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This paper addresses the irregular strip packing problem, a particular two-dimensional cutting and packing problem in which
convex/nonconvex shapes (polygons) have to be packed onto a single rectangular object.Wepropose an approach that prescribes the
integration of a metaheuristic engine (i.e., genetic algorithm) and a placement rule (i.e., greedy bottom-left). Moreover, a shrinking
algorithm is encapsulated into themetaheuristic engine to improve good quality solutions. To accomplish this task, we propose a no-
fit polygon based heuristic that shifts polygons closer to each other. Computational experiments performed on standard benchmark
problems, as well as practical case studies developed in the ambit of a large textile industry, are also reported and discussed here in
order to testify the potentialities of proposed approach.

1. Introduction

Theconstant competitiveness between themodern industries
requires that a part of the investments has to be directed to the
optimization of the production processes. In garment, glass,
paper, sheet metal, textile, and wood industries, for instance,
the main concern is to avoid the excessive expenditure of raw
material required to meet a particular demand.

In this scenario, the two-dimensional irregular strip
packing problem is included. Concisely, the irregular strip
packing problem is a combinatorial optimization problem
that consists of finding the most efficient design for packing
irregular shaped items onto a single rectangular object with
minimum waste material. More precisely, the problem can
be defined as follows. Assume a rectangular object that has a
constant width and infinite length. Consider also a collection
of irregular items grouped in 𝑚 types. For each piece type
𝑖, characterized by a set of points, there are an associated
number of pieces 𝑏

𝑖
. The objective function of the problem

aims to find an arrangement of items onto the rectangular
object such that its length is minimized, and two geometric
conditions hold. (1) No two pieces overlapwith each other. (2)
Each packed piece lies entirely onto the rectangular object.

A specialization of this problem is the placement of
irregular figures with characteristics similar to regular cut,
but dealing with irregular figures, the nesting problems [1].
They have been known as NP-hard due to their difficulty
where few exact methods have been reported in the literature
[2], where it is possible to find promising solutions by
applying methodologies addressed in [3, 4].

The irregular strip packing problem is known to be NP-
hard even without rotation [5], meaning that its globally
optimal solution is unlikely to be found by polynomial-
time algorithms. Solution techniques range from simple
placement heuristics that convert a sequence of pieces into
a feasible layout to local optimization techniques involving
mathematical programming models. In this paper, we pro-
pose a novel approach based on the aggregation between a
modified genetic algorithm and a greedy bottom-left pro-
cedure for tackling the target problem [6, 7]. A shrinking
algorithm is also encapsulated into the metaheuristic engine
in order to improve the arrangement of pieces.

To have better analysis, the remainder of this paper is
organized as follows. In Section 2, we present state-of-the-art
methodologies dedicated to the irregular strip packing prob-
lem. Section 3 conveys essential concepts related to the pro-
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posed methodology, which is introduced in Section 4. In
Section 5, some control parameters are discussed. Compu-
tational results on benchmark problem instances and a case
study on a textile industry are given in Section 6. Finally,
in Section 7, we draw conclusions regarding the quality of
the solutions provided by our algorithm and make some
considerations concerning future development.

2. Literature Review

Problems involving irregular shapes comprise the most dif-
ficult class of packing problems. Whatever the constraints or
secondary objectives, there are basically three approaches to
find suitable layouts: (1) the polygons may be considered one
at a time and packed onto the rectangular object according
to the sorting criteria or (2) may be nested either singly or
in groups into a set of enclosing polygons which are then
packed onto the rectangular object, or (3) an initial allocation
is improved iteratively.

Jakobs [9], for instance, presented a genetic algorithm
in which each individual is represented by a list of pieces.
The way they are disposed of in the chromosome defines
the order they are placed by the Bottom-Left heuristic. A
shrinking algorithm improves the partial solution by shifting
the polygons closer to each other. On the other hand, a
new method for implementing a bottom-left-fill packing
algorithm which allows shapes that incorporate circular arcs
and holes to be nested was presented by Burke and Kendall
[10]. The placement rule is combined with hill climbing
and tabu local search methods, which determine an efficient
nesting sequence. Similarly, Oliveira et al. [11] developed
the well-known constructive algorithm known as “Técnicas
de optimização para o posicionamento de figuras irregulares”
(TOPOS).The solution grows from a floating origin and both
the next polygon to be packed and its position are defined
by two heuristics called local search and initial sort. Different
objective functions are proposed to evaluate and compare
partial solutions.

In recent papers, mathematical programming techniques
have been adopted for solving one of the following sub-
problems: overlap minimization problem, whose objective is
to place all polygons onto a rectangular object with given
width and length so that the total number of overlaps
between polygons is made as small as possible; compaction
problem, which requires a feasible design and relocates many
polygons simultaneously so as to minimize the strip length;
and separation problem, which takes an infeasible layout
and performs a set of translations of the polygons that
eliminates all overlaps and has a minimum total translation.
Gomes and Oliveira [8], for instance, hybridized simulated
annealing and linear programming. Firstly, the initial layout
is obtained by a greedy bottom-left placement heuristic, being
that each polygon is selected according to a random weighted
length criterion. The simulated annealing algorithm guides
the search over the solution space where each neighborhood
structure handles linear programming models, which are a
compaction algorithm (Figure 1) and a separation algorithm
(Figure 2). Likewise, an extended local search algorithm

based on nonlinear programming was conceived by Leung
et al. [12]. The algorithm starts with a feasible layout, and
its length is saved as the best length. Then, a new design is
achieved by randomly swapping two polygons in the current
solution. Within a time limit, the strip length is reduced, and
local searchmethod solves overlapminimization problems. If
the new arrangement is feasible, the best solution is updated,
and its length is further reduced to find even better solutions.
Otherwise, the strip length is increased, and local search is
invoked, which is conducted by a Tabu Search technique in
order to escape from local minima. A compaction algorithm
is used to improve results.

By other means, a successful approach that combines a
local search method with a guided local search to deal with
two- and three-dimensional irregular packing problems was
proposed by Egeblad et al. [13]. An initial strip length is
found by a fast placement heuristic. By reducing this value,
overlap situations occur, which are removed by a local search
that may apply one of the following four changes: horizontal
translation; vertical translation; rotation; or flipping. The
guided local search is selected to escape from local minima.
Finally, in a recent paper [14], Bennell and Song modified
the TOPOS placement heuristic and applied it to a beam
search tree, which represents the placement order of polygons
onto the rectangular object. Each node in the search tree
corresponds to a partial solution, which means that partial
solutions can be generated in parallel.

3. Related Concepts

To describe our proposed methodology, we first explain
essential concepts related to its behavior, involving genetic
algorithm, greedy bottom-left heuristic, and no-fit polygon.

3.1. Genetic Algorithm. Introduced by Holland [15] and per-
fected by Goldberg [16], genetic algorithm is a search and
optimization technique inspired in the metaphor of biolog-
ical evolution. Although a genetic algorithm is a heuristic
method, which does not guarantee to find the optimal solu-
tions, it can be applied in many optimization problems.

An implementation of a typical genetic algorithm begins
with a population of (generally random) 𝑛 chromosomes,
which are evaluated and associated with a particular repro-
duction rate in such a way that those chromosomes that
represent better solutions to the target problem are given
more chances to “reproduce” than those which are poorer
solutions. The quality of the solution is measured according
to the current population. Then, the crossover and mutation
mechanisms are implemented with some probability to the
chosen chromosomes. Only the fittest individuals take part
in the next generation. Once a new population is generated,
the stopping condition of the metaheuristic is checked. If the
genetic algorithm is not terminated, each candidate solution
is again evaluated and the genetic search process renewed.

3.2. Greedy Bottom-Left Heuristic. A traditional constructive
algorithm for solving any two-dimensional cutting or pack-
ing problem aims to order pieces and then place them in turn,
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Figure 1: Compaction procedure (Gomes and Oliveira [8]).
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Figure 2: Separation procedure (Gomes and Oliveira [8]).

choosing the leftmost feasible position and breaking ties by
selecting the lowest, as illustrated by Figure 3. This process,
known as greedy bottom-left heuristic, was introduced by
Baker et al. [17] for packing an arbitrary collection of
rectangular pieces into a rectangular bin so as tominimize the
layout height. The advantages of this type of approach are its
speed and simplicitywhen comparedwithmore sophisticated
methods that may be able to produce solutions of higher
quality.

Some papers have considered placement algorithms
based on the greedy bottom-left rule in the field of two-
dimensional cutting and in this work the aforementioned
heuristic was chosen as placement policy.

3.3. No-Fit Polygon. The no-fit polygon is a powerful data
structure used for fast and efficient handling of geometry in
cutting and packing problems involving irregular shapes.The
idea behind this trigonometric technique firstly described
by Art [18] as shape envelop comes as follows. Given two
polygons, 𝐴 (the fixed piece) and 𝐵 (the orbital piece), and
a reference point on 𝐵 called 𝑅

𝐵
, the no-fit polygon of 𝐴

in relation to 𝐵, denoted by NFP
𝐴𝐵
, is the set of points

traced by 𝑅
𝐵
when 𝐵 slides around the contour of 𝐴 without

overlapping, as displayed in Figure 4. Three situations may
arise with respect to the interaction between both shapes. If
polygon 𝐵 is positioned so that its reference point is inside
NFP
𝐴𝐵
, then it overlaps with polygon 𝐴; if the reference

point is on the boundary of NFP
𝐴𝐵
, then polygon 𝐵 touches

polygon 𝐴; finally, if the reference point is outside of NFP
𝐴𝐵
,

then polygons 𝐴 and 𝐵 do not overlap or touch. So, the
interior of the computed NFP

𝐴𝐵
represents all intersecting

positions of 𝐴 and 𝐵, and the boundary represents all
touching positions.

Figure 3: Greedy bottom-left procedure for an input piece.

For our implementation, the construction of no-fit poly-
gon was performed by using theMinkowski sum, whose con-
cept involves two arbitrary point sets𝐴 and𝐵.TheMinkowski
sum is obtained by adding each point in𝐴 to each point in 𝐵;
that is, 𝐴⊕ 𝐵 = {𝑎+ 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. Simple vector algebra
can be used to show that 𝐴 ⊕ −𝐵, defined as the Minkowski
difference of𝐴 and𝐵, is equivalent to no-fit polygon produced
by both shapes. Since we follow the convention that polygons
have counter-clockwise orientation, then −𝐵 is simply 𝐵 with
clockwise orientation.

4. Proposed Methodology

The proposed methodology prescribes the integration of
the distinct components described in Section 3. On what
concerns the genetic algorithm, whose control parameters
and calibration are set out in Section 5, each individual
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Figure 4: No-fit polygon generated by polygons 𝐴 and 𝐵.

Figure 5: Allocation of the first piece.

is encoded by an integer chromosome that represents a
placement vector chrom(𝑖), (𝑖 = 1, . . . , 𝑚), which determines
the packing sequence of the𝑚 polygons onto the rectangular
object. For each gene chrom(𝑖), characterized by a piece
type 𝑡

𝑖
, there is an associated rotation variant 𝑟

𝑖
. The length

required to pack all input polygons is assigned as fitness
value of the corresponding individual. Having revealed these
details, the steps executed by each individual of the current
population are presented below.

Step 1. As depicted in Figure 5, polygon chrom(𝑖) is placed
onto the rectangular object by the greedy bottom-left rule. Set
𝑖 ← 𝑖 + 1.

Step 2. According to the no-fit polygon technique, polygon
chrom(𝑖) is positioned on the contour of polygon chrom(𝑖 −
1) such that the length of the rectangular object does not
increase or is minimized, as presented in Figure 6. In the case
of multiple positions, the leftmost one is considered.

Step 3. The greedy bottom-left rule is applied to polygon
chrom(𝑖), as illustrated by Figure 7.

Step 4 (termination test). If 𝑖 ̸=𝑚, set 𝑖 ← 𝑖 + 1 and go to Step
2;

Step 5 (final layout). A shrinking algorithm (Figure 8) is
configured as a genetic algorithm operator, working in each
generation on the two fittest individuals (i.e., layouts with
short lengths) with an occurrence probability. Considering
the no-fit polygon technique, this task is characterized by
choosing polygons located in 𝑃1 (orbital piece) and 𝑃2
(stationary piece). After the NFP

𝑃1,𝑃2
is calculated, the

aforementioned packing process is applied for both pieces.

Figure 6: Best position computed by no-fit polygon.

Figure 7: Final location of pieces.
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Figure 8: Shrinking heuristic.

The main objective of this method is to allocate polygons
situated in rightmost spaces in leftmost free spaces in order
to decrease the strip length. Furthermore, calculated NFP
polygons between all the types of pieces reduce the number of
operations during execution, considering that with Polygon
processed NFP just a translation to the reference point of
the stationary polygon is needed. The preprocessing of the
NFP will only run once at the beginning of the algorithm
and its complexity depends only on the quantity and types
of possible angles.

The methodology flow chart is presented in Figure 9.

5. Control Parameters and Calibration

In this section, we discuss the parameters that control
many aspects of the proposed methodology; some of these
parameters represent tradeoffs between opposite goals, while
others simply allow the fine-tuning of the effectiveness
and/or efficiency of the methodology for particular problem
instances. However, the set of control parameters discussed
here allows the fine tuning of the methodology for a large
range of optimization problems. We will see that several
parameters were actually set to constant values during the
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Figure 9: Methodology flow chart.

course of our computational experiments, suggesting that
certain parameter-value pairs tend to work well on a wide
variety of problem instances. On what concerns the meta-
heuristic engine, for the sake of computational performance,
a simple genetic algorithm instance has been used, which is
configured with uniform order-based crossover, swap muta-
tion, fitness proportional parent selection, and age-based
population replacement (whereby the parents are replaced
by the entire set of offspring). Important control parameters
related are described as follows.

(i) Elitism. This parameter indicates whether the best current
individual is preserved from one generation to the next. Since
elitism usually has a positive impact on the search process (as
it allows better exploitation of the best individuals generated
so far), in our experiments, we enabled this parameter,
obtaining gains in convergence without any side effects.

(ii) Population Size. A large population size allows for more
diversity and, thus, facilitates the exploration of several
regions of the search space. On the other hand, a large
population size implies slow evolutionary cycles. The best
value obtained for this parameter was 400.

(iii) Crossover Rate. This parameter determines how often the
crossover operator will be applied. If there is no crossover,
offspringwill be exact copies of parents. If there is a crossover,
offspring is generated from parts randomly selected from
their parents. To achieve the results reported in Section 6, we
adopted the value of 0.90 for this parameter.

(iv) Mutation Rate. This parameter controls how often a
gene of an individual has its value altered through mutation.
While small values for this parameter tend to reduce the
genetic algorithm exploration ability, larger values may cause

the premature loss of good individuals from one generation
to the next. In our experiments, we have selected the value of
0.2.

(v) Shrinking Probability. This parameter controls how often
the shrinkingmethod is applied. In our experiments, we have
used the value of 0.6.

(vi) Total Time to Stop. This parameter (TTS, for short)
stipulates the maximum amount of running time allowed for
the genetic algorithm to execute. If its value is reached, the
execution is interrupted and the best solution found so far
is returned. The user according to his/her time availability
should set this parameter.

(vii) Maximum Number of Generations. This is a secondary
parameter used to cease the optimization process and is
hereafter referred to as MNG. When the maximum number
of generations is reached, the genetic algorithm process is
interrupted and the best solution found so far is returned. If
desired, this parameter can be set to an undetermined value
in order to be disregarded.

6. Computational Experiments

A series of experiments were carried out on a desktop
machine with a 3.60GHz Intel i5 CPU and 4GB of RAM.The
genetic algorithm was implemented in Java and configured
with those parameters described in Section 5. Concerning the
MNG and TTS, they were set as 200 and 6 hours, respectively.

To evaluate the potentialities behind the proposedmetho-
dology, we conducted a series of experiments on benchmark
problems available on the EURO Special Interest Group on
Cutting andPacking (ESICUP) at http://www.fe.up.pt/esicup,
which involved five data sets: DIGHE1 and DIGHE2 are
jigsaw puzzles with known optimum conceived from Dighe
and Jakiela [19]; JAKOBS1 and JAKOBS2 are artificial data
sets proposed by Jakobs [9]; TROUSERS is an approximation
of a real instance taken from the garment industry and it
was firstly presented in Oliveira et al. [11]; SHAPES0 and
SHAPES1 are artificially created data set, coordinates stated
in Oliveira el al. [11]; ALBANO, MAO, and MARQUES are
real instances from the textile industry and were presented
in [20–22], respectively. Further descriptions of the instances
are shown in Table 1.

Table 2 provides the best results achieved by 10 runs of
our aggregation method (AM). In this table, for each data
set, Length, Utilization and Time denote, respectively, the
best length among those produced by all runs, the utilization
percentage of the rectangular object of the best solution value,
and the time elapsed from the beginning of the run until the
best solution found.

In Table 3, we present a comparison of the best results
achieved by some state-of-the-art methodologies to solve
the irregular strip packing problem, where SAHA by Gomes
and Oliveira [8], BLF by Burke and Kendall [10], 2DNest
by Egeblad et al. [13], and BS by Bennell and Song [14] are
included.
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Table 1: Data set characteristics.

Data set Number of
different pieces

Total number
of pieces

Orientations
(degrees)

DIGHE1 16 16 0
DIGHE2 10 10 0
JAKOBS1 25 25 0
JAKOBS2 25 25 0
TROUSERS 17 64 0, 180
SHAPES0 4 43 0
SHAPES1 4 43 0, 180
MARQUES 8 24 90 incremental
MAO 9 20 90 incremental
ALBANO 8 24 0, 180
SWIM 10 48 0, 180

Table 2: Computational Results.

Data set Length Utilization (%) Time (seconds)
DIGHE1 100.00 100.00 4113
DIGHE2 100.00 100.00 3751
JAKOBS1 12.22 84.46 13498
JAKOBS2 26.11 79.61 11985
TROUSERS 245.45 88.90 14775
SHAPES0 63.275 65.17 4303
SHAPES1 61.301 69.93 5032
MARQUES 81.89 87.80 6871
MAO 1840.37 82.69 6348
ALBANO 10247.28 88.40 10.230
SWIM 6099.00 72.63 15.204

We denote by Dif the relation, in percentage, between the
solution found by AM and the best solution of the row:

Dif =
Solution found by AM (in percentage)
Best solution of the row (in percentage)

× 100.

(1)

To sum up, regarding the utilization percentage of the
rectangular object, it can be stated that AM has presented
promising results. Taking as reference the scores achieved by
BLF and SAHA, the proposed methodology presents better
solutions in most of cases, as well as the average solutions.
Regarding the 2DNest algorithm, we obtained better results
in three problem instances, namely, ALBANO, DIGHE1,
DIGHE2, and SWIM. Moreover, AM yielded better scores
compared to the BS in two data sets, namely, SHAPES0
and ALBANO. Furthermore, even without applying the same
rotation variants allowed by other studies (90 incremental),
Table 3 shows that AM proved to be very competitive when
compared with the reported approaches. We strongly believe
that equivalent or better results can be found if we allowmore
rotations in a future extension of the work.

In Figures 10, 11, and 12, we show the convergence to the
best solution found during the search of the genetic algorithm
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Figure 10: Dynamics of the genetic algorithm evolutionary process:
a step-by-step improvement-DIGHE1.
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Figure 11: Dynamics of the genetic algorithm evolutionary process:
a step-by-step improvement-ALBANO.
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Figure 12: Dynamics of the genetic algorithm evolutionary process:
a step-by-step improvement-JAKOBS2.

for DIGHE1, ALBANO, and JAKOBS2 data sets, while Fig-
ures 13, 14, and 15 display their best cutting configurations.

6.1. Applied Large Textile Industry. Brazil is the sixth largest
textile producer country of the world and the main power,
according to the Brasilian Textile Industry Association
(ABIT). Among the Brazilian poles, we can highlight the
state of Ceara. The success of cotton in this state, until the
mid-1980s, stimulated the establishment of a solid textile and
apparel park, which soon had to adapt to the new reality.

The aggregation method has also been applied in the
ambit of a large textile industry.This particular industrial unit
prints soccer team logos (Figure 16) on rectangular strips and
then performs the cutting of these items for embroidering on
caps, coats, shirts, shorts, and socks.

A significant difference in the production of shells is to
define a feasible layout and has a prominent advantage. The
acquisition of the points of the figures is performed by means
of discretization, or some points are selected manually or
automatically, in a manner that represent them.

The greater the number of points to describe the polygon
is, the better the resolution is; however, all the processing
routines consume high computational time. The width of a
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Table 3: Comparative analysis.

Data set SAHA BLF 2DNest BS AM Dif
DIGHE1 100.00 77.40 99.86 100.00 100.00 100
DIGHE2 100.00 79.40 99.95 100.00 100.00 100
JAKOBS1 78.89 82.60 89.07 85.96 84.46 95
JAKOBS2 77.28 74.80 80.41 80.40 79.61 99
TROUSERS 89.96 88.50 89.84 90.38 88.90 98
SHAPES0 66.50 60.50 67.09 64.35 65.17 97
SHAPES1 71.25 66.50 73.83 71.25 69.93 95
MARQUES 88.14 86.50 89.17 88.92 87.80 98
MAO 82.54 79.50 85.15 84.07 82.69 97
ALBANO 89.96 84.60 86.96 87.88 88.40 98
SWIM 74.36 71.60 71.53 75.04 72.63 96
Mean 83.53 77.45 84.81 84.39 83.60 98

Figure 13: Best solution found for DIGHE1 instance.

Figure 14: Best solution found for ALBANO instance.

rectangular strip is 210mm and each logo is composed by a
set of points (see input data for each instance at https://www
.dropbox.com/sh/qzwnx03lwp8klbs/9ULx0YkFey).

Moreover, Table 4 contains the instance, the number of
kinds, the number of polygons, and width to applications.

In Table 5, we present the results obtained by empirical
methods (EM) in solving instances of the case study. We
define “empirical” as the knowledge used by employees with
extensive experience in textile cutting (without applying any
combinatorial optimization technique).

Figure 15: Best solution found for JAKOBS2 instance.

The layout produced by applying the empirical methods
(EM) to Soccer Logos-I, Soccer Logos-II, and Soccer Logos-
III instances is displayed in Figures 17, 18, and 19.

In addition, the layout produced by applying the aggre-
gation method (AM) to Soccer Logos-I, Soccer Logos-II,
and Soccer Logos-III instances is displayed in Figures 20,
21, and 22. Moreover, Table 6 shows the values obtained
from the length, improvement, and execution time presented.
Comparing Tables 5 and 6, there is a better use of the
aggregationmethod (AM) over the empirical methods (EM).

The highlighted variation in a small increase in the
number of generations from the compression method is
applied to the methodology. Moreover, it is observed that the
application of aggregation method for the experiments of the
textile industry presented has made significant progress.

7. Conclusions and Future Work

The main objective is to minimize the length of the layouts,
while the width remains fixed. For this, we developed a
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Table 4: Features of the figures of the case study.

Data set Number of different pieces Total number of pieces Orientations (degrees) Length
Soccer Logos-I 2 40 45 incremental 210mm
Soccer Logos-II 1 20 45 incremental 210mm
Soccer Logos-III 1 30 45 incremental 210mm

Figure 16: Soccer team logos.

Figure 17: Best solution found for Soccer Logos-I instance.

Table 5: Results obtained from the practical case studied—
empirical methods (EM).

Data set Length Improvement (%) Time (seconds)
Soccer Logos-I 637.617 78.01 5100
Soccer Logos-II 307.474 79.21 1200
Soccer Logos-III 499.758 76.21 4800

strategy based on hybridization of genetic algorithms and a
heuristic placement that applies the concepts of calculating
the no-fit polygons methodology and bottom-left heuristic.
In this initial study, we have introduced an aggregation
methodology to cope with the irregular strip packing prob-
lem, which is based on a kind of hybridization between a
genetic algorithm greedy bottom-left heuristic.

Figure 18: Best solution found for Soccer Logos-II instance.

Figure 19: Best solution found for Soccer Logos-III instance.

Figure 20: Best solution found for Soccer Logos-I instance: (AM).

Table 6: Results obtained from the practical case studied—
aggregation method (AM).

Data set Length Improvement (%) Time (seconds)
Soccer Logos-I 633.58 78.51 5220
Soccer Logos-II 300.95 80.94 3800
Soccer Logos-III 453.39 84.01 3690

For specific types of figures, certain approaches will
produce best computational results. However, depending
on the shape of polygons, the same may be a decrease in
efficiency. The criteria for selection of various positioning
method is an outstanding solution to the problem; however,
the computational complexity involved in such methods is
high. The computational results were good cheer, compared
to other approaches, and especially according to the inherent
difficulty of this problem.
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Figure 21: Best solution found for Soccer Logos-II instance: (AM).

Figure 22: Best solution found for Soccer Logos-III instance: (AM).

Overall, the optimization performance achieved with the
novel methodology has been promising, taking as reference
the results achieved by other approaches and taking into
account the inherent difficulties associated with this partic-
ular cutting and packing problem.

As future work, we plan to investigate the performance of
the biased random-key genetic algorithm [23] with different
criteria evaluations for the irregular strip packing problem,
to apply processing in distributed genetic algorithm coupling
observing criteria for each process, and to investigate other
forms of representation of the polygon, so that irregular
figures holes are characterized by applying the method of
positioning. In addition, investigate other forms of represen-
tation of polygons, so that figures with irregular bores are
characterized in the application of the method of placement.
Another possibility is to investigate the application of Integer
Linear Programming models for compacting layouts.
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