖
+ 𝑘
𝑖
)] , with liquidity risk.

(61)

Then the total amount of𝑊
𝐹,𝑡𝑖

and𝑊
𝐶,𝑡𝑖

can be rewritten as

𝑌
𝑖
= 𝐻
𝑖−1
𝑒
𝐾,𝑖−1

+𝑊
𝐶,𝑡𝑖−1

𝑒
𝐶,𝑖−1

. (62)

Substituting (56) into (60), the total amount of𝑊
𝐹,𝑡𝑖

and
𝑊
𝐶,𝑡𝑖

is expressed by

𝑌
𝑖
= 𝐻
𝑖−1
𝑒
𝐾,𝑖−1

+𝑊
𝐶,𝑡𝑖−1

𝑒
𝐶,𝑖−1

= 𝐻
𝑖−1
𝑒
𝐾,𝑖−1

+ [𝑌
𝑖−1
− 𝐻
𝑖−1
𝑍𝐹
𝑡𝑖−1
(𝛼 + 𝜃)] 𝑒𝐶,𝑖−1

= 𝐻
𝑖−1
[𝑒
𝐾,𝑖−1

− 𝑍𝐹
𝑡𝑖−1
(𝛼 + 𝜃) 𝑒

𝐶,𝑖−1
] + 𝑌
𝑖−1
𝑒
𝐶,𝑖−1

.

(63)

Let 𝐿
𝑖−1

= 𝑒
𝐾,𝑖−1

− 𝑍𝐹
𝑡𝑖−1
(𝛼 + 𝜃)𝑒

𝐶,𝑖−1
. Then the total

amount of𝑊
𝐹,𝑡𝑖

and𝑊
𝐶,𝑡𝑖

can be simplified as

𝑌
𝑖
= 𝐻
𝑖−1
𝐿
𝑖−1
+ 𝑌
𝑖−1
𝑒
𝐶,𝑖−1

. (64)

During the whole period, the terminal profit of the
investment is

Δ𝑉 = 𝑉
𝑇
− 𝑉
0
= 𝑌
𝑇
+𝑊
𝑆,𝑡𝑇
− (𝑌
0
+𝑊
𝑆,𝑡0
) , (65)

where 𝑉
𝑇
is the terminal wealth at the end of the investment

period.
The optimal number of stock index futures contracts is

determined by minimizing the variance of terminal profit of
the investment:

min Var (Δ𝑉) = Var (𝑌
𝑇
+𝑊
𝑆,𝑡𝑇
) . (66)

Combining (66) with (64), we can propose the rollover
hedging model with transaction costs

min Var (𝑌
𝑇
+𝑊
𝑆,𝑡𝑇
)

s.t. 𝑌
𝑖
= 𝐻
𝑖−1
𝐿
𝑖−1
+ 𝑌
𝑖−1
𝑒
𝐶,𝑖−1

.

(67)

Model (67) is also nonseparable in the sense of dynamic
programming and needs to be transformed into a separable
model.
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Let

𝑈{𝐸 (𝑌
2

𝑇
) , 𝐸 (𝑌

𝑇
) , 𝐸 (𝑌

𝑇
𝑊
𝑆,𝑡𝑇
)}

= −Var (𝑌
𝑇
+𝑊
𝑆,𝑡𝑇
)

= −𝐸 (𝑌
2

𝑇
) + 𝐸
2
(𝑌
𝑇
) − 2𝐸 (𝑌

𝑇
𝑊
𝑆,𝑡𝑇
)

+ 2𝐸 (𝑊
𝑆,𝑡𝑇
) 𝐸 (𝑌

𝑇
) − Var (𝑊

𝑆,𝑡𝑇
) .

(68)

Then model (67) is expressed by

max 𝑈{𝐸 (𝑌
2

𝑇
) , 𝐸 (𝑌

𝑇
) , 𝐸 (𝑌

𝑇
𝑊
𝑆,𝑡𝑇
)}

s.t. 𝑌
𝑖
= 𝐻
𝑖−1
𝐿
𝑖−1
+ 𝑌
𝑖−1
𝑒
𝐶,𝑖−1

.

(69)

In order to obtain the analytical solution for model (69),
we use the following auxiliary model:

(AU2) :
max 𝐸 {−𝑌

2

𝑇
+ 𝜆𝑌
𝑇
− 2𝑌
𝑇
𝑊
𝑆,𝑡𝑇
}

s.t. 𝑌
𝑖
= 𝐻
𝑖−1
𝐿
𝑖−1
+ 𝑌
𝑖−1
𝑒
𝐶,𝑖−1

.
(70)

Define 𝑍MU and 𝑍AU to be the set of models (69) and
(70), respectively. We can obtain the condition for equivalent
transformation of the two models.

Theorem 3. For any 𝜋∗ ∈ 𝑍MU, 𝜋∗ ∈ 𝑍AU.

Theorem4. Assume𝜋∗ ∈ 𝑍AU. A necessary condition for𝜋∗ ∈
𝑍MU is

𝜆 = 2𝐸 (𝑌
𝑇
) + 2𝐸 (𝑊

𝑆,𝑡𝑇
) . (71)

The proofs of Theorems 3 and 4 are similar to those of
Theorems 1 and 2 and are omitted.

Dynamic programming is employed to obtain the optimal
solution of the following auxiliary model. The dynamic
programming starts from the period 𝑇 − 1. The optimization
problem is given as follows:

max 𝐽
𝑇−1
(𝐻
𝑇−1
| 𝑌
𝑇−1
)

= max𝐸 {−𝑌2
𝑇
+ 𝜆𝑌
𝑇
− 2𝑌
𝑇
𝑊
𝑆,𝑡𝑇
}

= max𝐸 {−(𝑌
𝑇−1
𝑒
𝐶,𝑇−1

+ 𝐿
𝑇−1
𝐻
𝑇−1
)
2

+ (𝜆 − 2𝑊
𝑆,𝑡𝑇
) (𝑌
𝑇−1
𝑒
𝐶,𝑇−1

+ 𝐿
𝑇−1
𝐻
𝑇−1
) }

= max { − 𝐻2
𝑇−1
𝐸 (𝐿
2

𝑇−1
)

+ [ − 2𝑌
𝑇−1
𝐸 (𝑒
𝐶,𝑇−1

𝐿
𝑇−1
)

+ 𝜆𝐸 (𝐿
𝑇−1
) − 2𝐸 (𝑊

𝑆,𝑡𝑇
𝐿
𝑇−1
)]𝐻
𝑇−1

− 𝑌
2

𝑇−1
𝐸 (𝑒
2

𝐶,𝑇−1
) + 𝜆𝑌

𝑇−1
𝐸 (𝑒
𝐶,𝑇−1

)

−2𝑌
𝑇−1
𝐸 (𝑊
𝑆,𝑡𝑇
𝑒
𝐶,𝑇−1

)} .

(72)

From (72), we have

𝐻
∗

𝑇−1
=

(𝜆/2) 𝐸 (𝐿
𝑇−1
)− 𝑌
𝑇−1
𝐸 (𝑒
𝐶,𝑇−1

𝐿
𝑇−1
)−𝐸 (𝑊

𝑆,𝑡𝑇
𝐿
𝑇−1
)

𝐸 (𝐿
2

𝑇−1
)

,

𝐽
∗

𝑇−1
(𝑌
𝑇−1
) = −𝜔

𝑇−1
𝑌
2

𝑇−1
+ (𝜆𝛿
𝑇−1
+ 𝐾)𝑌

𝑇−1
+
𝜆
2

4
𝛽
𝑇−1
+ 𝛾,

(73)

where

𝜑
𝑇−1
= 𝐸 (𝑒

2

𝐶,𝑇−1
) −

𝐸
2
(𝑒
𝐶,𝑇−1

𝐿
𝑇−1
)

𝐸 (𝐿
2

𝑇−1
)

,

𝛾
𝑇−1
= 𝐸 (𝑒

𝐶,𝑇−1
) −
𝐸 (𝐿
𝑇−1
) 𝐸 (𝑒
𝐶,𝑇−1

𝐿
𝑇−1
)

𝐸 (𝐿
2

𝑇−1
)

,

𝜌
𝑇−1
=
𝐸
2
(𝐿
𝑇−1
)

𝐸 (𝐿
2

𝑇−1
)
,

𝐾 = 2[

𝐸 (𝑊
𝑆,𝑡𝑇
𝐿
𝑇−1
) 𝐸 (𝑒
𝐶,𝑇−1

𝐿
𝑇−1
)

𝐸2 (𝐿
2

𝑇−1
)

− 𝐸 (𝑊
𝑆,𝑡𝑇
𝑒
𝐶,𝑇−1

)] ,

𝛾 =

[𝐸 (𝑊
𝑆,𝑡𝑇
𝐿
𝑇−1
) − 𝜆𝐸 (𝐿

𝑇−1
)] 𝐸 (𝑊

𝑆,𝑡𝑇
𝐿
𝑇−1
)

𝐸 (𝐿
2

𝑇−1
)

.

(74)

By analogy, we can derive the optimal𝐻
𝑖
(0 ≤ 𝑖 ≤ 𝑇−2)
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𝐻
∗

𝑖
=

{{{{{{{

{{{{{{{

{

((𝜆𝛿
𝑇−1
+ 𝐾) /2𝜔

𝑇−1
)∏
𝑇−2

𝑘=𝑖+1
(𝛿
𝑘
/𝜔
𝑘
) 𝐸 (𝑃
𝑖
) − 𝑀

𝑖
𝐸 (𝑒
𝐶,𝑖
𝑃
𝑖
)

𝐸 (𝑃
2

𝑖
)

, 0 ≤ 𝑖 ≤ 𝑇 − 3,

((𝜆𝛿
𝑇−1
+ 𝐾) /2𝜔

𝑇−1
) 𝐸 (𝑃
𝑇−2
) − 𝑀

𝑇−2
𝐸 (𝑒
𝐶,𝑇−2

𝑃
𝑇−2
)

𝐸 (𝑃
2

𝑇−2
)

, 𝑖 = 𝑇 − 2,

𝐽
∗

𝑖
(𝑀
𝑖
) =

{{{{{{{{{{{{

{{{{{{{{{{{{

{

−𝑀
2

𝑖

𝑇−1

∏

𝑘=𝑖

𝜔
𝑘
+ (𝜆𝛿
𝑇−1
+ 𝐾)𝑀

𝑖

𝑇−2

∏

𝑘=𝑖

𝛿
𝑘
+
(𝜆𝛿
𝑇−1
+ 𝐾)
2

4𝜔
𝑇−1

[

𝑇−3

∑

𝑘=𝑖

(𝛽
𝑘

𝑇−2

∏

𝑠=𝑘+1

𝛿
2

𝑠

𝜔
𝑠

)]

+
(𝜆𝛿
𝑇−1
+ 𝐾)
2

4𝜔
𝑇−1

𝛽
𝑇−2
+
𝜆
2

4
𝛽
𝑇−1
+ 𝛾, 0 ≤ 𝑖 ≤ 𝑇 − 3,

−𝜔
𝑇−1
𝜔
𝑇−2
𝑀
2

𝑇−2
+ (𝜆𝛿
𝑇−1
+ 𝐾) 𝛿

𝑇−2
𝑀
𝑇−2
+
(𝜆𝛿
𝑇−1
+ 𝐾)
2

4𝜔
𝑇−1

𝛽
𝑇−2
+
𝜆
2

4
𝛽
𝑇−1
+ 𝛾, 𝑖 = 𝑇 − 2,

(75)

where

𝜑
𝑘
= 𝐸 (𝑒

2

𝐶,𝑘
) −

𝐸
2
(𝑒
𝐶,𝑘
𝐿
𝑘
)

𝐸 (𝐿
2

𝑘
)
,

𝛾
𝑘
= 𝐸 (𝑒

𝐶,𝑘
) −
𝐸 (𝐿
𝑘
) 𝐸 (𝑒
𝐶,𝑘
𝐿
𝑘
)

𝐸 (𝐿
2

𝑘
)

,

𝜌
𝑘
=
𝐸
2
(𝐿
𝑘
)

𝐸 (𝐿
2

𝑘
)
.

(76)

Substituting (73) and (75) into (64), the terminal capital
of the firm can be expressed by

𝑌
𝑖
=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑌
0
[𝑒
𝐶,0
−
𝐿
0
𝐸 (𝑒
𝐶,0
𝐿
0
)

𝐸 (𝐿
2

0
)

] +
((𝜆𝛿
𝑇−1
+ 𝐾) /2𝜔

𝑇−1
)∏
𝑇−1

𝑘=1
(𝛿
𝑘
/2𝜔
𝑘
) 𝐸 (𝐿

0
)

𝐸 (𝐿
2

0
)

, 𝑖 = 1;

𝑌
0

𝑖−1

∏

𝑘=0

[𝑒
𝐶,𝑘
−
𝐿
𝑘
𝐸 (𝑒
𝐶,𝑘
𝐿
𝑘
)

𝐸 (𝐿
2

𝑘
)

] +
(𝜆𝛿
𝑇−1
+ 𝐾)

2𝜔
𝑇−1

𝑖−2

∑

𝑔=0

{

{

{

𝐿
𝑔
𝐸 (𝐿
𝑔
)

𝐸 (𝐿2
𝑔
)

𝑇−2

∏

𝑘=𝑔+1

𝛿
𝑘

𝜔
𝑘

𝑖−1

∏

𝑘=𝑔+1

[𝑒
𝐶,𝑘
−
𝐿
𝑘
𝐸 (𝑒
𝐶,𝑘
𝐿
𝑘
)

𝐸 (𝐿
2

𝑘
)

]
}

}

}

+
(𝜆𝛿
𝑇−1
+ 𝐾)

2𝜔
𝑇−1

𝑇−2

∏

𝑘=𝑖

𝛿
𝑘

𝜔
𝑘

𝐿
𝑖−1
𝐸 (𝐿
𝑖−1
)

𝐸 (𝐿
2

𝑖−1
)
, 2 ≤ 𝑖 ≤ 𝑇 − 2;

𝑌
𝑇−2
[𝑒
𝐶,𝑇−2

−
𝐿
𝑇−2
𝐸 (𝑒
𝐶,𝑇−2

𝐿
𝑇−2
)

𝐸 (𝐿
2

𝑇−2
)

] +
𝜆𝛿
𝑇−1
+ 𝐾

2𝜔
𝑇−1

𝐿
𝑇−2
𝐸 (𝐿
𝑇−2
)

𝐸 (𝐿
2

𝑇−2
)
, 𝑖 = 𝑇 − 1;

𝑌
𝑇−1
[𝑒
𝐶,𝑇−1

−
𝐿
𝑇−1
𝐸 (𝑒
𝐶,𝑇−1

𝐿
𝑇−1
)

𝐸 (𝐿
2

𝑇−1
)

] +

(𝜆/2) 𝐿𝑇−1𝐸 (𝐿𝑇−1) − 𝐿𝑇−1𝐸 (𝑊𝑆,𝑡𝑇
𝐿
𝑇−1
)

𝐸 (𝐿
2

𝑇−1
)

𝑖 = 𝑇.

(77)

Combining (77) with the necessary condition 𝜆 = 2𝐸(𝑌
𝑇
) +

2𝐸(𝑊
𝑆,𝑡𝑇
), we have

𝜆 = 2𝐸 (𝑌
𝑇
) + 2𝐸 (𝑊

𝑆,𝑡𝑇
)

= 2𝜔
𝑇−1
[𝑀
0

𝑇−1

∏

𝑘=0

𝛿
𝑘
+ 𝐸 (𝑊

𝑆,𝑡𝑇
)]

+ 𝐾
{

{

{

𝑇−4

∑

𝑔=0

{

{

{

𝛽
𝑔

𝑇−2

∏

𝑘=𝑔+1

𝛿
𝑘

𝜔
𝑘

𝑇−1

∏

𝑘=𝑔+1

𝜔
𝑘

}

}

}

+
𝛿
𝑇−2
𝛽
𝑇−3

𝜔
𝑇−2

𝑇−1

∏

𝑘=𝑇−2

𝛿
𝑘
+ 𝛽
𝑇−2
𝛿
𝑇−1
} .

(78)
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The solution of (78) is given by

𝜆 =

2𝜑
𝑇−1
[𝑀
0
∏
𝑇−1

𝑘=0
𝛾
𝑘
+ 𝐸 (𝑊

𝑆,𝑡𝑇
)] + 𝐾𝜐

𝜑
𝑇−1
(1 − 𝜌

𝑇−1
) − 𝛾
𝑇−1
𝜐

, (79)

where

𝜐 =

𝑇−4

∑

𝑔=0

{

{

{

𝛽
𝑔

𝑇−2

∏

𝑘=𝑔+1

𝛿
𝑘

𝜔
𝑘

𝑇−1

∏

𝑘=𝑔+1

𝜔
𝑘

}

}

}

+
𝛿
𝑇−2
𝛽
𝑇−3

𝜔
𝑇−2

𝑇−1

∏

𝑘=𝑇−2

𝛿
𝑘
+ 𝛽
𝑇−2
𝛿
𝑇−1
.

(80)

Therefore, the optimal solution of the proposed model
(67) is

𝐻
∗

𝑖
=

{{{{{{{{{

{{{{{{{{{

{

((𝜆𝛿
𝑇−1
+ 𝐾) /2𝜔

𝑇−1
)∏
𝑇−2

𝑘=𝑖+1
(𝛿
𝑘
/𝜔
𝑘
) 𝐸 (𝐿

𝑖
) − 𝑌
𝑖
𝐸 (𝑒
𝐶,𝑖
𝐿
𝑖
)

𝐸 (𝐿
2

𝑖
)

, 0 ≤ 𝑖 ≤ 𝑇 − 2,

((𝜆𝛿
𝑇−1
+ 𝐾) /2𝜔

𝑇−1
) 𝐸 (𝐿

𝑇−2
) − 𝑌
𝑇−2
𝐸 (𝑒
𝐶,𝑇−2

𝐿
𝑇−2
)

𝐸 (𝑃
2

𝑇−2
)

, 𝑖 = 𝑇 − 1,

(𝜆/2) 𝐸 (𝐿
𝑇−1
) − 𝑌
𝑇−1
𝐸 (𝑒
𝐶,𝑇−1

𝐿
𝑇−1
) − 𝐸 (𝑊

𝑆,𝑡𝑇
𝐿
𝑇−1
)

𝐸 (𝐿
2

𝑇−1
)

, 𝑖 = 𝑇 − 1,

(81)

where 𝑌
𝑖
and 𝜆 satisfy (77) and (79), respectively.

5. Conclusion

Stock index futures contracts provide an excellent tool for
the risk management. However, the expiration date of the
hedge is later than the delivery dates of all the index futures
contracts that can be used. It is difficult for the hedger
to directly use short index futures contracts for managing
the long-term exposure in the stock market. The hedger
has to choose the rollover hedge strategy. In this paper,
we consider the problem of the rollover hedge strategy
for the long-term exposure of a well-diversified portfolio.
Two new models are presented to solve the problem. The
proposed models are nonseparable in the sense of dynamic
programming. Therefore, it is necessary to transform the
proposed models into separable models. Using equivalent
transformation technique, auxiliary models are constructed
for the solution of the proposed models. Finally, the optimal
numbers of index futures contracts have been derived by
dynamic programming.
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