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The well-posedness of global strong solutions for a nonlinear partial differential equation including the Novikov equation is
established provided that its initial value V

0
(𝑥) satisfies a sign condition and V

0
(𝑥) ∈ 𝐻𝑠(𝑅) with 𝑠 > 3/2. If the initial value

V
0
(𝑥) ∈ 𝐻𝑠(𝑅) (1 ≤ 𝑠 ≤ 3/2) and the mean function of (1 − 𝜕2

𝑥
)V
0
(𝑥) satisfies the sign condition, it is proved that there exists

at least one global weak solution to the equation in the space V(𝑡, 𝑥) ∈ 𝐿
2
([0, +∞),𝐻

𝑠
(𝑅)) in the sense of distribution and

V
𝑥
∈ 𝐿∞([0, +∞) × 𝑅).

1. Introduction

Recently, Wu [1] obtained the existence of local solutions in
the space 𝐶([0, 𝑇);𝐻𝑠(𝑅)) ∩ 𝐶1([0, 𝑇);𝐻𝑠−1(𝑅)) with 𝑠 > 3/2

for the following nonlinear equation:

V
𝑡
− V
𝑡𝑥𝑥

+ 𝑘V𝑚V
𝑥
+ (𝑚 + 3) V𝑚+1V𝑥

= (𝑚 + 2) V𝑚V
𝑥
V
𝑥𝑥

+ V𝑚+1V
𝑥𝑥𝑥

+ 𝜆 (V − V
𝑥𝑥

) ,

(1)

where 𝑚 ≥ 0 is a natural number, 𝑘 ≥ 0, and 𝜆 is a constant.
Letting 𝑚 = 0 and 𝜆 = 0, (1) becomes the Camassa-Holm
equation [2]. If 𝑚 = 1, 𝑘 = 0, and 𝜆 = 0, (1) reduces to the
Novikov equation [3].

A lot of works have been carried out to study various
dynamic properties for the Camassa-Holm and the Novikov
equations. Xin and Zhang [4] proved that there exists a global
weak solution for the Camassa-Holm equation in the space
𝐻
1(𝑅) without the assumption of sign conditions on the

initial value. Coclite et al. [5] investigated the global weak
solutions for a generalized hyperelastic rod wave equation
or a generalized Camassa-Holm equation. It is shown in
Constantin and Escher [6] that the blowup occurs in the form
of breaking waves; namely, the solution remains bounded
but its slope becomes unbounded in finite time. After wave
breaking, the solution can be continued uniquely either as
a global conservative weak solution [7] or a global dissi-
pative solution [8–10]. The periodic and the nonperiodic

Cauchy problems for the Novikov equation were discussed
by Grayshan [11] in the Sobolev space. Using the Galerkin-
type approximation method, Himonas and Holliman [12]
established the well-posedness for the Novikov model in
the Sobolev space 𝐻

𝑠(𝑅) with 𝑠 > 3/2 on both the line
and the circle. The scattering theory was employed in Hone
et al. [13] to find nonsmooth explicit soliton solutions with
multiple peaks for the Novikov equation. Wu and Zhong [14]
proved the existence of local strong and weak solutions for a
generalized Novikov equation.

Theobjective of thiswork is to study (1)with 𝑘 = 0. Name-
ly, we investigate the problem

V
𝑡
− V
𝑡𝑥𝑥

+ (𝑚 + 3) V𝑚+1V
𝑥

= (𝑚 + 2) V𝑚V
𝑥
V
𝑥𝑥

+ V𝑚+1V
𝑥𝑥𝑥

+ 𝜆 (V − V
𝑥𝑥

) ,

V (0, 𝑥) = V
0
(𝑥) ,

(2)

where 𝑚, 𝑘, and 𝜆 are described in (1). Assuming that the
initial value V

0
(𝑥) satisfies a sign condition and V

0
(𝑥) ∈

𝐻𝑠(𝑅), 𝑠 > 3/2, we will show that there exists a unique global
strong solution in the Sobolev space 𝐶([0,∞);𝐻𝑠(𝑅)) ∩

𝐶1([0,∞);𝐻𝑠−1(𝑅)). If the initial value V
0
(𝑥) ∈ 𝐻𝑠(𝑅) (1 ≤

𝑠 ≤ 3/2) and the mean function of (1 − 𝜕2
𝑥
)V
0
(𝑥) satisfies

the sign condition, it is shown that there exists at least one
global weak solution to the equation in the space V(𝑡, 𝑥) ∈
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𝐿2([0, +∞),𝐻𝑠(𝑅)) in the sense of distribution and V
𝑥
∈ 𝐿∞

([0, +∞) × 𝑅).
The structure of this paper is as follows. The main results

are given in Section 2. Several lemmas are given in Section 3.
Section 4 establishes the proof of the main results.

2. Main Results

We define

𝜙 (𝑥) = {
𝑒1/(𝑥

2
−1), |𝑥| < 1,

0, |𝑥| ≥ 1,
(3)

and let 𝜙
𝜀
(𝑥) = 𝜀−1/4𝜙(𝜀−1/4𝑥) with 0 < 𝜀 < 1/4. For the con-

volution V
𝜀0

= 𝜙
𝜀
⋆V
0
, we know that V

𝜀0
∈ 𝐶
∞ for any V

0
∈ 𝐻
𝑠

with 𝑠 > 0. Notation (1 − 𝜕2
𝑥
)V ∈ 𝑁+(𝑅) (or equivalently (1 −

𝜕2
𝑥
)V ∈ 𝑁−(𝑅)) means that the mean function of (1 − 𝜕2

𝑥
)V is

nonnegative; namely, (1 − 𝜕2
𝑥
)V ⋆ 𝜙

𝜀
≥ 0 (or equivalently (1 −

𝜕2
𝑥
)V⋆𝜙
𝜀
≤ 0) for an arbitrary sufficiently small 𝜀 > 0. For𝑇 >

0 and nonnegative number 𝑠, we let 𝐶([0, 𝑇);𝐻𝑠(𝑅)) denote
the Frechet space of all continuous 𝐻𝑠-valued functions on
[0, 𝑇) and write Λ = (1 − 𝜕2

𝑥
)
1/2.

We state the result of global strong solutions for problem
(2).

Theorem 1. Let V
0
(𝑥) ∈ 𝐻𝑠(𝑅), 𝑠 > 3/2, and (1 − 𝜕2

𝑥
)V
0
≥ 0

for all 𝑥 ∈ 𝑅 or (1 − 𝜕2
𝑥
)V
0
≤ 0 for all 𝑥 ∈ 𝑅. Then problem (2)

has a unique strong solution satisfying

V (𝑡, 𝑥) ∈ 𝐶 ([0,∞) ;𝐻
𝑠
(𝑅)) ∩ 𝐶

1
([0,∞) ;𝐻

𝑠−1
(𝑅)) . (4)

Definition 2. A function V(𝑡, 𝑥) ∈ 𝐿
2([0, +∞),𝐻𝑠(𝑅)) is

called a global weak solution to problem (2) if for every𝑇 > 0

and all 𝜑(𝑡, 𝑥) ∈ 𝐶
∞

0
([0, 𝑇] × 𝑅), it holds that

∫
𝑇

0

∫
𝑅

[V
𝑡
− V
𝑡𝑥𝑥

+ (𝑚 + 3) V𝑚+1V𝑥 − (𝑚 + 2) V𝑚V𝑥V𝑥𝑥

− V𝑚+1V
𝑥𝑥𝑥

− 𝜆 (V − V
𝑥𝑥

)] 𝜑 (𝑡, 𝑥) 𝑑𝑥 𝑑𝑡 = 0

(5)

with V(0, 𝑥) = V
0
(𝑥).

Now we give the main result of global weak solution for
problem (2).

Theorem 3. Let V
0
(𝑥) ∈ 𝐻𝑠(𝑅), 1 ≤ 𝑠 ≤ 3/2, (1 − 𝜕2

𝑥
)V
0

∈

𝑁+(𝑅) (or equivalently (1− 𝜕2
𝑥
)V
0
∈ 𝑁−(𝑅)). Then problem (2)

has a unique globalweak solution V(𝑡, 𝑥) ∈ 𝐿2([0, +∞),𝐻𝑠(𝑅))

in the sense of distribution and V
𝑥
∈ 𝐿∞([0, +∞) × 𝑅).

3. Several Lemmas

Lemma 4 (see [1]). Let V
0
(𝑥) ∈ 𝐻𝑠(𝑅) with 𝑠 > 3/2. Then the

Cauchy problem (2) has a unique local solution

V (𝑡, 𝑥) ∈ 𝐶 ([0, 𝑇) ;𝐻
𝑠
(𝑅)) ∩ 𝐶

1
([0, 𝑇) ;𝐻

𝑠−1
(𝑅)) , (6)

where 𝑇 > 0 depends on ‖V
0
‖
𝐻
𝑠
(𝑅)
.

Using the first equation of system (2) derives

𝑑

𝑑𝑡
∫
𝑅

(V2 + V2
𝑥
) 𝑑𝑥 = 2𝜆∫

𝑅

(V2 + V2
𝑥
) 𝑑𝑥, (7)

which yields the conservation law

∫
𝑅

(V2 + V2
𝑥
) 𝑑𝑥 = ∫

𝑅

(V2
0
+ V2
0𝑥
) 𝑑𝑥

+2𝜆∫
𝑡

0

∫
𝑅

(V2 + V2
𝑥
) 𝑑𝑥 𝑑𝑡.

(8)

Lemma 5 (see [1]). Let 𝑠 > 3/2 and the function V(𝑡, 𝑥) is a so-
lution of problem (2) and the initial data V

0
(𝑥) ∈ 𝐻𝑠. Then the

following inequalities hold:

‖V‖2
𝐻
1 ≤ ∫
𝑅

(V2 + V2
𝑥
) 𝑑𝑥 ≤ ∫

𝑅

(V2
0
+ V2
0𝑥
) 𝑑𝑥, if 𝜆 ≤ 0.

‖V‖2
𝐻
1 ≤ ∫
𝑅

(V2 + V2
𝑥
) 𝑑𝑥 ≤ 𝑒

2𝜆𝑡
∫
𝑅

(V2
0
+ V2
0𝑥
) 𝑑𝑥, if 𝜆 > 0.

(9)

For 𝑞 ∈ (0, 𝑠 − 1], there is a constant 𝑐 such that

∫
𝑅

(Λ
𝑞+1V)
2

𝑑𝑥

≤ ∫
𝑅

(Λ
𝑞+1V
0
)
2

𝑑𝑥

+ 𝑐∫
𝑡

0

‖V‖2
𝐻
𝑞+1 (|𝜆| + (‖V‖𝑚−1

𝐿
∞ + ‖V‖𝑚

𝐿
∞)

V𝑥
𝐿∞

+‖V‖𝑚−1
𝐿
∞

V𝑥

2

𝐿
∞) 𝑑𝜏.

(10)

For 𝑞 ∈ [0, 𝑠 − 1], there is a constant 𝑐 such that

V𝑡
𝐻𝑞 ≤ 𝑐‖V‖𝐻𝑞+1 (|𝜆| + (‖V‖𝑚−1

𝐿
∞ + ‖V‖𝑚

𝐿
∞) ‖V‖𝐻1

+‖V‖𝑚
𝐿
∞

V𝑥
𝐿∞ + ‖V‖𝑚−1

𝐿
∞

V𝑥

2

𝐿
∞) .

(11)

Consider the differential equation

𝑝
𝑡
= V𝑚+1 (𝑡, 𝑝) , 𝑡 ∈ [0, 𝑇) ,

𝑝 (0, 𝑥) = 𝑥,
(12)

where V(𝑡, 𝑥) is the solution of problem (2) and 𝑇 is the
maximal existence time of the solution.

Lemma 6. Let V
0

∈ 𝐻𝑠(𝑅), 𝑠 ≥ 3, and let 𝑇 > 0 be the
maximal existence time of the solution to problem (2). Then
system (12) has a unique solution 𝑝(𝑡, 𝑥) ∈ 𝐶1([0, 𝑇) × 𝑅).
Moreover, the map 𝑝(𝑡, ⋅) is an increasing diffeomorphism of
𝑅 with 𝑝

𝑥
(𝑡, 𝑥) > 0 for (𝑡, 𝑥) ∈ [0, 𝑇) × 𝑅.

Proof. From Lemma 4, we know that there exists a unique
solution

V (𝑡, 𝑥) ∈ 𝐶 ([0, 𝑇) ;𝐻
𝑠
(𝑅)) ∩ 𝐶

1
([0, 𝑇) ;𝐻

𝑠−1
(𝑅)) . (13)
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The Sobolev imbedding theorem derives 𝐻𝑠(𝑅) ∈ 𝐶1(𝑅).
This means that two functions V(𝑡, 𝑥) and V

𝑥
(𝑡, 𝑥) are bound-

ed, Lipschitz in space and 𝐶1 in time. Using the existence
and uniqueness theorem of ordinary differential equations,
we derive that problem (12) has a unique solution𝑝(𝑡, 𝑥) ∈ 𝐶1

([0, 𝑇) × 𝑅).
Differentiating (12) with respect to 𝑥 gives rise to

𝑑

𝑑𝑡
𝑝
𝑥
= (𝑚 + 1) V𝑚V𝑥 (𝑡, 𝑝) 𝑝𝑥, 𝑡 ∈ [0, 𝑇) ,

𝑝
𝑥
(0, 𝑥) = 1,

(14)

from which we obtain

𝑝
𝑥 (𝑡, 𝑥) = exp(∫

𝑡

0

(𝑚 + 1) V𝑚V𝑥 (𝜏, 𝑝 (𝜏, 𝑥)) 𝑑𝜏) . (15)

For every 𝑇 < 𝑇, applying the Sobolev imbedding theorem
results in

sup
(𝜏,𝑥)∈[0,𝑇


)×𝑅

V𝑥 (𝜏, 𝑥)
 < ∞. (16)

Therefore, we know that there exists a constant 𝑀 > 0

such that 𝑝
𝑥
(𝑡, 𝑥) ≥ 𝑒−𝑀𝑡 for (𝑡, 𝑥) ∈ [0, 𝑇) × 𝑅. The proof is

completed.

Lemma 7. Let V
0

∈ 𝐻𝑠 with 𝑠 ≥ 3, and let 𝑇 > 0 be the
maximal existence time of the problem (2); it holds that

𝑦 (𝑡, 𝑝 (𝑡, 𝑥)) 𝑝
2

𝑥
(𝑡, 𝑥) = 𝑦

0
(𝑥) 𝑒
∫
𝑡

0
(𝑚V𝑚V

𝑥
+𝜆)𝑑𝜏

, (17)

where (𝑡, 𝑥) ∈ [0, 𝑇) × 𝑅 and 𝑦 := V − V
𝑥𝑥
.

Proof. We have
𝑑

𝑑𝑡
[𝑦 (𝑡, 𝑝 (𝑡, 𝑥)) 𝑝

2

𝑥
(𝑡, 𝑥)]

= 𝑦
𝑡
𝑝
2

𝑥
+ 2𝑦𝑝

𝑥
𝑝
𝑥𝑡

+ 𝑦
𝑥
𝑝
𝑡
𝑝
2

𝑥

= 𝑦
𝑡
𝑝
2

𝑥
+ 2𝑦 (𝑚 + 1) V𝑚V

𝑥
𝑝
2

𝑥
+ V𝑚+1𝑦

𝑥
𝑝
2

𝑥

= [𝑦
𝑡
+ (𝑚 + 2) V𝑚V

𝑥
𝑦 + 𝑦
𝑥
V𝑚+1] 𝑝2

𝑥
+ 𝑚V𝑚V

𝑥
𝑦𝑝
2

𝑥

= [V
𝑡
− V
𝑡𝑥𝑥

+ (𝑚 + 2) V𝑚V
𝑥
(V − V

𝑥𝑥
)

+V𝑚+1 (V
𝑥
− V
𝑥𝑥𝑥

) − 𝜆 (V − V
𝑥𝑥

)] 𝑝
2

𝑥

+ (𝑚V𝑚V
𝑥
+ 𝜆) 𝑦𝑝

2

𝑥

= [V
𝑡
− V
𝑡𝑥𝑥

+ (𝑚 + 3) V𝑚+1V𝑥 − (𝑚 + 2) V𝑚V𝑥V𝑥𝑥

−V𝑚+1V
𝑥𝑥𝑥

− 𝜆 (V − V
𝑥𝑥

)] 𝑝
2

𝑥

+ (𝑚V𝑚V
𝑥
+ 𝜆) 𝑦𝑝

2

𝑥

= (𝑚V𝑚V
𝑥
+ 𝜆) 𝑦𝑝

2

𝑥
,

(18)

from which we have

𝑦 (𝑡, 𝑝 (𝑡, 𝑥)) 𝑝
2

𝑥
(𝑡, 𝑥) = 𝑝

𝑥
(0, 𝑥) 𝑦

0
(𝑥) 𝑒
∫
𝑡

0
(𝑚V𝑚V

𝑥
+𝜆)𝑑𝜏

. (19)

Using 𝑝
𝑥
(0, 𝑥) = 1 completes the proof.

Lemma 8. If V
0

∈ 𝐻𝑠(𝑅), 𝑠 ≥ 3/2, (1 − 𝜕2
𝑥
)V
0

≥ 0 or (1 −

𝜕2
𝑥
)V
0
≤ 0, then the solution of problem (2) satisfies

V𝑥
𝐿∞ ≤ ‖V‖𝐿∞ . (20)

Proof. We only need to prove this lemma for the case V
0
−

V
0𝑥𝑥

≥ 0 since the proof of the other case (1 − 𝜕2
𝑥
)V
0
≤ 0 is

similar. It follows from Lemmas 6 and 7 that V − V
𝑥𝑥

≥ 0.
Letting 𝜉(𝑡, 𝑥) = V − V

𝑥𝑥
, we have

V =
1

2
𝑒
−𝑥

∫
𝑥

−∞

𝑒
𝜂
𝜉 (𝑡, 𝜂) 𝑑𝜂 +

1

2
𝑒
𝑥
∫
∞

𝑥

𝑒
−𝜂

𝜉 (𝑡, 𝜂) 𝑑𝜂, (21)

which derives

𝜕
𝑥
V (𝑡, 𝑥) = −

1

2
(𝑒
−𝑥

∫
𝑥

−∞

𝑒
𝜂
𝜉 (𝑡, 𝜂) 𝑑𝜂 + 𝑒

𝑥
∫
∞

𝑥

𝑒
−𝜂

𝜉 (𝑡, 𝜂) 𝑑𝜂)

+ 𝑒
𝑥
∫
∞

𝑥

𝑒
−𝜂

𝜉 (𝑡, 𝜂) 𝑑𝜂

= −V (𝑡, 𝑥) + 𝑒
𝑥
∫
∞

𝑥

𝑒
−𝜂

𝜉 (𝑡, 𝜂) 𝑑𝜂

≥ −V (𝑡, 𝑥) .
(22)

On the other hand, we have

𝜕
𝑥
V (𝑡, 𝑥) =

1

2
(𝑒
−𝑥

∫
𝑥

−∞

𝑒
𝜂
𝜉 (𝑡, 𝜂) 𝑑𝜂 + 𝑒

𝑥
∫
∞

𝑥

𝑒
−𝜂

𝜉 (𝑡, 𝜂) 𝑑𝜂)

− 𝑒
−𝑥

∫
𝑥

−∞

𝑒
𝜂
𝜉 (𝑡, 𝜂) 𝑑𝜂

= V (𝑡, 𝑥) − 𝑒
−𝑥

∫
𝑥

−∞

𝑒
𝜂
𝜉 (𝑡, 𝜂) 𝑑𝜂

≤ V (𝑡, 𝑥) .
(23)

The inequalities (22) and (23) derive that inequality (20) is
valid.

Lemma 9. For 𝑠 > 0, 𝑢 ∈ 𝐻𝑠(𝑅), and 𝑢
𝜀
= 𝜙
𝜀
⋆ 𝑢, it holds

that
𝑢𝜀𝑥

𝐿∞ ≤ 𝑐
𝑢𝑥

𝐿∞ ,

𝑢𝜀
𝐻𝑞 ≤ 𝑐, if 𝑞 ≤ 𝑠,

𝑢𝜀
𝐻𝑞 ≤ 𝑐𝜀

(𝑠−𝑞)/4
, if 𝑞 > 𝑠,

𝑢𝜀 − 𝑢
𝐻𝑞 ≤ 𝑐𝜀

(𝑠−𝑞)/4
, if 𝑞 ≤ 𝑠,

𝑢𝜀 − 𝑢
𝐻𝑠 = 𝑜 (1) ,

(24)

where 𝑐 is a constant independent of 𝜀.
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The proof of this lemma can be found in [15, 16].
From Lemma 4, it derives that the Cauchy problem

V
𝑡
− V
𝑡𝑥𝑥

= − (𝑚 + 3) V𝑚+1V
𝑥
+ (𝑚 + 2) V𝑚V

𝑥
V
𝑥𝑥

+ V𝑚+1V
𝑥𝑥𝑥

+ 𝜆 (V − V
𝑥𝑥

)

= −
𝑚 + 3

𝑚 + 2
(V𝑚+2)

𝑥
+

1

𝑚 + 2
𝜕
3

𝑥
(V𝑚+2)

− (𝑚 + 1) 𝜕
𝑥
(V𝑚V2
𝑥
) + V𝑚V

𝑥
V
𝑥𝑥

+ 𝜆 (V − V
𝑥𝑥

) ,

V (0, 𝑥) = V
𝜀0

(𝑥) ,

(25)

has a unique solution V depending on the parameter 𝜀. We
write V

𝜀
(𝑡, 𝑥) to represent the solution of problem (25). Using

Lemma 4 derives that V
𝜀
(𝑡, 𝑥) ∈ 𝐶∞([0, 𝑇),𝐻∞(𝑅)) since

V
𝜀0
(𝑥) ∈ 𝐶∞

0
(𝑅).

Lemma 10. Provided that V
0

∈ 𝐻𝑠(𝑅), 1 ≤ 𝑠 ≤ 3/2, and
(1 − 𝜕2
𝑥
)V
0
∈ 𝑁+(𝑅) (or equivalently (1 − 𝜕2

𝑥
)V
0
∈ 𝑁−(𝑅)), then

there exists a constant 𝑐 > 0 independent of 𝜀 and 𝑡 such that
the solution of problem (25) satisfies

V𝜀𝑥
𝐿∞ ≤ 𝑐𝑒

𝑐𝑡
. (26)

Proof. Using Lemmas 5 and 9, if V
0
∈ 𝐻𝑠(𝑅)with 1 ≤ 𝑠 ≤ 3/2,

we have

V𝜀
𝐿∞(𝑅) ≤ 𝑐

V𝜀
𝐻1(𝑅) ≤ 𝑐𝑒

𝑐𝑡V𝜀0
𝐻1(𝑅) ≤ 𝑐𝑒

𝑐𝑡
, (27)

where 𝑐 is independent of 𝜀 and 𝑡.
From Lemma 8, we have

V𝜀𝑥
𝐿∞(𝑅) ≤

V𝜀
𝐿∞(𝑅), (28)

which completes the proof.

4. Proof of Main Results

Proof of Theorem 1. Since ‖V‖
𝐿
∞
(𝑅)

≤ 𝑐‖V‖
𝐻
1
(𝑅)

≤ 𝑐𝑒𝑐𝑡 and
taking 𝑞 + 1 = 𝑠 in inequality (10), we have

‖V‖2
𝐻
𝑠 ≤

V0

2

𝐻
𝑠 + 𝑐∫

𝑡

0

𝑒
𝑐𝜏
‖V‖2
𝐻
𝑠 (

V𝑥
𝐿∞ +

V𝑥

2

𝐿
∞) 𝑑𝜏, (29)

from which we obtain

‖V‖𝐻𝑠 ≤
V0

𝐻𝑠𝑒
𝑐 ∫
𝑡

0
𝑒
𝑐𝜏
(‖V
𝑥
‖
𝐿
∞+‖V

𝑥
‖
2

𝐿
∞ )𝑑𝜏. (30)

Applying Lemma 8 yields

‖V‖𝐻𝑠 ≤
V0

𝐻𝑠𝑐𝑒
𝑒
𝑐𝑡

, (31)

from which we complete the proof of Theorem 1.

Provided that 1 ≤ 𝑠 ≤ 3/2, for problem (25), applying
Lemmas 5, 8, and 10, and the Gronwall’s inequality, we obtain
the inequalities

V𝜀
𝐻1 ≤

V𝜀0
𝐻1 ≤ 𝑐𝑒

𝑐𝑡
,

V𝜀
𝐻𝑞 ≤ 𝑐

V𝜀0
𝐻𝑞 exp [∫

𝑡

0

(
V𝜀𝑥

 +
V𝜀𝑥


2

𝐿
∞) 𝑑𝜏] ≤ 𝑐𝑒

𝑒
𝑐𝑡

,

𝑢𝜀𝑡
𝐻𝑟 ≤ 𝑐

𝑢𝜀
𝐻𝑟+1 (1 + 𝑒

𝑐𝑡
) ≤ 𝑐 (1 + 𝑒

𝑐𝑡
) ,

(32)

where 𝑞 ∈ (0, 𝑠], 𝑟 ∈ [0, 𝑠−1], and 𝑐 is a constant independent
of 𝑡 and 𝜀. Using the Aubin compactness theorem, we know
that that there is a subsequence {V

𝜀
𝑛

} of {V
𝜀
} such that {V

𝜀
𝑛

} and
their temporal derivatives {V

𝜀
𝑛
𝑡
} convergeweakly to a function

V(𝑡, 𝑥) and its derivative V
𝑡
in the space 𝐿2([0, 𝑇],𝐻𝑠(𝑅)) and

𝐿2([0, 𝑇],𝐻𝑠−1(𝑅)), respectively, where 𝑇 is an arbitrary fixed
positive number. In addition, for any real number 𝑀

1
>

0, {V
𝜀
𝑛

} converges strongly to the function V in the space
𝐿2([0, 𝑇],𝐻𝑞(−𝑀

1
,𝑀
1
)) for 𝑞 ∈ (0, 𝑠] and {V

𝜀
𝑛
𝑡
} converges

strongly to V
𝑡
in the space 𝐿2([0, 𝑇],𝐻𝑟(−𝑀

1
,𝑀
1
)) for 𝑟 ∈ [0,

𝑠 − 1].

Proof of Theorem 3. For an arbitrary fixed 𝑇 > 0, using Lem-
ma 10, we know that {V

𝜀
𝑛
𝑥
} (𝜀
𝑛

→ 0) is bounded in the space
𝐿∞. Therefore, we derive that the sequences {V

𝜀
𝑛

}, {V
𝜀
𝑛
𝑥
},

{V2
𝜀
𝑛
𝑥
}, and {V3

𝜀
𝑛
𝑥
} converge weakly to V, V

𝑥
, V2
𝑥
, and V3

𝑥
in 𝐿2

([0, 𝑇],𝐻𝑟(−𝑅
1
, 𝑅
1
)) for any 𝑟 ∈ [0, 𝑠−1), separately. Applying

the identity V𝑚(V2
𝑥
)
𝑥
= (V𝑚V2

𝑥
)
𝑥
− (V𝑚)

𝑥
V2
𝑥
, we conclude that V

satisfies the equation

− ∫
𝑇

0

∫
𝑅

V (𝜑
𝑡
− 𝜑
𝑥𝑥𝑡

) 𝑑𝑥 𝑑𝑡

= ∫
𝑇

0

∫
𝑅

[(
𝑚 + 3

𝑚 + 2
V𝑚+2 + (𝑚 + 1) V𝑚V2

𝑥
)𝜑
𝑥

−
1

𝑚 + 2
V𝑚+2𝜑

𝑥𝑥𝑥
−

1

2
V𝑚V2
𝑥
𝜑
𝑥

−
𝑚

2
V𝑚−1V3

𝑥
𝜑 + 𝜆V (𝜑 − 𝜑

𝑥𝑥
)] 𝑑𝑥 𝑑𝑡,

(33)

where 𝜑(𝑡, 𝑥) ∈ 𝐶∞
0
([0, 𝑇]×𝑅). We know that𝑌 = 𝐿1([0, 𝑇]×

𝑅) is a separable Banach space and {V
𝜀
𝑛
𝑥
} is a bounded

sequence in the dual space 𝑌∗ = 𝐿∞([0, 𝑇] × 𝑅) of 𝑌. Thus,
there exists a subsequence of {V

𝜀
𝑛
𝑥
}, still denoted by {V

𝜀
𝑛
𝑥
},

weakly star convergent to a function 𝑢 in 𝐿∞([0, 𝑇] × 𝑅).
Since {V

𝜀
𝑛
𝑥
}weakly converges to V

𝑥
in 𝐿2([0, 𝑇]×𝑅), it derives

that V
𝑥

= 𝑢 almost everywhere. Therefore, we obtain V
𝑥

∈

𝐿∞([0, 𝑇] × 𝑅). Since 𝑇 > 0 is an arbitrary number, we com-
plete the proof of existence of global weak solutions to
problem (2).
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